Evaluation of Superparamagnetic Silica Nanoparticles for Extraction of Triazines in Magnetic in-Tube Solid Phase Microextraction Coupled to Capillary Liquid Chromatography
Abstract
:1. Introduction
2. Results and Discussion
2.1. Magnetic Characterization of the Capillary Columns and Target Analytes
Compound | In vacuo | In H2O |
---|---|---|
Acetylsalicilic acid | −648.709453 | −648.720605 |
Acetaminophen | −515.494917 | −515.507984 |
Diclofenac | −1665.736440 | −1665.748421 |
Ibuprofen | −656.734267 | −656.741794 |
Atenolol | −881.951314 | −881.969818 |
Chlorpyrifos | −2671.570830 | −2671.582537 |
Chlorfenvinphos | −2409.975077 | −2409.986882 |
Simazine | −1007.990723 | −1008.000696 |
Atrazine | −1047.309710 | −1047.319747 |
Terbutylazina | −1086.624906 | −1086.633924 |
Compound | In vacuo | In H2O | ||||
---|---|---|---|---|---|---|
IDS | IPS | ITS | IDS | IPS | ITS | |
Acetylsalicilic acid | −375.1256 | 354.4428 | −20.6827 | −376.0739 | 355.3678 | −20.7061 |
Acetaminophen | −361.7369 | 342.8417 | −18.8952 | −361.2246 | 342.2788 | −18.9458 |
Diclofenac | −1073.6967 | 1037.0720 | −36.6247 | −1071.6524 | 1035.0105 | −36.6419 |
Ibuprofen | −784.5031 | 754.6211 | −29.8820 | −784.0887 | 754.2092 | −29.8795 |
Atenolol | −1895.5223 | 1858.5274 | −36.9949 | −1905.1243 | 1868.0617 | −37.0626 |
Chlorpyrifos | −1070.6714 | 1033.9535 | −36.7179 | −1070.5282 | 1033.7223 | −36.8059 |
Chlorfenvinphos | −1254.5588 | 1216.6838 | −37.8751 | −1257.4740 | 1219.5444 | −37.9296 |
Simazine | −588.8682 | 563.8451 | −25.0230 | −591.2717 | 566.3096 | −24.9621 |
Atrazine | −716.3337 | 688.7578 | −27.5760 | −717.3796 | 689.8408 | −27.5388 |
Terbutylazine | −787.0130 | 757.0138 | −29.9993 | −786.0579 | 756.1178 | −29.9401 |
2.2. Adsorption of Triazines in the SiO2 Supported Fe3O4 Capillary Column
Compound | LOD (μg L−1) | LOQ (μg L−1) | RSD (%) |
---|---|---|---|
Simazine | 0.4 | 1.4 | 10 |
Atrazine | 0.3 | 1.1 | 9 |
Terbutylazine | 0.3 | 1.0 | 7 |
2.3. Application of the Magnetic Capillary Column for the Analysis of Triazines in Water Samples
3. Experimental Section
3.1. Synthesis of Fe3O4 NPs and SiO2 Supported Fe3O4 Capillary Columns
3.2. Physical Characterization
3.3. Instruments and Chromatographic Conditions
3.4. Magnetic—IT-SPME Device
3.5. Computancional Methods
3.6. Analysis of Water Samples
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sivakumar, B.; Aswathy, R.G.; Sreejith, R.; Nagaoka, Y.; Iwai, S.; Suzuki, M.; Fukuda, T.; Hasumura, T.; Yoshida, Y.; Maekawa, T.; et al. Bacterial exopolysaccharide based magnetic nanoparticles: A versatile nanotoll for cancer cell imaging, targeted drug delivery and synergistic effect of drug and hyperthermia mediated cancer therapy. J. Biomed. Nanotechnol. 2014, 10, 885–889. [Google Scholar] [CrossRef]
- Guo, J.; Wang, W.L.; Wang, C.C. Magnetic colloidal supraparticles: Design, fabrication and biomedical applications. Adv. Mater. 2013, 25, 5196–5214. [Google Scholar] [CrossRef]
- Savra, I.; Constantinou, D.; Marinica, O.; Vasile, E.; Vekas, L.; Krasia-Christoforou, T. Fabrication and characterization of superparamagnetic poly(vinylpyrrolidone)/poly(L-lactide)/Fe3O4 electrospun membranes. J. Magn. Magn. Mater. 2014, 352, 30–35. [Google Scholar] [CrossRef]
- Coronado, E.; Marti-Gastaldo, C.; Navarro-Moratall, E.; Ribera, A.; Tatay, S. Illustrating the processability of magnetic layered double hydroxides: Layer-by-layer assembly of magnetic ultrathin films. Inorg. Chem. 2013, 52, 6214–6222. [Google Scholar] [CrossRef]
- Abellan, G.; Busolo, F.; Coronado, E.; Marti-Gastaldo, E.; Ribera, A. Hybrid magnetic multilayers by intercalation of Cu(II) phthalocyanine in LDH host. J. Phys. Chem. C 2012, 116, 15756–15764. [Google Scholar]
