Nanostructure and Corrosion Resistance of Plasma-Based Low-Energy Nitrogen Ion Implanted 17-4PH Martensitic Stainless Steel
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure of the Nitrided Layer
3.2. Corrosion Properties of the Nitrided Layer
3.2.1. Polarization Characteristics
3.2.2. Impedance Characteristics
3.2.3. Semiconductor Characteristics
4. Discussion
4.1. Microstructural Evolution
4.2. Corrosion Mechanism
4.3. Applied Point Defect Model
5. Conclusions
- (1)
- PBLEII was employed to modify 17-4PH martensitic stainless steel at 350–550 °C for 4 h. A nanocrystalline microstructure forms on the nitrided surface. As the nitriding temperature increased, the layer thickness increased from 11 μm to 27 μm, and the maximum surface nitrogen concentration rose from 29.7% to 33.1%. Concurrently, the nanocrystalline grain size coarsened from approximately 2 nm to 15 nm.
- (2)
- All nitrided layers exhibit enhanced general corrosion resistance in the pH 8.4 borate buffer aqueous solution compared to the untreated steel. The improvements are primarily attributed to the presence of nanocrystalline γ′N, with minor variations due to CrN precipitation. The optimal corrosion performance is achieved in the nitrided 17-4PH steel at 450 °C, which features nanocrystalline γ′N with 3 nm and minor CrN. This layer exhibits a nobler corrosion potential of −169.4 mV(SCE) and a reduced passivation current density of 0.5 μA·cm−2.
- (3)
- The point defect model was utilized to elucidate the mechanism underlying the improved corrosion resistance. The high interstitial nitrogen concentration within the nanocrystalline γ′N accelerates passivation kinetics. The nitrided 17-4PH steel at 450 °C forms a particularly dense passive film, characterized by a high polarization resistance (RP) of 4.68 × 105 Ω·cm2 and lower charge carrier densities, acceptor density (NA) of 10.72 × 102 cm−3 and donor density (ND) of 9.14 × 1020 cm−3, which correlates with its superior barrier properties.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pan, L.L.; Kwok, C.T.; Niu, B.; Huang, X.H.; Cao, Y.; Zou, X.D.; Yi, J.L. Enhancement in Hardness and Corrosion Resistance of Directed Energy Deposited 17–4PH Martensitic Stainless Steel via Heat Treatment. J. Mater. Res. Technol. 2023, 23, 1296–1311. [Google Scholar] [CrossRef]
- Wang, Z.M.; Li, H.; Shen, Q.; Liu, W.Q.; Wang, Z.Y. Nano-Precipitates Evolution and Their Effects on Mechanical Properties of 17-4 Precipitation-Hardening Stainless Steel. Acta Mater. 2018, 156, 158–171. [Google Scholar] [CrossRef]
- Han, Z.L.; Zhuang, W.H.; Lai, P.; Wang, J.M.; Guo, S.L.; Zhang, L.F. General Corrosion Behavior and Mechanism of Low-Temperature Plasma Nitrided 17–4PH Stainless Steel in High Temperature Water. Mater. Charact. 2024, 209, 113702. [Google Scholar] [CrossRef]
- Fang, Y.L.; Men, B.X.; Liu, R.L.; Liu, Q.L.; Li, Z.; Yan, F.Y.; Yan, M.F. The Effect of Rare Earth on Microstructure and Wear Resistance of Plasma Electrolytic Carburizing Layer on 17–4PH Stainless Steel. Mater. Today Commun. 2024, 39, 2–6. [Google Scholar] [CrossRef]
