Luminescence Properties of Eu3+, Ba2+, and Bi3+ Co-Doped YVO4 for Wide-Spectrum Excitation
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of YVO4: xEu3+, yBa2+, and zBi3+ Crystals
2.3. Synthesis of YVO4: Eu3+, Ba2+, and Bi3+ Films
2.4. Characterization
3. Results and Discussion
3.1. Photoluminescence Properties
3.2. Phase Structures and Microstructural Characteristics
3.3. Transmittance Spectra
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peng, L.X.; Li, L.P.; Qin, F.; Wang, C.W.; Zhang, Z.G. A multi-mode self-referenced optical thermometer based on low-doped YVO4: Eu3+ phosphor. J. Lumin. 2023, 263, 120168. [Google Scholar] [CrossRef]
- Mentasti, L.; Zucchi, I.A.; Cammarata, A.; Glisoni, R.; Santiago, M.; Barreto, G. Facile functionalization of YVO4: Eu3+: From nanoparticles to luminescent PMMA nanocomposites for radiation detectors. Opt. Mater. 2022, 129, 112566. [Google Scholar] [CrossRef]
- Babu, A.; Réveret, F.; Barros, A.; Cisnetti, F.; Lemoine, K.; Jamon, D.; Suta, M.; Chadeyron, G.; Boyer, D. Efficient Luminescent Coatings Constituted of Hybrid Sol-Gel Matrixes Embedding YVO4: Eu3+ Nanocrystals. Acs Appl. Mater. Interfaces 2025, 17, 43413–43423. [Google Scholar] [CrossRef] [PubMed]
- Mentasti, L.; Martínez, N.; Zucchi, I.A.; Marcazzó, J.; Orellana, G.; Santiago, M.; Barreto, G. Novel materials for radiation sensing in radiotherapy treatments: Development of luminescent YVO4: Eu3+ polymer-based nanocomposites. Opt. Mater. 2024, 150, 115285. [Google Scholar] [CrossRef]
- Pankratov, V.; Popov, A.I.; Shirmane, L.; Kotlov, A.; Feldmann, C. LaPO4:Ce, Tb and YVO4: Eu nanophosphors: Luminescence studies in the vacuum ultraviolet spectral range. J. Appl. Phys. 2011, 110, 053522. [Google Scholar] [CrossRef]
- Kang, J.H.; Nazarov, M.; Bin Im, W.; Kim, J.Y.; Jeon, D.Y. Characterization of nano-size YVO4: Eu and (Y, Gd)VO4: Eu phosphom by low voltage cathodo- and photoluminescence. J. Vac. Sci. Technol. B 2005, 23, 843–848. [Google Scholar] [CrossRef]
- Lim, J.; Na, Y.E.; Lee, Y.S.; Bu, S.D. Conversion of the valence states of Eu ions in YVO4 with the gamma-ray irradiation. Curr. Appl. Phys. 2018, 18, 864–868. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Mao, J.; Zhu, P.F.; Wang, G.F. Tunable multicolor luminescence in vanadates from yttrium to indium with enhanced luminous efficiency and stability for its application in WLEDs and indoor photovoltaics. Nano Res. 2023, 16, 11486–11494. [Google Scholar] [CrossRef]
- Zuo, Y.; Wang, Y.; Gao, H. Synthesis and Photoluminescence Properties of (Y, Bi, Sc)VO4: Eu3+ Phosphor. Rare Met. Mater. Eng. 2007, 36, 386–389. [Google Scholar]
- Tomina, E.V.; Sladkopevtsev, B.V.; Novikova, L.A.; Boykov, N.I.; Maltsev, S.A. Microwave and ultrasonic radiation-activated synthesis and luminescent properties of nanopowder YVO4: Bi3+, Eu3+. Russ. Chem. Bull. 2023, 72, 1113–1121. [Google Scholar] [CrossRef]
- Ohno, T.; Iso, Y.; Isobe, T. Low-Temperature Synthesis of YVO4: Bi3+, Eu3+ Nanoparticle Phosphors Using a Methanol Solution of Trivalent Cations. Ecs J. Solid State Sci. Technol. 2016, 5, R142–R145. [Google Scholar] [CrossRef]
- Wang, D.M.; Tie, S.L.; Wan, X. White light emitting from YVO4/Y2O3: Eu3+, Bi3+ composite phosphors for UV light-emitting diodes. Ceram. Int. 2015, 41, 7766–7772. [Google Scholar] [CrossRef]
