Well-Characterized Polyethyleneimine-/Carboxylated-Polyethylene-Glycol-Functionalized Gold Nanoparticles as Prospective Nanoscale Control Materials for In Vitro Cell Viability Assays: Particle Characterization and Toxicity Tests in Eight Mammalian Cell Lines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Nanoparticle Synthesis
2.3. Particle Characterization
2.4. Cell Lines, Growth Conditions, and Treatments
2.5. Testing of PEI Release from Au-PEIs
2.6. MTS Assay
AuNPs | Dz (nm) a | DTEM (nm) b | ZP (mV) a/pH | SPR (nm) a | Mass Ratio (PEI/Au) |
---|---|---|---|---|---|
Au-PEI@NIST | 25.7 ± 0.4 | 11.5 ± 1.8 | +15.6 ± 0.9/9.5 | 521 | 4.9~5.6 c |
Au-PEG-COOH@NIST | 35.4 ± 0.3 | 14.3 ± 0.9 | −18.8 ± 4.0/6.8 | 521 | NA |
Au-PEI@C1 | 22.4 ± 0.3 | 10.0 ± 1.0 | −10.9 ± 0.5/10.9 | 519 | NA |
Au-PEI@C2 | 31.4 ± 0.7 | 10.5 ± 1.0 | +35.1 ± 0.5/7.4 | 523 | NA |
Au-PEG-COOH@C1 | 38.8 ± 0.9 | 10.0 ± 0.8 | −40.5 ± 2.0/6.4 | 518 | NA |
2.7. Testing the Optical Interference of AuNPs with the MTS Assay
2.8. Statistical Analysis
3. Results
3.1. Physicochemical Properties
3.2. Colloidal Stability
3.3. In Vitro Toxicity of Au-PEI and Au-PEG-COOH NPs
3.4. Effect of Free PEI Ligand
3.5. Interference with MTS Assay
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schulte, P.A.; Leso, V.; Niang, M.; Iavicoli, I. Current state of knowledge on the health effects of engineered nanomaterials in workers: A systematic review of human studies and epidemiological investigations. Scand. J. Work. Environ. Health 2019, 45, 217–238. [Google Scholar] [CrossRef]
- Kathawala, M.H.; Xiong, S.J.; Richards, M.; Ng, K.W.; George, S.; Loo, S.C.J. Emerging In Vitro Models for Safety Screening of High-Volume Production Nanomaterials under Environmentally Relevant Exposure Conditions. Small 2013, 9, 1504–1520. [Google Scholar] [CrossRef]
- Rasmussen, K.; Rauscher, H.; Kearns, P.; Gonzalez, M.; Sintes, J.R. Developing OECD test guidelines for regulatory testing of nanomaterials to ensure mutual acceptance of test data. Regul. Toxicol. Pharmacol. 2019, 104, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Dannhorn, D.R. EN ISO 10993 series of standards: In vitro and in vivo biocompatibility testing of medical devices. Prog. Reduct. Refinement Replace. Anim. Exp. 2000, 31, 323–327. [Google Scholar]
- Cory, A.H.; Owen, T.C.; Barltrop, J.A.; Cory, J.G. Use of an Aqueous Soluble Tetrazolium Formazan Assay for Cell-Growth Assays in Culture. Cancer Commun. 1991, 3, 207–212. [Google Scholar] [CrossRef]
- Nagvekar, A.A.; Trickler, W.J.; Dash, A.K. Current Analytical Methods Used in the In Vitro Evaluation of Nano-Drug Delivery Systems. Curr. Pharm. Anal. 2009, 5, 358–366. [Google Scholar] [CrossRef]
- Roehm, N.W.; Rodgers, G.H.; Hatfield, S.M.; Glasebrook, A.L. An Improved Colorimetric Assay for Cell-Proliferation and Viability Utilizing the Tetrazolium Salt Xtt. J. Immunol. Methods 1991, 142, 257–265. [Google Scholar] [CrossRef]