- Rahimzadeh, R.; Ashrafizadeh, F.; Taherizadeh, A. Enhancing Corrosion Fatigue Performance of 17-4 PH Stainless Steel by Simultaneous Aging and Plasma Nitriding. Surf. Coat. Technol. 2024, 494, 131426. [Google Scholar] [CrossRef]
- Yan, M.F.; Liu, R.L. Influence of Process Time on Microstructure and Properties of 17-4PH Steel Plasma Nitrocarburized with Rare Earths Addition at Low Temperature. Appl. Surf. Sci. 2010, 256, 6065–6071. [Google Scholar] [CrossRef]
- Dong, H.; Esfandiari, M.; Li, X.Y. On the Microstructure and Phase Identification of Plasma Nitrided 17-4PH Precipitation Hardening Stainless Steel. Surf. Coat. Technol. 2008, 202, 2969–2975. [Google Scholar] [CrossRef]
- Pinedo, C.E.; Larrotta, S.I.V.; Nishikawa, A.S.; Dong, H.; Li, X.Y.; Magnabosco, R.; Tschiptschin, A.P. Low Temperature Active Screen Plasma Nitriding of 17–4 PH Stainless Steel. Surf. Coat. Technol. 2016, 308, 189–194. [Google Scholar] [CrossRef]
- Esfandiari, M.; Dong, H. Plasma Surface Engineering of Precipitation Hardening Stainless Steels. Surf. Eng. 2006, 22, 86–92. [Google Scholar] [CrossRef]
- Wang, J.; Lin, Y.H.; Zeng, D.Z.; Yan, J.; Fan, H.Y. Effects of the Process Parameters on the Microstructure and Properties of Nitrided 17-4PH Stainless Steel. Metall. Mater. Trans. B 2013, 44, 414–422. [Google Scholar] [CrossRef]
- Riazi, H.; Ashrafizadeh, F.; Hosseini, S.R.; Ghomashchi, R. Influence of Simultaneous Aging and Plasma Nitriding on Fatigue Performance of 17-4 PH Stainless Steel. Mater. Sci. Eng. A 2017, 703, 262–269. [Google Scholar] [CrossRef]
- Liu, R.L.; Yan, F.Y.; Yan, M.F. Surface Grain Nanocrystallization of Fe-Cr-Ni Alloy Steel by Plasma Thermochemical Treatment. Surf. Coat. Technol. 2019, 370, 136–143. [Google Scholar] [CrossRef]
- Lei, M.K.; Zhang, Z.L.; Ma, T.C. Plasma-Based Low-Energy Ion Implantation for Low-Temperature Surface Engineering. Surf. Coat. Technol. 2000, 131, 317–325. [Google Scholar] [CrossRef]
- Golzar Shahri, M.; Hosseini, S.R.; Salehi, M.; Naderi, M. Evaluation of Nitrogen Diffusion in Thermo-Mechanically Nanostructured and Plasma Nitrided Stainless Steel. Surf. Coat. Technol. 2016, 296, 40–45. [Google Scholar] [CrossRef]
- Chen, L.; Ren, X.D.; Zhou, W.F.; Tong, Z.P.; Adu-Gyamfi, S.; Ye, Y.X.; Ren, Y.X. Evolution of Microstructure and Grain Refinement Mechanism of Pure Nickel Induced by Laser Shock Peening. Mater. Sci. Eng. A 2018, 728, 20–29. [Google Scholar] [CrossRef]
- Tong, K.; Ye, F.; Che, H.; Lei, M.K.; Miao, S.; Zhang, C. High-Density Stacking Faults in a Supersaturated Nitrided Layer on Austenitic Stainless Steel Research Papers. J. Appl. Cryst. 2016, 49, 1967–1971. [Google Scholar] [CrossRef]
- Yang, X.; Che, H.; Lei, M. Chemical Load-Induced Surface Nanocrystallization in Nitrided Martensitic Stainless Steel. Nanomaterials 2026, 16, 151. [Google Scholar] [CrossRef]
- Wang, K.S.; Che, H.L.; Lei, M.K. Corrosion-Fatigue Properties of Plasma-Based Low-Energy Nitrogen Ion Implanted AISI 304 L Austenitic Stainless Steel in Borate Buffer Solution. Surf. Coat. Technol. 2016, 288, 30–35. [Google Scholar] [CrossRef]
