Band Structure Simulations of the Photoinduced Changes in the MgB2:Cr Films
Abstract
:1. Introduction
2. Theoretical Calculations
2.1. Band Structure Calculation Method
2.2. Structural Optimization
2.3. Principal Approaches for Simulation of Electronic Structure in the Reconstructed MgB2:Cr2O3 Nano-Interfaces
3. Results and Discussions
3.1. Band Structure Calculations
3.2. Nonlinear Optical Dispersion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Takamura, G.; Wajtkus, R.; Xiang, Z. Parametrical optical effects in Hg-containing films. J. Opt. A 2004, 6, 357–360. [Google Scholar]
- Takamura, G.; Wajtkus, R.; Xiang, Z. Piezo-and electrooptical phenomena in high temperature superconducting films. Opt. Mater. 2004, 27, 211–215. [Google Scholar]
- Kityk, I.V.; Lutciv, R.V. Second harmonic generation in YBa2Cu3Ox single crystals. Phys. Status Solidi B 1993, 180, K35–K37. [Google Scholar]
- Nuwal, A.; Paliwal, R.K.; Kakani, S.L.; Kalra, M.L. Theoretical study of photoinduced superconductors in a two band model. Physica C 2011, 471, 318–331. [Google Scholar]
- AlZayed, N.S.; Kityk, I.V.; Soltan, S.; Wojciechowski, A.; Fedorchuk, A.O.; Lakshminarayana, G.; Shahabuddin, M. Laser stimulated kinetics effects on the phase transition of the ferromagnetic/superconducting MgB2/(CrO2) bilayer thin films. J. Alloy. Compd. 2014, 594, 60–64. [Google Scholar]
- Bachelet, G.B.; Hamann, D.R.; Schlüter, M. Pseudopotential that work: From H to Pu. Phys. Rev. B 1982, 26, 4199–4228. [Google Scholar]
- Napieralski, J.; Kryza, A.; Kasperczyk, J.; Kityk, I.V. Photoinduced electronic structure and nonlinear susceptibilities in Y-Ba-Cu-O ceramics. J. Chem. Phys. Solids 2001, 62, 1949–1956. [Google Scholar]
- Kityk, I.V.; Kassiba, A.; Plucinski, K.J.; Berdowski, J. Band structure of the large-sized SiC nanocomposites. Phys. Lett. A 2000, 265, 403–410. [Google Scholar]
- Kityk, I.V.; Soltan, S.; AlZayed, N.S.; Viennois, R.; Reibel, C.; Shahabuddin, M.; El-Naggar, A.M.; Qaid Salem, A.S.; Shah, M.S. Photoinduced operation and diagnostic of superconductivity in the MgB2 films. J. Mater. Sci. Mater. Electron. 2013, 24, 4585–4589. [Google Scholar]
- Plucinski, K.J.; Kityk, I.V.; Kasperczyk, J.; Sahraoui, B. The structure and electronic properties of silicon oxynitride gate dielectrics. Semicond. Sci. Technol. 2001, 16, 467–470. [Google Scholar]
- Nouneh, K.; Kityk, I.V.; Viennois, R.; Benet, S.; Charar, S.; Malynych, S.; Paschen, S. Photoinduced non-linear optical monitoring of novel semimagnetic semiconductors Pb1−xYbxX (X = S, SemTe). Mater. Lett. 2007, 61, 1142–1145. [Google Scholar]
- Dovgii, Ya.O.; Kityk, I.V.; Kolinko, M.I.; Krochuk, A.S.; Franiv, A.V.; Zamorskii, M.K. Band structure and charge density distribution of cubic face-centred TlI single crystals. Phys. Status Solidi B 1991, 167, P637–P646. [Google Scholar]
- Peng, X.; Wei, Q.; Copple, A. Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene. Phys. Rev. B 2014, 90, 085402. [Google Scholar]
- Laasner, R. G0W0 band structure of CdWO4. J. Phys. Condens. Matter 2014, 26, 125503. [Google Scholar]
- Obermayr, W.; Sznajder, M. On LCAO positron wavefunctions in crystals. J. Phys. Conf. Ser. 2006, 30, 262–265. [Google Scholar]
- Zhang, D.B.; Sun, T.; Wentzcovitch, R.M. Phonon quasiparticles and anharmonic free energy in complex systems. Phys. Rev. Lett. 2014, 112, 058501. [Google Scholar]
- AlZayed, N.S.; Kityk, I.V.; Ozga, K.; Fedorchuk, A.O.; Soltan, S.; Shahabuddin, M.; El-Naggar, A. Role of MgB2/Cr2O3 nano-interfaces in photoinduced nonlinear optical treatment of the MgB2 superconducting films. Physica E 2014, 63, 180–185. [Google Scholar]
- Mykhalenko, S.I.; Babizhetskii, V.S.; Kuz’ma, Y.B. New Compound in the system Sc-Cr-B. J. Solid State Chem. 2004, 177, 439–443. [Google Scholar]
- Kazakov, S.M.; Puzniak, R.; Rogacki, K.; Mironov, A.V.; Zhigadlo, N.D.; Jun, J.; Soltmann, C.; Batlogg, B.; Karpinski, J. Carbon substitution in MgB2 single crystals: Structural and superconducting properties. Phys. Rev. B 2005, 71, 024533. [Google Scholar]
- Sawada, H. Electron density study of spinals: Magnesium chromium oxide. Mater. Res. Bull. 1996, 31, 361–366. [Google Scholar]
- Theory and Applications of Computational Chemistry: The First 40 Years; Dykstra, C.E.; Frenking, G.; Kim, K.S.; Scuseria, G.E. (Eds.) Elsevier: Amsterdam, the Netherlands, 2005.
