Well-Characterized Polyethyleneimine-/Carboxylated-Polyethylene-Glycol-Functionalized Gold Nanoparticles as Prospective Nanoscale Control Materials for In Vitro Cell Viability Assays: Particle Characterization and Toxicity Tests in Eight Mammalian Cell Lines
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Nanoparticle Synthesis
2.3. Particle Characterization
2.4. Cell Lines, Growth Conditions, and Treatments
2.5. Testing of PEI Release from Au-PEIs
2.6. MTS Assay
AuNPs | Dz (nm) a | DTEM (nm) b | ZP (mV) a/pH | SPR (nm) a | Mass Ratio (PEI/Au) |
---|---|---|---|---|---|
Au-PEI@NIST | 25.7 ± 0.4 | 11.5 ± 1.8 | +15.6 ± 0.9/9.5 | 521 | 4.9~5.6 c |
Au-PEG-COOH@NIST | 35.4 ± 0.3 | 14.3 ± 0.9 | −18.8 ± 4.0/6.8 | 521 | NA |
Au-PEI@C1 | 22.4 ± 0.3 | 10.0 ± 1.0 | −10.9 ± 0.5/10.9 | 519 | NA |
Au-PEI@C2 | 31.4 ± 0.7 | 10.5 ± 1.0 | +35.1 ± 0.5/7.4 | 523 | NA |
Au-PEG-COOH@C1 | 38.8 ± 0.9 | 10.0 ± 0.8 | −40.5 ± 2.0/6.4 | 518 | NA |
2.7. Testing the Optical Interference of AuNPs with the MTS Assay
2.8. Statistical Analysis
3. Results
3.1. Physicochemical Properties
3.2. Colloidal Stability
3.3. In Vitro Toxicity of Au-PEI and Au-PEG-COOH NPs
3.4. Effect of Free PEI Ligand
3.5. Interference with MTS Assay
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schulte, P.A.; Leso, V.; Niang, M.; Iavicoli, I. Current state of knowledge on the health effects of engineered nanomaterials in workers: A systematic review of human studies and epidemiological investigations. Scand. J. Work. Environ. Health 2019, 45, 217–238. [Google Scholar] [CrossRef]
- Kathawala, M.H.; Xiong, S.J.; Richards, M.; Ng, K.W.; George, S.; Loo, S.C.J. Emerging In Vitro Models for Safety Screening of High-Volume Production Nanomaterials under Environmentally Relevant Exposure Conditions. Small 2013, 9, 1504–1520. [Google Scholar] [CrossRef]
- Rasmussen, K.; Rauscher, H.; Kearns, P.; Gonzalez, M.; Sintes, J.R. Developing OECD test guidelines for regulatory testing of nanomaterials to ensure mutual acceptance of test data. Regul. Toxicol. Pharmacol. 2019, 104, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Dannhorn, D.R. EN ISO 10993 series of standards: In vitro and in vivo biocompatibility testing of medical devices. Prog. Reduct. Refinement Replace. Anim. Exp. 2000, 31, 323–327. [Google Scholar]
- Cory, A.H.; Owen, T.C.; Barltrop, J.A.; Cory, J.G. Use of an Aqueous Soluble Tetrazolium Formazan Assay for Cell-Growth Assays in Culture. Cancer Commun. 1991, 3, 207–212. [Google Scholar] [CrossRef]
- Nagvekar, A.A.; Trickler, W.J.; Dash, A.K. Current Analytical Methods Used in the In Vitro Evaluation of Nano-Drug Delivery Systems. Curr. Pharm. Anal. 2009, 5, 358–366. [Google Scholar] [CrossRef]
- Roehm, N.W.; Rodgers, G.H.; Hatfield, S.M.; Glasebrook, A.L. An Improved Colorimetric Assay for Cell-Proliferation and Viability Utilizing the Tetrazolium Salt Xtt. J. Immunol. Methods 1991, 142, 257–265. [Google Scholar] [CrossRef]