- Kumar, P.; Mahobia, G.S.; Mandal, S.; Singh, V.; Chattopadhyay, K. Enhanced Corrosion Resistance of the Surface Modified Ti-13Nb-13Zr Alloy by Ultrasonic Shot Peening. Corros. Sci. 2021, 189, 109597. [Google Scholar] [CrossRef]
- Li, L.Y.; Sun, C.H.; Ruan, Y.; Wei, B. Duplex Corrosion Mechanisms Correlated to α/γ Phase Selection in Containerlessly Processed Fe-Cr-Ni-Mo Alloy. Corros. Sci. 2023, 221, 111311. [Google Scholar] [CrossRef]
- Gao, B.; Xu, T.; Wang, L.; Liu, Y.; Liu, J.L.; Zhang, Y.P.; Sui, Y.D.; Sun, W.W.; Chen, X.F.; Li, X.F.; et al. Achieving a Superior Combination of Tensile Properties and Corrosion Resistance in AISI420 Martensitic Stainless Steel by Low-Temperature Tempering. Corros. Sci. 2023, 225, 111551. [Google Scholar] [CrossRef]
- Xu, Q.Z.; Jiang, D.W.; Zhou, J.; Qiu, Z.H.; Yang, X. Enhanced Corrosion Resistance of Laser Additive Manufactured 316L Stainless Steel by Ultrasonic Surface Rolling Process. Surf. Coat. Technol. 2023, 454, 129187. [Google Scholar] [CrossRef]
- Li, J.D.; Lin, B.; Zheng, H.P.; Wang, Y.Y.; Zhang, H.L.; Zhang, Y.N.; Nie, Z.; Tang, J.L. Study on Pitting Corrosion Behavior and Semi In-Situ Pitting Corrosion Growth Model of 304 L SS with Elastic Stress in NaCl Corrosion Environment. Corros. Sci. 2023, 211, 110862. [Google Scholar] [CrossRef]
- Wang, K.S.; Tong, S.; Lei, M.K. Corrosion and Passivation of High Nitrogen Face-Centered-Cubic Phase Formed on AISI 304L Austenitic Stainless Steel in Borate Buffer Solution. J. Electrochem. Soc. 2015, 162, C601–C609. [Google Scholar] [CrossRef]
- Liu, D.; Liu, D.X.; Wu, Y.H.; Yang, J.; Xu, X.C.; Li, M.Y.; Li, S.L.; Ma, A.; Liang, Y.L. Insight into Nitriding Behavior and Corrosion Mechanism in 17-4PH Steel: The Influence of Nanocrystalline Structure. J. Mater. Res. Technol. 2023, 27, 3761–3776. [Google Scholar] [CrossRef]
- Tong, S.; Che, H.L.; Wang, K.S.; Lei, M.K. Passivation Kinetics of a High Nitrogen Face-Centered-Cubic Phase Formed on AISI 304L Austenitic Stainless Steel in Borate Buffer Solutions by Photo- and Electrochemical Methods. Electrochim. Acta 2021, 394, 139110. [Google Scholar] [CrossRef]
- Tong, S.; Che, H.L.; Lei, M.K. High-Resolution TEM Characterization of Epitaxial Passivation for a High Nitrogen Face-Centered-Cubic Phase Formed on AISI 304L Austenitic Stainless Steel in Borate Buffer Solution. Electrochim. Acta 2021, 393, 139075. [Google Scholar] [CrossRef]
- Pan, C.; Liu, L.; Li, Y.; Zhang, B.; Wang, F.H. The Electrochemical Corrosion Behavior of Nanocrystalline 304 Stainless Steel Prepared by Magnetron Sputtering. J. Electrochem. Soc. 2012, 159, C453–C460. [Google Scholar] [CrossRef]
- Li, C.X.; Bell, T. Corrosion Properties of Plasma Nitrided AISI 410 Martensitic Stainless Steel in 3.5% NaCl and 1% HCl Aqueous Solutions. Corros. Sci. 2006, 48, 2036–2049. [Google Scholar] [CrossRef]
- Yuan, F.; Wei, G.Y.; Gao, S.R.; Lu, S.Y.; Liu, H.S.; Li, S.X.; Fang, X.F.; Chen, Y.B. Tuning the Pitting Performance of a Cr-13 Type Martensitic Stainless Steel by Tempering Time. Corros. Sci. 2022, 203, 110346. [Google Scholar] [CrossRef]