- Levente, V. Computational Quantum Mechanics for Materials Engineers; Springer-Verlag London Limited: London, UK, 2007. [Google Scholar]
- Ke, X.; Li, J.; Nisoli, C.; Lammert, P.E.; McConville, W.; Wang, R.F.; Crespi, V.H.; Schiffer, P. Energy minimization and ac demagnetization in a nanomagnet array. Phys. Rev. Lett. 2008, 101. [Google Scholar] [CrossRef]
- Warmbier, R.; Mohammed, F.; Quandt, A. Optical and other material properties of SiO2 from ab initio studies. Opt. Eng. 2014, 53. [Google Scholar] [CrossRef]
- AlZayed, N.S.; Kityk, I.V.; Soltan, M.; El-Naggar, A.M.; Shahabuddin, M. Laser induced infrared spectra shift of the MgB2:Cr superconductor films. Spectrochim. Acta A 2015, 136, 1698–1701. [Google Scholar]
- Nazabal, V.; Kityk, I.V. Second Harmonic Generation in Chalcogenide Glasses. In Chalcogenide Glasses: Preparation, Properties and Applications; Adam, J.-L., Zhang, X., Eds.; Woodhead Publishing Limited: Cambridge, UK, 2014; pp. 509–561. [Google Scholar]
- Tsirelson, V.; Stash, A.; Kohout, M.; Rosner, H.; Mori, H.; Sato, S.; Lee, S.; Yamamoto, A.; Tajimaf, S.; Grin, Y.; et al. Features of the electron density in magnesium diboride: Reconstruction from X-ray diffraction data and comparison with TB-LMTO and FPLO calculations. Acta Cryst. B 2003, 59, 575–583. [Google Scholar]
- Evarestov, R.V. Theoretical Modelling of Inorganic Nanostructures. Symmetry and ab initio Calculations of Nano-Layers, Nano-Tubes and Nanowires; Springer-Verlag: Berlin/Heidelbergm, Germany, 2015. [Google Scholar]
- Iavarone, M.; Karapetrov, G.; Koshelev, A.E.; Kwok, W.K.; Crabtree, G.W.; Hinks, D.G.; Kang, W.N.; Choi, E.M.; Kim, H.J.; Lee, S.I.; et al. Two-band superconductivity in MgB2. Phys. Rev. Lett. 2002, 89, 187002. [Google Scholar]
- Iavarone, M.; di Capua, R.; Koshelev, A.E.; Kwok, W.K.; Chiarella, F.; Vaglio, R.; Kang, W.N.; Choi, E.M.; Kim, H.J.; Lee, S.I.; et al. Effect of disorder in MgB2 thin films. Phys. Rev. B 2005, 71, 214502. [Google Scholar]
- Kim, I.G.; Lee, J.I.; Min, B.I.; Freeman, A.J. Surface electronic structures of superconducting thin film MgB2 (0001). Phys. Rev. B 2001, 64. [Google Scholar] [CrossRef]
- Holanova, Z.; Szabo, P.; Samuely, P.; Wilke, R.H.T.; Bud’ko, S.L.; Canfield, P.C. Systematic study of two-band/two-gap superconductivity in carbon-substituted MgB2 by point-contact spectroscopy. Phys. Rev. B 2004, 70. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kityk, I.V.; Fedorchuk, A.O.; Ozga, K.; AlZayed, N.S. Band Structure Simulations of the Photoinduced Changes in the MgB2:Cr Films. Nanomaterials 2015, 5, 541-553. https://doi.org/10.3390/nano5020541
Kityk IV, Fedorchuk AO, Ozga K, AlZayed NS. Band Structure Simulations of the Photoinduced Changes in the MgB2:Cr Films. Nanomaterials. 2015; 5(2):541-553. https://doi.org/10.3390/nano5020541
Chicago/Turabian StyleKityk, Iwan V., Anatolii O. Fedorchuk, Katarzyna Ozga, and Nasser S. AlZayed. 2015. "Band Structure Simulations of the Photoinduced Changes in the MgB2:Cr Films" Nanomaterials 5, no. 2: 541-553. https://doi.org/10.3390/nano5020541
APA StyleKityk, I. V., Fedorchuk, A. O., Ozga, K., & AlZayed, N. S. (2015). Band Structure Simulations of the Photoinduced Changes in the MgB2:Cr Films. Nanomaterials, 5(2), 541-553. https://doi.org/10.3390/nano5020541