- Choksakulnimitr, S.; Masuda, S.; Tokuda, H.; Takakura, Y.; Hashida, M. In-Vitro Cytotoxicity of Macromolecules in Different Cell-Culture Systems. J. Control. Release 1995, 34, 233–241. [Google Scholar] [CrossRef]
- Altman, S.A.; Randers, L.; Rao, G. Comparison of Trypan Blue-Dye Exclusion and Fluorometric Assays for Mammalian-Cell Viability Determinations. Biotechnol. Progr. 1993, 9, 671–674. [Google Scholar] [CrossRef] [PubMed]
- Borenfreund, E.; Puerner, J.A. Toxicity Determined Invitro by Morphological Alterations and Neutral Red Absorption. Toxicol. Lett. 1985, 24, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Altunbek, M.; Culha, M. Influence of Plasmonic Nanoparticles on the Performance of Colorimetric Cell Viability Assays. Plasmonics 2017, 12, 1749–1760. [Google Scholar] [CrossRef]
- Dusinska, M.; Boland, S.; Saunders, M.; Juillerat-Jeanneret, L.; Tran, L.; Pojana, G.; Marcomini, A.; Volkovova, K.; Tulinska, J.; Knudsen, L.E.; et al. Towards an alternative testing strategy for nanomaterials used in nanomedicine: Lessons from NanoTEST. Nanotoxicology 2015, 9, 118–132. [Google Scholar] [CrossRef] [PubMed]
- Drasler, B.; Sayre, P.; Steinhauser, K.G.; Petri-Fink, A.; Rothen-Rutishauser, B. In vitro approaches to assess the hazard of nanomaterials. Nanoimpact 2017, 8, 99–116. [Google Scholar] [CrossRef]
- Coecke, S.; Bowe, G.; Bostroem, A.C. Development of an OECD guidance document on good in vitro method practice (GIVIMP). Toxicol. Lett. 2017, 280, S80. [Google Scholar] [CrossRef]
- Huk, A.; Collins, A.R.; El Yamani, N.; Porredon, C.; Azqueta, A.; de Lapuente, J.; Dusinska, M. Critical factors to be considered when testing nanomaterials for genotoxicity with the comet assay. Mutagenesis 2015, 30, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Azhdarzadeh, M.; Saei, A.A.; Sharifi, S.; Hajipour, M.J.; Alkilany, A.M.; Sharifzadeh, M.; Ramazani, F.; Laurent, S.; Mashaghi, A.; Mahmoudi, M. Nanotoxicology: Advances and pitfalls in research methodology. Nanomedicine 2015, 10, 2931–2952. [Google Scholar] [CrossRef]
- Armand, L.; Tarantini, A.; Beal, D.; Biola-Clier, M.; Bobyk, L.; Sorieul, S.; Pernet-Gallay, K.; Marie-Desvergne, C.; Lynch, I.; Herlin-Boime, N.; et al. Long-term exposure of A549 cells to titanium dioxide nanoparticles induces DNA damage and sensitizes cells towards genotoxic agents. Nanotoxicology 2016, 10, 913–923. [Google Scholar] [CrossRef]
- Stone, V.; Johnston, H.; Schins, R.P.F. Development of in vitro systems for nanotoxicology: Methodological considerations. Crit. Rev. Toxicol. 2009, 39, 613–626. [Google Scholar] [CrossRef]
- Andraos, C.; Yu, I.J.; Gulumian, M. Interference: A Much-Neglected Aspect in High-Throughput Screening of Nanoparticles. Int. J. Toxicol. 2020, 39, 397–421. [Google Scholar] [CrossRef]
- Anguissola, S.; Garry, D.; Salvati, A.; O’Brien, P.J.; Dawson, K.A. High Content Analysis Provides Mechanistic Insights on the Pathways of Toxicity Induced by Amine-Modified Polystyrene Nanoparticles. PLoS ONE 2014, 9, 0108025. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.R.; Annangi, B.; Rubio, L.; Marcos, R.; Dorn, M.; Merker, C.; Estrela-Lopis, I.; Cimpan, M.R.; Ibrahim, M.; Cimpan, E.; et al. High throughput toxicity screening and intracellular detection of nanomaterials. Wiley Interdiscip. Rev.-Nanomed. Nanobiotechnology 2017, 9, e1413. [Google Scholar] [CrossRef]