- Choksakulnimitr, S.; Masuda, S.; Tokuda, H.; Takakura, Y.; Hashida, M. In-Vitro Cytotoxicity of Macromolecules in Different Cell-Culture Systems. J. Control. Release 1995, 34, 233–241. [Google Scholar] [CrossRef]
- Altman, S.A.; Randers, L.; Rao, G. Comparison of Trypan Blue-Dye Exclusion and Fluorometric Assays for Mammalian-Cell Viability Determinations. Biotechnol. Progr. 1993, 9, 671–674. [Google Scholar] [CrossRef] [PubMed]
- Borenfreund, E.; Puerner, J.A. Toxicity Determined Invitro by Morphological Alterations and Neutral Red Absorption. Toxicol. Lett. 1985, 24, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Altunbek, M.; Culha, M. Influence of Plasmonic Nanoparticles on the Performance of Colorimetric Cell Viability Assays. Plasmonics 2017, 12, 1749–1760. [Google Scholar] [CrossRef]
- Dusinska, M.; Boland, S.; Saunders, M.; Juillerat-Jeanneret, L.; Tran, L.; Pojana, G.; Marcomini, A.; Volkovova, K.; Tulinska, J.; Knudsen, L.E.; et al. Towards an alternative testing strategy for nanomaterials used in nanomedicine: Lessons from NanoTEST. Nanotoxicology 2015, 9, 118–132. [Google Scholar] [CrossRef] [PubMed]
- Drasler, B.; Sayre, P.; Steinhauser, K.G.; Petri-Fink, A.; Rothen-Rutishauser, B. In vitro approaches to assess the hazard of nanomaterials. Nanoimpact 2017, 8, 99–116. [Google Scholar] [CrossRef]
- Coecke, S.; Bowe, G.; Bostroem, A.C. Development of an OECD guidance document on good in vitro method practice (GIVIMP). Toxicol. Lett. 2017, 280, S80. [Google Scholar] [CrossRef]
- Huk, A.; Collins, A.R.; El Yamani, N.; Porredon, C.; Azqueta, A.; de Lapuente, J.; Dusinska, M. Critical factors to be considered when testing nanomaterials for genotoxicity with the comet assay. Mutagenesis 2015, 30, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Azhdarzadeh, M.; Saei, A.A.; Sharifi, S.; Hajipour, M.J.; Alkilany, A.M.; Sharifzadeh, M.; Ramazani, F.; Laurent, S.; Mashaghi, A.; Mahmoudi, M. Nanotoxicology: Advances and pitfalls in research methodology. Nanomedicine 2015, 10, 2931–2952. [Google Scholar] [CrossRef]
- Armand, L.; Tarantini, A.; Beal, D.; Biola-Clier, M.; Bobyk, L.; Sorieul, S.; Pernet-Gallay, K.; Marie-Desvergne, C.; Lynch, I.; Herlin-Boime, N.; et al. Long-term exposure of A549 cells to titanium dioxide nanoparticles induces DNA damage and sensitizes cells towards genotoxic agents. Nanotoxicology 2016, 10, 913–923. [Google Scholar] [CrossRef]
- Stone, V.; Johnston, H.; Schins, R.P.F. Development of in vitro systems for nanotoxicology: Methodological considerations. Crit. Rev. Toxicol. 2009, 39, 613–626. [Google Scholar] [CrossRef]
- Andraos, C.; Yu, I.J.; Gulumian, M. Interference: A Much-Neglected Aspect in High-Throughput Screening of Nanoparticles. Int. J. Toxicol. 2020, 39, 397–421. [Google Scholar] [CrossRef]
- Anguissola, S.; Garry, D.; Salvati, A.; O’Brien, P.J.; Dawson, K.A. High Content Analysis Provides Mechanistic Insights on the Pathways of Toxicity Induced by Amine-Modified Polystyrene Nanoparticles. PLoS ONE 2014, 9, 0108025. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.R.; Annangi, B.; Rubio, L.; Marcos, R.; Dorn, M.; Merker, C.; Estrela-Lopis, I.; Cimpan, M.R.; Ibrahim, M.; Cimpan, E.; et al. High throughput toxicity screening and intracellular detection of nanomaterials. Wiley Interdiscip. Rev.-Nanomed. Nanobiotechnology 2017, 9, e1413. [Google Scholar] [CrossRef]