- Takeshita, S.; Isobe, T.; Sawayama, T.; Niikura, S. Effects of the homogeneous Bi3+ doping process on photoluminescence properties of YVO4: Bi3+, Eu3+ nanophosphor. J. Lumin. 2009, 129, 1067–1072. [Google Scholar] [CrossRef]
- Chen, D.Q.; Yu, Y.L.; Huang, P.; Lin, H.; Shan, Z.F.; Zeng, L.W.; Yang, A.P.; Wang, Y.S. Color-tunable luminescence for Bi3+/Ln3+: YVO4 (Ln = Eu, Sm, Dy, Ho) nanophosphors excitable by near-ultraviolet light. Phys. Chem. Chem. Phys. 2010, 12, 7775–7778. [Google Scholar] [CrossRef] [PubMed]
- Nayak, P.; Nanda, S.S.; Dash, S. Simultaneous Influence of Dual Sensitizers on Photo-Physical Properties of Dy3+ Activated YVO4 Phosphors. J. Mater. Eng. Perform. 2024, 33, 5268–5278. [Google Scholar] [CrossRef]
- Wangkhem, R.; Singh, N.P.; Singh, N.S. On the mechanism of luminescent YVO4: Eu3+ as turn-off luminescent probe for selective detection of Cu2+ ions. Ceram. Int. 2024, 50, 11588–11596. [Google Scholar] [CrossRef]
- Nirwan, F.M.; Rao, T.K.G.; Gupta, P.K.; Pode, R.B. Studies of defects in YVO4: Pb2+, Eu3+ red phosphor material. Phys. Status Solidi A-Appl. Mater. Sci. 2003, 198, 447–456. [Google Scholar] [CrossRef]
- Lin, H.-Y.; Fang, Y.-C.; Chu, S.-Y. Energy Transfer Sm3+→Eu3+ in Potential Red Phosphor (Ca, Ba)3(VO4)2: Sm3+, Eu3+ for Use in Organic Solar Cells and White Light-Emitting Diodes. J. Am. Ceram. Soc. 2010, 93, 3850–3856. [Google Scholar] [CrossRef]
- Jiu, H.F.; Jiao, H.Q.; Zhang, L.X.; Jia, W.B.; Huang, C.S.; Chang, J.X. Improved luminescence behavior of YVO4: Eu3+ hollow microspheres by Ca2+ doping. Superlattices Microstruct. 2015, 83, 627–634. [Google Scholar] [CrossRef]
- Wangkhem, R.; Singh, N.S.; Singh, N.P.; Singh, S.D.; Singh, L.R. Facile synthesis of re-dispersible YVO4: Ln3+ (Ln3+ = Dy3+, Eu3+, Sm3+) nanocrystals: Luminescence studies and sensing of Cu2+ ions. J. Lumin. 2018, 203, 341–348. [Google Scholar] [CrossRef]
- Jiang, L.S.; Zhang, Z.Y.; Xiao, Y.C.; Wang, Q.M. Novel templates directed synthesis of YVO4: Eu3+ (red) and Y2O3-SiO2: Tb3+ (green) phosphors. J. Lumin. 2012, 132, 2822–2825. [Google Scholar] [CrossRef]
- Cavalli, E.; Angiuli, F.; Belletti, A.; Boutinaud, P. Luminescence spectroscopy of YVO4: Ln3+, Bi3+ (Ln3+ = Eu3+, Sm3+, Dy3+) phosphors. Opt. Mater. 2014, 36, 1642–1648. [Google Scholar] [CrossRef]
- Tang, L.; Gui, W.J.; Ding, K.J.J.; Chen, N.; Du, G.P. Ion exchanged YVO4: Eu3+ nanocrystals and their strong luminescence enhanced by energy transfer of thenoyltrifluoroacetone ligands. J. Alloys Compd. 2014, 590, 277–282. [Google Scholar] [CrossRef]
- Wang, G.; Qin, W.; Zhang, D.; Wang, L.; Wei, G.; Zhu, P.; Kim, R. Enhanced Photoluminescence of Water Soluble YVO4: Ln3+ (Ln = Eu, Dy, Sm, and Ce) Nanocrystals by Ba2+ Doping. J. Phys. Chem. C 2008, 112, 17042–17045. [Google Scholar] [CrossRef]
- Park, K.C.; Mho, S. Photoluminescence properties of Ba3V2O8, Ba3(1−x) Eu2xV2O8 and Ba2Y2/3V2O8: Eu3+. J. Lumin. 2007, 122, 95–98. [Google Scholar] [CrossRef]
- de Sá, G.F.; Malta, O.L.; Donegá, C.D.; Simas, A.M.; Longo, R.L.; Santa-Cruz, P.A.; da Silva, E.F., Jr. Spectroscopic properties and design of highly luminescent lanthanide coordination complexes. Coord. Chem. Rev. 2000, 196, 165–195. [Google Scholar] [CrossRef]