- Xia, T.; Kovochich, M.; Liong, M.; Zink, J.I.; Nel, A.E. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 2008, 2, 85–96. [Google Scholar] [CrossRef]
- Roebben, G.; Ramirez-Garcia, S.; Hackley, V.A.; Roesslein, M.; Klaessig, F.; Kestens, V.; Lynch, I.; Garner, C.M.; Rawle, A.; Elder, A.; et al. Interlaboratory comparison of size and surface charge measurements on nanoparticles prior to biological impact assessment. J. Nanopart. Res. 2011, 13, 2675–2687. [Google Scholar] [CrossRef]
- Nelson, B.C.; Petersen, E.J.; Marquis, B.J.; Atha, D.H.; Elliott, J.T.; Cleveland, D.; Watson, S.S.; Tseng, I.H.; Dillon, A.; Theodore, M.; et al. NIST gold nanoparticle reference materials do not induce oxidative DNA damage. Nanotoxicology 2013, 7, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Paget, V.; Sergent, J.A.; Grall, R.; Altmeyer-Morel, S.; Girard, H.A.; Petit, T.; Gesset, C.; Mermoux, M.; Bergonzo, P.; Arnault, J.C.; et al. Carboxylated nanodiamonds are neither cytotoxic nor genotoxic on liver, kidney, intestine and lung human cell lines. Nanotoxicology 2014, 8, 46–56. [Google Scholar] [CrossRef]
- Petersen, E.J.; Nguyen, A.D.; Brown, J.; Elliott, J.T.; Clippinger, A.J.; Gordon, J.; Kleinstreuer, N.; Roesslein, M. Characteristics to Consider When Selecting a Positive Control Material for an In Vitro Assay. Altex-Altern. Anim. Exp. 2021, 38, 365–376. [Google Scholar] [CrossRef]
- Petersen, E.J.; Reipa, V.; Xia, M.H.; Sharma, M. Resources for Developing Reliable and Reproducible In Vitro Toxicological Test Methods. Chem. Res. Toxicol. 2021, 34, 1367–1369. [Google Scholar] [CrossRef]
- Bexiga, M.G.; Varela, J.A.; Wang, F.J.; Fenaroli, F.; Salvati, A.; Lynch, I.; Simpson, J.C.; Dawson, K.A. Cationic nanoparticles induce caspase 3-, 7- and 9-mediated cytotoxicity in a human astrocytoma cell line. Nanotoxicology 2011, 5, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.A.; Aberg, C.; de Carcer, G.; Malumbres, M.; Salvati, A.; Dawson, K.A. Low Dose of Amino-Modified Nanoparticles Induces Cell Cycle Arrest. ACS Nano 2013, 7, 7483–7494. [Google Scholar] [CrossRef]
- Bondarenko, O.M.; Heinlaan, M.; Sihtmae, M.; Ivask, A.; Kurvet, I.; Joonas, E.; Jemec, A.; Mannerstrom, M.; Heinonen, T.; Rekulapelly, R.; et al. Multilaboratory evaluation of 15 bioassays for (eco)toxicity screening and hazard ranking of engineered nanomaterials: FP7 project NANOVALID. Nanotoxicology 2016, 10, 1229–1242. [Google Scholar] [CrossRef]
- Lee, E.; Lee, M.; Kwon, S.; Kim, J.; Kwon, Y. Systematic and mechanistic analysis of AuNP-induced nanotoxicity for risk assessment of nanomedicine. Nano Converg. 2022, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Giljohann, D.A.; Seferos, D.S.; Daniel, W.L.; Massich, M.D.; Patel, P.C.; Mirkin, C.A. Gold Nanoparticles for Biology and Medicine. Angew. Chem. Int. Edit 2010, 49, 3280–3294. [Google Scholar] [CrossRef]