- Xia, T.; Kovochich, M.; Liong, M.; Zink, J.I.; Nel, A.E. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 2008, 2, 85–96. [Google Scholar] [CrossRef]
- Roebben, G.; Ramirez-Garcia, S.; Hackley, V.A.; Roesslein, M.; Klaessig, F.; Kestens, V.; Lynch, I.; Garner, C.M.; Rawle, A.; Elder, A.; et al. Interlaboratory comparison of size and surface charge measurements on nanoparticles prior to biological impact assessment. J. Nanopart. Res. 2011, 13, 2675–2687. [Google Scholar] [CrossRef]
- Nelson, B.C.; Petersen, E.J.; Marquis, B.J.; Atha, D.H.; Elliott, J.T.; Cleveland, D.; Watson, S.S.; Tseng, I.H.; Dillon, A.; Theodore, M.; et al. NIST gold nanoparticle reference materials do not induce oxidative DNA damage. Nanotoxicology 2013, 7, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Paget, V.; Sergent, J.A.; Grall, R.; Altmeyer-Morel, S.; Girard, H.A.; Petit, T.; Gesset, C.; Mermoux, M.; Bergonzo, P.; Arnault, J.C.; et al. Carboxylated nanodiamonds are neither cytotoxic nor genotoxic on liver, kidney, intestine and lung human cell lines. Nanotoxicology 2014, 8, 46–56. [Google Scholar] [CrossRef]
- Petersen, E.J.; Nguyen, A.D.; Brown, J.; Elliott, J.T.; Clippinger, A.J.; Gordon, J.; Kleinstreuer, N.; Roesslein, M. Characteristics to Consider When Selecting a Positive Control Material for an In Vitro Assay. Altex-Altern. Anim. Exp. 2021, 38, 365–376. [Google Scholar] [CrossRef]
- Petersen, E.J.; Reipa, V.; Xia, M.H.; Sharma, M. Resources for Developing Reliable and Reproducible In Vitro Toxicological Test Methods. Chem. Res. Toxicol. 2021, 34, 1367–1369. [Google Scholar] [CrossRef]
- Bexiga, M.G.; Varela, J.A.; Wang, F.J.; Fenaroli, F.; Salvati, A.; Lynch, I.; Simpson, J.C.; Dawson, K.A. Cationic nanoparticles induce caspase 3-, 7- and 9-mediated cytotoxicity in a human astrocytoma cell line. Nanotoxicology 2011, 5, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.A.; Aberg, C.; de Carcer, G.; Malumbres, M.; Salvati, A.; Dawson, K.A. Low Dose of Amino-Modified Nanoparticles Induces Cell Cycle Arrest. ACS Nano 2013, 7, 7483–7494. [Google Scholar] [CrossRef]
- Bondarenko, O.M.; Heinlaan, M.; Sihtmae, M.; Ivask, A.; Kurvet, I.; Joonas, E.; Jemec, A.; Mannerstrom, M.; Heinonen, T.; Rekulapelly, R.; et al. Multilaboratory evaluation of 15 bioassays for (eco)toxicity screening and hazard ranking of engineered nanomaterials: FP7 project NANOVALID. Nanotoxicology 2016, 10, 1229–1242. [Google Scholar] [CrossRef]
- Lee, E.; Lee, M.; Kwon, S.; Kim, J.; Kwon, Y. Systematic and mechanistic analysis of AuNP-induced nanotoxicity for risk assessment of nanomedicine. Nano Converg. 2022, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Giljohann, D.A.; Seferos, D.S.; Daniel, W.L.; Massich, M.D.; Patel, P.C.; Mirkin, C.A. Gold Nanoparticles for Biology and Medicine. Angew. Chem. Int. Edit 2010, 49, 3280–3294. [Google Scholar] [CrossRef]