- Huang, L.; Wang, J.; Zhang, H.P.; Zu, G.N.; Wang, Z.T.; Fu, Y.H. Luminescence properties of rare earth complexes bonded to novel mesoporous spherical hybrid materials. J. Rare Earths 2023, 41, 60–66. [Google Scholar] [CrossRef]
- Wu, Y.F.S.; Chen, X.; Gong, Z.Y.; Tian, B.; Xue, E.B.; Zheng, K.; Liang, J.; Wu, W. Multi-wavelength excitation-dependent fluorescence with dynamic color gradients for information encryption and anti-counterfeiting. J. Mater. Chem. C 2024, 12, 11497–11505. [Google Scholar] [CrossRef]
- Brito, M.L.; Huband, S.; Walker, M.; Walton, R.I.; Filho, P.C.D. Nanoporous YVO4 as a luminescent host for probing molecular encapsulation. Chem. Commun. 2023, 59, 11393–11396. [Google Scholar] [CrossRef]
- Jia, G.; Zhang, C.; Ding, S.; Wang, L.; Li, L.; You, H. Synthesis and enhanced luminescence of uniform and well-dispersed quasispherical YVO4: Ln3+ (Ln = Eu, Dy) nanoparticles by a solvothermal method. CrystEngComm 2012, 14, 573–578. [Google Scholar] [CrossRef]
- Hsu, C.; Powell, R.C. Energy transfer in europium doped yttrium vanadate crystals. J. Lumin. 1975, 10, 273–293. [Google Scholar] [CrossRef]
- Meyssamy, H.; Riwotzki, K.; Kornowski, A.; Naused, S.; Haase, M. Wet-chemical synthesis of doped colloidal nanomaterials: Particles and fibers of LaPO4: Eu, LaPO4: Ce, and LaPO4: Ce, Tb. Adv. Mater. 1999, 11, 840–844. [Google Scholar] [CrossRef]
- Jia, G.; Song, Y.H.; Yang, M.; Liu, K.; Zheng, Y.H.; You, H.P. Facile synthesis and luminescence properties of octahedral YVO4: Eu3+ microcrystals. J. Cryst. Growth 2009, 311, 4213–4218. [Google Scholar] [CrossRef]
- Singh, N.S.; Ningthoujam, R.S.; Luwang, M.N.; Singh, S.D.; Vatsa, R.K. Luminescence, lifetime and quantum yield studies of YVO4: Ln3+ (Ln3+ = Dy3+, Eu3+) nanoparticles: Concentration and annealing effects. Chem. Phys. Lett. 2009, 480, 237–242. [Google Scholar] [CrossRef]
- Tang, L.; Chen, N. White light emitting YVO4: Eu3+, Tm3+, Dy3+ nanometer- and submicrometer-sized particles prepared by an ion exchange method. Ceram. Int. 2016, 42, 302–309. [Google Scholar] [CrossRef]
- Zhang, W.; Xie, P.; Duan, C.; Yan, K.; Yin, M.; Lou, L.; Xia, S.; Krupa, J.-C. Preparation and size effect on concentration quenching of nanocrystalline Y2SiO5: Eu. Chem. Phys. Lett. 1998, 292, 133–136. [Google Scholar] [CrossRef]
- Wang, S.F.; Gu, F.; Lü, M.K.; Zhou, G.J.; Ai, Z.P.; Xu, D.; Yuan, D.R. Preparation and luminescent characteristics of Mn2+, Er3+ co-doped ZrO2 nanocrystals. J. Cryst. Growth 2003, 257, 84–88. [Google Scholar] [CrossRef]
- Zhao, T.; Chen, N.; Du, G.; Jiang, C. Effect of Ba2+ doping on the photoluminescence of YVO4: Eu3+ phosphor and first principles calculations. J. Lumin. 2020, 222, 117117. [Google Scholar] [CrossRef]
- Zhan, Y.C.; Du, G.P.; Chen, N.; Li, Y.Y.; Liu, B.F.; Liu, G.H. Photoluminescence properties of YVO4: Eu3+, Ba2+ nanoparticles prepared by an ion exchange method. Mater. Sci. Semicond. Process. 2016, 41, 233–239. [Google Scholar] [CrossRef]
- Park, W.J.; Jung, M.K.; Yoon, D.H. Influence of Eu3+, Bi3+ co-doping content on photoluminescence Of YVO4 red phosphors induced by ultraviolet excitation. Sens. Actuators B-Chem. 2007, 126, 324–327. [Google Scholar] [CrossRef]
- Riwotzki, K.; Haase, M. Colloidal YVO4: Eu and YP0.95V0.05O4: Eu nanoparticles: Luminescence and energy transfer processes. J. Phys. Chem. B 2001, 105, 12709–12713. [Google Scholar] [CrossRef]