- Sani, A.; Cao, C.; Cui, D. Toxicity of gold nanoparticles (AuNPs): A review. Biochem. Biophys. Rep. 2021, 26, 100991. [Google Scholar] [CrossRef]
- Boussif, O.; Lezoualch, F.; Zanta, M.A.; Mergny, M.D.; Scherman, D.; Demeneix, B.; Behr, J.P. A Versatile Vector for Gene and Oligonucleotide Transfer into Cells in Culture and in-Vivo—Polyethylenimine. Proc. Natl. Acad. Sci. USA 1995, 92, 7297–7301. [Google Scholar] [CrossRef]
- Taranejoo, S.; Liu, J.; Verma, P.; Hourigan, K. A review of the developments of characteristics of PEI derivatives for gene delivery applications. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Cho, T.J.; Gorham, J.M.; Pettibone, J.M.; Liu, J.Y.; Tan, J.; Hackley, V.A. Parallel multi-parameter study of PEI-functionalized gold nanoparticle synthesis for bio-medical applications: Part 1—A critical assessment of methodology, properties, and stability. J. Nanopart. Res. 2019, 21, 188. [Google Scholar] [CrossRef]
- Cho, T.J.; Gorham, J.M.; Pettibone, J.M.; Liu, J.Y.; Tan, J.; Hackley, V.A. Parallel Multiparameter Study of PEI-Functionalized Gold Nanoparticle Synthesis for Biomedical Applications: Part 2. Elucidating the Role of Surface Chemistry and Polymer Structure in Performance. Langmuir 2020, 36, 14058–14069. [Google Scholar] [CrossRef]
- Hwang, Y.S.; So, D.H.; Lee, M.S.; Yoon, J.; Reipa, V.; Tona, A.; Yi, F.; Nelson, B.C.; LaVan, D.A.; Hackley, V.A.; et al. Polyethyleneimine/polyethylene glycol-conjugated gold nanoparticles as nanoscale positive/negative controls in nanotoxicology: Testing in frog embryo teratogenesis assay-Xenopus and mammalian tissue culture system. Nanotoxicology 2023, 17, 94–115. [Google Scholar] [CrossRef]
- Cho, T.J.; Hackley, V.; Reipa, V.; Tona, A.; Sims, C.; Farkas, N. Introduction of nanoscale positive controls for nanotoxicology: A new aspect of utilization of stability-enhanced Gold-Polyethyleneimine conjugates (Au-PEIs). In Proceedings of the 2022 IEEE 22nd International Conference on Nanotechnology (NANO), Palma de Mallorca, Spain, 4–8 July 2022; pp. 337–340. [Google Scholar] [CrossRef]
- Liu, X.O.; Atwater, M.; Wang, J.H.; Huo, Q. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf. B-Biointerfaces 2007, 58, 3–7. [Google Scholar] [CrossRef] [PubMed]
- ISO 19007:2018. Nanotechnologies—In Vitro MTS Assay for Measuring the Cytotoxic Effect of Nanoparticles. Available online: https://www.iso.org/standard/63698.html (accessed on 12 November 2024).
- Cho, T.J.; Hackley, V.A.; Yi, F.; LaVan, D.A.; Reipa, V.; Tona, A.; Nelson, B.C.; Sims, C.M.; Farkas, N. Preparation, Characterization, and Biological Activity of Stability-Enhanced Polyethyleneimine-Conjugated Gold Nanoparticles (Au-PEI@NIST) for Biological Application; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2021. Available online: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1200-29.pdf (accessed on 1 September 2021).