- Sani, A.; Cao, C.; Cui, D. Toxicity of gold nanoparticles (AuNPs): A review. Biochem. Biophys. Rep. 2021, 26, 100991. [Google Scholar] [CrossRef]
- Boussif, O.; Lezoualch, F.; Zanta, M.A.; Mergny, M.D.; Scherman, D.; Demeneix, B.; Behr, J.P. A Versatile Vector for Gene and Oligonucleotide Transfer into Cells in Culture and in-Vivo—Polyethylenimine. Proc. Natl. Acad. Sci. USA 1995, 92, 7297–7301. [Google Scholar] [CrossRef]
- Taranejoo, S.; Liu, J.; Verma, P.; Hourigan, K. A review of the developments of characteristics of PEI derivatives for gene delivery applications. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Cho, T.J.; Gorham, J.M.; Pettibone, J.M.; Liu, J.Y.; Tan, J.; Hackley, V.A. Parallel multi-parameter study of PEI-functionalized gold nanoparticle synthesis for bio-medical applications: Part 1—A critical assessment of methodology, properties, and stability. J. Nanopart. Res. 2019, 21, 188. [Google Scholar] [CrossRef]
- Cho, T.J.; Gorham, J.M.; Pettibone, J.M.; Liu, J.Y.; Tan, J.; Hackley, V.A. Parallel Multiparameter Study of PEI-Functionalized Gold Nanoparticle Synthesis for Biomedical Applications: Part 2. Elucidating the Role of Surface Chemistry and Polymer Structure in Performance. Langmuir 2020, 36, 14058–14069. [Google Scholar] [CrossRef]
- Hwang, Y.S.; So, D.H.; Lee, M.S.; Yoon, J.; Reipa, V.; Tona, A.; Yi, F.; Nelson, B.C.; LaVan, D.A.; Hackley, V.A.; et al. Polyethyleneimine/polyethylene glycol-conjugated gold nanoparticles as nanoscale positive/negative controls in nanotoxicology: Testing in frog embryo teratogenesis assay-Xenopus and mammalian tissue culture system. Nanotoxicology 2023, 17, 94–115. [Google Scholar] [CrossRef]
- Cho, T.J.; Hackley, V.; Reipa, V.; Tona, A.; Sims, C.; Farkas, N. Introduction of nanoscale positive controls for nanotoxicology: A new aspect of utilization of stability-enhanced Gold-Polyethyleneimine conjugates (Au-PEIs). In Proceedings of the 2022 IEEE 22nd International Conference on Nanotechnology (NANO), Palma de Mallorca, Spain, 4–8 July 2022; pp. 337–340. [Google Scholar] [CrossRef]
- Liu, X.O.; Atwater, M.; Wang, J.H.; Huo, Q. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf. B-Biointerfaces 2007, 58, 3–7. [Google Scholar] [CrossRef] [PubMed]
- ISO 19007:2018. Nanotechnologies—In Vitro MTS Assay for Measuring the Cytotoxic Effect of Nanoparticles. Available online: https://www.iso.org/standard/63698.html (accessed on 12 November 2024).
- Cho, T.J.; Hackley, V.A.; Yi, F.; LaVan, D.A.; Reipa, V.; Tona, A.; Nelson, B.C.; Sims, C.M.; Farkas, N. Preparation, Characterization, and Biological Activity of Stability-Enhanced Polyethyleneimine-Conjugated Gold Nanoparticles (Au-PEI@NIST) for Biological Application; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2021. Available online: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1200-29.pdf (accessed on 1 September 2021).