- Wei, G.Y.; Lu, S.Y.; Li, S.X.; Yao, K.F.; Luan, H.W.; Fang, X.F. Unmasking of the Temperature Window and Mechanism for “Loss of Passivation” Effect of a Cr-13 Type Martensite Stainless Steel. Corros. Sci. 2020, 177, 108951. [Google Scholar] [CrossRef]
- Gupta, R.K.; Birbilis, N. The Influence of Nanocrystalline Structure and Processing Route on Corrosion of Stainless Steel: A Review. Corros. Sci. 2015, 92, 1–15. [Google Scholar] [CrossRef]
- Macdonald, D.D.; Urquidi-Macdonald, M. Theory of Steady-State Passive Films. J. Electrochem. Soc. 1990, 137, 2395–2402. [Google Scholar] [CrossRef]
- Pradhan, S.K.; Bhuyan, P.; Bairi, L.R.; Mandal, S. Comprehending the Role of Individual Microstructural Features on Electrochemical Response and Passive Film Behaviour in Type 304 Austenitic Stainless Steel. Corros. Sci. 2021, 180, 109187. [Google Scholar] [CrossRef]
- Chui, P.F.; Sun, K.N.; Sun, C.; Yang, X.Q.; Shan, T. Effect of Surface Nanocrystallization Induced by Fast Multiple Rotation Rolling on Hardness and Corrosion Behavior of 316L Stainless Steel. Appl. Surf. Sci. 2011, 257, 6787–6791. [Google Scholar] [CrossRef]









| C | Si | Mn | Cr | Ni | Cu | Nb | P | S | Fe |
|---|---|---|---|---|---|---|---|---|---|
| ≤0.07 | 0.40 | 0.82 | 16.03 | 4.46 | 4.25 | 0.32 | ≤0.022 | ≤0.010 | bal. |
| Rs (Ω·cm2) | Y1 (Ω−1·cm−2·sn) | n1 | R1 (Ω·cm2) | Y2 (Ω−1·cm−2·sn) | n2 | R2 (Ω·cm2) | Rp (Ω·cm2) | |
|---|---|---|---|---|---|---|---|---|
| Unmodified | 119.5 | 9.09 × 10−5 | 0.886 | 1.96 × 105 | 8.25 × 10−5 | 0.928 | 4.86 × 103 | 2.00 × 105 |
| 350 °C | 150.8 | 3.70 × 10−5 | 0.901 | 2.11 × 105 | 3.10 × 10−5 | 0.947 | 2.04 × 103 | 2.13 × 105 |
| 400 °C | 137.0 | 7.09 × 10−5 | 0895 | 2.01 × 105 | 3.01 × 10−5 | 0.931 | 1.79 × 103 | 2.03 × 105 |
| 450 °C | 152.0 | 2.87 × 10−5 | 0.989 | 4.60 × 105 | 4.95 × 10−5 | 0.994 | 7.51 × 103 | 4.68 × 105 |
| 500 °C | 166.1 | 9.02 × 10−5 | 0.933 | 2.06 × 105 | 5.78 × 10−5 | 0.929 | 4.43 × 103 | 2.10 × 105 |
| 550 °C | 137.8 | 5.41 × 10−5 | 0.934 | 2.46 × 105 | 7.74 × 10−5 | 0.941 | 7.63 × 103 | 2.54 × 105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yang, X.; Che, H.; Li, S.; Lei, M. Nanostructure and Corrosion Resistance of Plasma-Based Low-Energy Nitrogen Ion Implanted 17-4PH Martensitic Stainless Steel. Nanomaterials 2026, 16, 215. https://doi.org/10.3390/nano16030215
Yang X, Che H, Li S, Lei M. Nanostructure and Corrosion Resistance of Plasma-Based Low-Energy Nitrogen Ion Implanted 17-4PH Martensitic Stainless Steel. Nanomaterials. 2026; 16(3):215. https://doi.org/10.3390/nano16030215
Chicago/Turabian StyleYang, Xu, Honglong Che, Shuyuan Li, and Mingkai Lei. 2026. "Nanostructure and Corrosion Resistance of Plasma-Based Low-Energy Nitrogen Ion Implanted 17-4PH Martensitic Stainless Steel" Nanomaterials 16, no. 3: 215. https://doi.org/10.3390/nano16030215
APA StyleYang, X., Che, H., Li, S., & Lei, M. (2026). Nanostructure and Corrosion Resistance of Plasma-Based Low-Energy Nitrogen Ion Implanted 17-4PH Martensitic Stainless Steel. Nanomaterials, 16(3), 215. https://doi.org/10.3390/nano16030215