- Cho, T.J.; Hackley, V.A. Assessing the Chemical and Colloidal Stability of Functionalized Gold Nanoparticles; National Institue of Standards and Technology: Gaithersburg, MD, USA, 2018. Available online: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1200-26.pdf (accessed on 1 June 2018).
- Kretschmer, F.; Mansfeld, U.; Hoeppener, S.; Hager, M.D.; Schubert, U.S. Tunable synthesis of poly(ethylene imine)-gold nanoparticle clusters. Chem. Commun. 2014, 50, 88–90. [Google Scholar] [CrossRef] [PubMed]
Cell Type | IC50, mg/mL | IC50, Particles/mL a | IC50, cm2/mL b |
---|---|---|---|
A549 | 1.76 ± 0.49 | (1.14 ± 0.32) × 1011 | 2.36 ± 0.66 |
CHO K1 | 1.89 ± 0.28 | (1.22 ± 0.18) × 1011 | 2.52 ± 0.37 |
HaCaT | 4.70 ± 1.89 | (3.11 ± 1.20) × 1011 | 6.44 ± 0.87 |
HeLa | 2.21 ± 0.12 | (1.4 ± 0.07) × 1011 | 2.90 ± 0.14 |
SK-MEL-28 | 1.49 ± 0.32 | (0.97 ± 0.19) × 1011 | 2.00 ± 0.41 |
NIH 3T3 | 2.79 ± 0.41 | (1.82 ± 0.26) × 1011 | 3.76 ± 0.54 |
HepG2 | 3.95 ± 0.59 | (2.56 ± 0.38) × 1011 | 5.31 ± 0.76 |
BEAS-2B | 3.15 ± 0.47 | (2.04 ± 0.31) × 1011 | 4.23 ± 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reipa, V.; Hackley, V.A.; Tona, A.; Heo, M.B.; Lee, Y.R.; Lee, T.G.; Johnston-Peck, A.; Cho, T.J. Well-Characterized Polyethyleneimine-/Carboxylated-Polyethylene-Glycol-Functionalized Gold Nanoparticles as Prospective Nanoscale Control Materials for In Vitro Cell Viability Assays: Particle Characterization and Toxicity Tests in Eight Mammalian Cell Lines. Nanomaterials 2025, 15, 79. https://doi.org/10.3390/nano15020079
Reipa V, Hackley VA, Tona A, Heo MB, Lee YR, Lee TG, Johnston-Peck A, Cho TJ. Well-Characterized Polyethyleneimine-/Carboxylated-Polyethylene-Glycol-Functionalized Gold Nanoparticles as Prospective Nanoscale Control Materials for In Vitro Cell Viability Assays: Particle Characterization and Toxicity Tests in Eight Mammalian Cell Lines. Nanomaterials. 2025; 15(2):79. https://doi.org/10.3390/nano15020079
Chicago/Turabian StyleReipa, Vytas, Vincent A. Hackley, Alessandro Tona, Min Beom Heo, Ye Ryeong Lee, Tae Geol Lee, Aaron Johnston-Peck, and Tae Joon Cho. 2025. "Well-Characterized Polyethyleneimine-/Carboxylated-Polyethylene-Glycol-Functionalized Gold Nanoparticles as Prospective Nanoscale Control Materials for In Vitro Cell Viability Assays: Particle Characterization and Toxicity Tests in Eight Mammalian Cell Lines" Nanomaterials 15, no. 2: 79. https://doi.org/10.3390/nano15020079
APA StyleReipa, V., Hackley, V. A., Tona, A., Heo, M. B., Lee, Y. R., Lee, T. G., Johnston-Peck, A., & Cho, T. J. (2025). Well-Characterized Polyethyleneimine-/Carboxylated-Polyethylene-Glycol-Functionalized Gold Nanoparticles as Prospective Nanoscale Control Materials for In Vitro Cell Viability Assays: Particle Characterization and Toxicity Tests in Eight Mammalian Cell Lines. Nanomaterials, 15(2), 79. https://doi.org/10.3390/nano15020079