- Cho, T.J.; Hackley, V.A. Assessing the Chemical and Colloidal Stability of Functionalized Gold Nanoparticles; National Institue of Standards and Technology: Gaithersburg, MD, USA, 2018. Available online: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1200-26.pdf (accessed on 1 June 2018).
- Kretschmer, F.; Mansfeld, U.; Hoeppener, S.; Hager, M.D.; Schubert, U.S. Tunable synthesis of poly(ethylene imine)-gold nanoparticle clusters. Chem. Commun. 2014, 50, 88–90. [Google Scholar] [CrossRef] [PubMed]
Cell Type | IC50, mg/mL | IC50, Particles/mL a | IC50, cm2/mL b |
---|---|---|---|
A549 | 1.76 ± 0.49 | (1.14 ± 0.32) × 1011 | 2.36 ± 0.66 |
CHO K1 | 1.89 ± 0.28 | (1.22 ± 0.18) × 1011 | 2.52 ± 0.37 |
HaCaT | 4.70 ± 1.89 | (3.11 ± 1.20) × 1011 | 6.44 ± 0.87 |
HeLa | 2.21 ± 0.12 | (1.4 ± 0.07) × 1011 | 2.90 ± 0.14 |
SK-MEL-28 | 1.49 ± 0.32 | (0.97 ± 0.19) × 1011 | 2.00 ± 0.41 |
NIH 3T3 | 2.79 ± 0.41 | (1.82 ± 0.26) × 1011 | 3.76 ± 0.54 |
HepG2 | 3.95 ± 0.59 | (2.56 ± 0.38) × 1011 | 5.31 ± 0.76 |
BEAS-2B | 3.15 ± 0.47 | (2.04 ± 0.31) × 1011 | 4.23 ± 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reipa, V.; Hackley, V.A.; Tona, A.; Heo, M.B.; Lee, Y.R.; Lee, T.G.; Johnston-Peck, A.; Cho, T.J. Well-Characterized Polyethyleneimine-/Carboxylated-Polyethylene-Glycol-Functionalized Gold Nanoparticles as Prospective Nanoscale Control Materials for In Vitro Cell Viability Assays: Particle Characterization and Toxicity Tests in Eight Mammalian Cell Lines. Nanomaterials 2025, 15, 79. https://doi.org/10.3390/nano15020079
Reipa V, Hackley VA, Tona A, Heo MB, Lee YR, Lee TG, Johnston-Peck A, Cho TJ. Well-Characterized Polyethyleneimine-/Carboxylated-Polyethylene-Glycol-Functionalized Gold Nanoparticles as Prospective Nanoscale Control Materials for In Vitro Cell Viability Assays: Particle Characterization and Toxicity Tests in Eight Mammalian Cell Lines. Nanomaterials. 2025; 15(2):79. https://doi.org/10.3390/nano15020079
Chicago/Turabian StyleReipa, Vytas, Vincent A. Hackley, Alessandro Tona, Min Beom Heo, Ye Ryeong Lee, Tae Geol Lee, Aaron Johnston-Peck, and Tae Joon Cho. 2025. "Well-Characterized Polyethyleneimine-/Carboxylated-Polyethylene-Glycol-Functionalized Gold Nanoparticles as Prospective Nanoscale Control Materials for In Vitro Cell Viability Assays: Particle Characterization and Toxicity Tests in Eight Mammalian Cell Lines" Nanomaterials 15, no. 2: 79. https://doi.org/10.3390/nano15020079
APA StyleReipa, V., Hackley, V. A., Tona, A., Heo, M. B., Lee, Y. R., Lee, T. G., Johnston-Peck, A., & Cho, T. J. (2025). Well-Characterized Polyethyleneimine-/Carboxylated-Polyethylene-Glycol-Functionalized Gold Nanoparticles as Prospective Nanoscale Control Materials for In Vitro Cell Viability Assays: Particle Characterization and Toxicity Tests in Eight Mammalian Cell Lines. Nanomaterials, 15(2), 79. https://doi.org/10.3390/nano15020079