- Liu, J.; Pearce, C.I.; Liu, C.X.; Wang, Z.M.; Shi, L.; Arenholz, E.; Rosso, K.M. Fe3−xTixO4 nanoparticles as tuneable probes of microbial metal oxidation. J. Am. Chem. Soc. 2013, 135, 8896–8907. [Google Scholar]
- Moliner-Martinez, Y.; Ribera, A.; Coronado, E.; Campins-Falcó, P. Preconcentration of emerging contaminants in environmental water samples by using silica supported Fe3O4 magnetic nanoparticles for improving mass detection in capillary liquid chromatography. J. Chromatogr. A 2011, 1218, 2276–2283. [Google Scholar]
- Liu, Y.; Yuan, M.; Qiao, L.J.; Guo, R. An effective colorimetric biosensor for glucose based peroxidase-like protein-Fe3O4 and glucose oxidase nanocomposite. Biosens. Bioelectron. 2014, 52, 391–396. [Google Scholar] [CrossRef]
- Kumar, E.R.; Jayaprakash, R.; Devi, G.S.; Reddy, P.S.P. Synthesis of Mn substituted CuFe2O4 nanoparticles liquefied pretroleum gas sensor application. Sens. Actuators B 2014, 191, 186–191. [Google Scholar] [CrossRef]
- Crosswhite, M.; Hunt, J.; Southworth, T.; Serniak, K.; Ferrari, A.; Stiegman, A.E. Development of magnetic nanoparticles as microwave-specific catalysis for rapid, low-temperature synthesis of formalin solutions. ACS Catal. 2013, 3, 1318–1323. [Google Scholar] [CrossRef]
- Pyrzynska, K. Use of nanomaterials in sample preparation. TrAC Trends Anal. Chem. 2013, 43, 100–108. [Google Scholar] [CrossRef]
- Zhang, Y.; Kuang, M.; Zhang, L.J.; Yang, P.Y.; Lu, H.J. An accessible protocol for solid-phase extraction of N-linked glycopeptides trough reductive animation by amine-functionalized magnetic nanoparticles. Anal. Chem. 2013, 85, 5535–5541. [Google Scholar] [CrossRef]
- Wang, Y.X.; Wang, S.H.; Niu, H.Y.; Ma, Y.R.; Zeng, T.; Cai, Y.Q.; Meng, Z.F. Preparation of polydopamine coated Fe3O4 nanoparticles and their application for enrichment of polycyclic aromatic hydrocarbons from environmental water samples. J. Chromatogr. A 2013, 1283, 20–26. [Google Scholar]
- Lasarte-Aragones, G.; Lucena, R.; Cárdenas, S.; Valcárcel, M. Effervescence assisted dispersive liquid-liquid microextraction with extractant removal by magnetic nanoparticles. Anal. Chim. Acta 2014, 807, 61–66. [Google Scholar] [CrossRef]
- Shi, Z.G.; Zhang, Y.F.; Lee, H.K. Ferrofluid-based liquid-phase microextraction. J. Chromatogr. A 2010, 1217, 7311–7315. [Google Scholar] [CrossRef]
- Zhang, J.H.; Li, M.; Li, Y.B.; Li, Z.Y.; Wang, F.F.; Li, Q.; Zhou, W.F.; Lu, R.H.; Gao, H.X. Application of ionic liquid supported magnetic dispersive solid-phase microextraction for the determination of acaricides in fruit juice samples. J. Sep. Sci. 2013, 36, 3249–3255. [Google Scholar]
- Alcudia-Leon, M.C.; Lucena, R.; Cardenas, S.; Valcarcel, M. Magnetically confined hydrophobic nanoparticles for microextraction of endocrine-disrupting phenol from environmental samples. Anal. Bioanal. Chem. 2013, 405, 2729–2734. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhou, C.; Qin, S.; Ren, Z.; Zhang, L.; Fu, H.; Zhang, W. A novel open-tubular capillary electrochromatography with magnetic nanoparticle coating as stationary phase. Electrophoresis 2012, 33, 340–347. [Google Scholar] [CrossRef]
- Moliner-Martinez, Y.; Prima-Garcia, H.; Ribera, A.; Coronado, E.; Campins-Falco, P. Magnetic in-tube solid phase microextraction. Anal. Chem. 2012, 84, 7233–7240. [Google Scholar] [CrossRef]
- Campins-Falco, P.; Coronado-Miralles, E.; Moliner-Martínez, Y.; Ribera, A.; Prima-Garcia, H. Magnetic in-Tube Solid Phase Microextraction. Patent Application P201100823, 23 August 2011. [Google Scholar]