- Iso, Y.; Takeshita, S.; Isobe, T. Electrophoretic Deposition and Characterization of Transparent Nanocomposite Films of YVO4: Bi3+, Eu3+ Nanophosphor and Silicone-Modified Acrylic Resin. Langmuir 2014, 30, 1465–1471. [Google Scholar] [CrossRef]
- Su, J.G.; Mi, X.Y.; Sun, J.C.; Yang, L.X.; Hui, C.L.; Lu, L.P.; Bai, Z.H.; Zhang, X.Y. Tunable luminescence and energy transfer properties in YVO4: Bi3+, Eu3+ phosphors. J. Mater. Sci. 2017, 52, 782–792. [Google Scholar] [CrossRef]
- Tian, L.H.; Mho, S. Enhanced photoluminescence of YVO4: Eu3+ by codoping the Sr2+, Ba2+ or Pb2+ ion. J. Lumin. 2007, 122, 99–103. [Google Scholar] [CrossRef]
- Liao, Y.B.; Chen, N.; Du, G.P. Strong luminescence enhancement of YVO4: Eu3+, Ba2+ phosphors prepared by a solvothermal method. J. Alloys Compd. 2013, 561, 214–219. [Google Scholar] [CrossRef]
- Liao, Y.B.; Zhan, Y.C.; Chen, N.; Du, G.P. Effect of Sr2+ doping on the luminescence properties of YVO4: Eu3+, Sr2+ particles prepared by a solvothermal method. J. Sol-Gel Sci. Technol. 2013, 65, 353–358. [Google Scholar] [CrossRef]
- Zuo, Y.Y.; Ling, W.J.; Lu, F.P. Luminescence properties of red phosphor YVO4: Eu3+, Ba2+. Optik 2023, 287, 171082. [Google Scholar] [CrossRef]
- Kumari, P.; Manam, J. Enhanced red emission on co-doping of divalent ions (M2+ = Ca2+, Sr2+, Ba2+) in YVO4: Eu3+ phosphor and spectroscopic analysis for its application in display devices. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2016, 152, 109–118. [Google Scholar] [CrossRef]
- Mho, S.-I.; Tian, L.; Park, K.-C.; Yeo, I.-H. 42.4: Enhanced Photoluminescence of (Y, A)V(O, S)4: Eu3+ (A = Sr, Ba) Compared with YVO4: Eu3+. SID Symp. Dig. Tech. Pap. 2005, 36, 1425–1427. [Google Scholar] [CrossRef]
- Ruan, F.P.; Deng, D.G.; Wu, M.; Chen, B.W.; Lei, R.S.; Xu, S.Q. Multichannel luminescence of Eu2+/Eu3+ Co-activated Ca9Mg1.5(PO4)7 phosphors for self-referencing optical thermometry. J. Lumin. 2019, 213, 117–126. [Google Scholar] [CrossRef]
- Ruan, F.P.; Deng, D.G.; Wu, M.; Wu, C.X.; Xu, S.Q. Tunable single-host full-color-emitting Ca9Zn1.5(PO4)7: Eu, Tb phosphor via Eu2+/Eu3+ dual-emitting. J. Lumin. 2018, 198, 1–9. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Dong, C.; Huang, P.; Zhong, W.; Luo, Y.; Li, J.; Hu, Y.; Duan, W.; Qiu, L.; Qin, W.; et al. Luminescence Properties of Eu3+, Ba2+, and Bi3+ Co-Doped YVO4 for Wide-Spectrum Excitation. Nanomaterials 2025, 15, 1444. https://doi.org/10.3390/nano15181444
Huang J, Dong C, Huang P, Zhong W, Luo Y, Li J, Hu Y, Duan W, Qiu L, Qin W, et al. Luminescence Properties of Eu3+, Ba2+, and Bi3+ Co-Doped YVO4 for Wide-Spectrum Excitation. Nanomaterials. 2025; 15(18):1444. https://doi.org/10.3390/nano15181444
Chicago/Turabian StyleHuang, Jianhua, Cong Dong, Ping Huang, Wei Zhong, Yinqi Luo, Jianmin Li, Yibiao Hu, Wenjie Duan, Lingjia Qiu, Wenzhen Qin, and et al. 2025. "Luminescence Properties of Eu3+, Ba2+, and Bi3+ Co-Doped YVO4 for Wide-Spectrum Excitation" Nanomaterials 15, no. 18: 1444. https://doi.org/10.3390/nano15181444
APA StyleHuang, J., Dong, C., Huang, P., Zhong, W., Luo, Y., Li, J., Hu, Y., Duan, W., Qiu, L., Qin, W., & Xie, Y. (2025). Luminescence Properties of Eu3+, Ba2+, and Bi3+ Co-Doped YVO4 for Wide-Spectrum Excitation. Nanomaterials, 15(18), 1444. https://doi.org/10.3390/nano15181444