- Moliner-Martinez, Y.; Vitta, Y.; Prima-García, H.; Gonzalez-Fuenzalida, A.; Ribera, A.; Campins-Falco, P.; Coronado-Miralles, E. Silica supported Fe3O4 magnetic nanoparticles for magnetic-solid phase extraction and magnetic in-tube solid-phase microextraction: Application to organophosphorous compounds. Anal. Bioanal. Chem. 2014, 406, 2211–2215. [Google Scholar] [CrossRef]
- Pamme, N. Magnetism and microfluidics. Lab Chip 2006, 6, 24–38. [Google Scholar] [CrossRef]
- Chafer-Pericas, C.; Herráez-Hernández, R.; Campins-Falco, P. On-fibre solid-phase microextraction coupled to conventional liquid chromatography versus in-tube-solid-phase microextraction coupled to capillary liquid chromatography for screening analysis of triazines in water samples. J. Chromatogr. A 2006, 1125, 159–171. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09. Revision A.1, Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Parr, R.G.; Yang, W. Density Functional Theory of Atoms and Molecules; Oxford University Press: New York, NY, USA, 1989. [Google Scholar]
- Ziegler, T. Approximate density functional theory as a practical tool in molecular energetics and dynamics. Chem. Rev. 1991, 91, 651–667. [Google Scholar] [CrossRef]
- Becke, A.D.J. Density-functional thermochemistry III. The role of exact exchange. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Hehre, W.J.; Radom, L.; Schleyer, P.v.R.; Pople, J.A. AB initio Molecular Orbital Theory; Wiley: New York, NY, USA, 1986. [Google Scholar]
- Tomasi, J.; Persico, M. Molecular-interactions in solution—An overview of methods based on continuous distributions of the solvent. Chem. Rev. 1994, 94, 2027–2094. [Google Scholar] [CrossRef]
- Simkin, B.Y.; Sheikhet, I. Quantum Chemical and Statistical Theory of Solutions—A Computational Approach; Ellis Horwood: London, UK, 1995. [Google Scholar]
- Cances, E.; Mennunci, B.; Tomasi, J. New integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997, 107, 3032–3042. [Google Scholar] [CrossRef]
- Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Initio study of solvated molecules: A new implementation of the polarizable continuum model. Chem. Phys. Lett. 1996, 255, 327–335. [Google Scholar]
- Barone, V.; Cossi, M.; Tomasi, J. Geometry optimization of molecular structures in solution by the polarizable continuum model. J. Comp. Chem. 1998, 19, 404–417. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
González-Fuenzalida, R.A.; Moliner-Martínez, Y.; Prima-Garcia, H.; Ribera, A.; Campins-Falcó, P.; Zaragozá, R.J. Evaluation of Superparamagnetic Silica Nanoparticles for Extraction of Triazines in Magnetic in-Tube Solid Phase Microextraction Coupled to Capillary Liquid Chromatography. Nanomaterials 2014, 4, 242-255. https://doi.org/10.3390/nano4020242
González-Fuenzalida RA, Moliner-Martínez Y, Prima-Garcia H, Ribera A, Campins-Falcó P, Zaragozá RJ. Evaluation of Superparamagnetic Silica Nanoparticles for Extraction of Triazines in Magnetic in-Tube Solid Phase Microextraction Coupled to Capillary Liquid Chromatography. Nanomaterials. 2014; 4(2):242-255. https://doi.org/10.3390/nano4020242
Chicago/Turabian StyleGonzález-Fuenzalida, R. A., Y. Moliner-Martínez, Helena Prima-Garcia, Antonio Ribera, P. Campins-Falcó, and Ramon J. Zaragozá. 2014. "Evaluation of Superparamagnetic Silica Nanoparticles for Extraction of Triazines in Magnetic in-Tube Solid Phase Microextraction Coupled to Capillary Liquid Chromatography" Nanomaterials 4, no. 2: 242-255. https://doi.org/10.3390/nano4020242
APA StyleGonzález-Fuenzalida, R. A., Moliner-Martínez, Y., Prima-Garcia, H., Ribera, A., Campins-Falcó, P., & Zaragozá, R. J. (2014). Evaluation of Superparamagnetic Silica Nanoparticles for Extraction of Triazines in Magnetic in-Tube Solid Phase Microextraction Coupled to Capillary Liquid Chromatography. Nanomaterials, 4(2), 242-255. https://doi.org/10.3390/nano4020242