Advancing Zinc–Manganese Oxide Batteries: Mechanistic Insights, Anode Engineering, and Cathode Regulation
Abstract
1. Introduction
2. Reaction Mechanisms
2.1. Zn2+ Insertion/Extraction Mechanism
2.2. H+ Related Conversion Mechanism
2.3. Zn2+/H+ Co-Insertion Mechanism
2.4. MnO2 Deposition/Dissolution Mechanism
3. Zinc Anode Design
3.1. Functional Coating on Zn Anode
3.2. Structure Optimization of Zn Anode
4. Mn-Based Cathodes Design
4.1. Metal Doping in Mn-Based Compounds
4.2. Defect Engineering in Mn-Based Cathodes
4.3. Structural Optimization
4.4. Compositing with Conductive Agents
5. Conclusions
Funding
Conflicts of Interest
References
- Wang, Y.; Zhang, L.; Yu, X.; Zhou, C.; Yagoub, A.E.A.; Li, D. A catalytic infrared system as a hot water replacement strategy: A future approach for blanching fruits and vegetables to save energy and water. Food Rev. Int. 2024, 40, 641–657. [Google Scholar] [CrossRef]
- Yang, C.; Xia, J.; Cui, C.; Pollard, T.P.; Vatamanu, J.; Faraone, A.; Dura, J.A.; Tyagi, M.; Kattan, A.; Thimsen, E.; et al. All-temperature zinc batteries with high-entropy aqueous electrolyte. Nat. Sustain. 2023, 6, 325–335. [Google Scholar] [CrossRef]
- Hao, J.; Zhang, S.; Wu, H.; Yuan, L.; Davey, K.; Qiao, S.-Z. Advanced cathodes for aqueous Zn batteries beyond Zn2+ intercalation. Chem. Soc. Rev. 2024, 53, 4312–4332. [Google Scholar] [CrossRef] [PubMed]
- Eng, A.Y.S.; Soni, C.B.; Lum, Y.; Khoo, E.; Yao, Z.; Vineeth, S.; Kumar, V.; Lu, J.; Johnson, C.S.; Wolverton, C. Theory-guided experimental design in battery materials research. Sci. Adv. 2022, 8, eabm2422. [Google Scholar] [CrossRef]
- He, L.; Yan, M.; Naeem, M.; Chen, M.; Chen, Y.; Ni, Z.; Chen, H. Enhancing Manganese Peroxidase: Innovations in Genetic Modification, Screening Processes, and Sustainable Agricultural Applications. J. Agric. Food Chem. 2024, 72, 26040–26056. [Google Scholar] [CrossRef]
- Wang, X.; Pan, Y.; Wang, X.; Guo, Y.; Ni, C.; Wu, J.; Hao, C. High performance hybrid supercapacitors assembled with multi-cavity nickel cobalt sulfide hollow microspheres as cathode and porous typha-derived carbon as anode. Ind. Crops Prod. 2022, 189, 115863. [Google Scholar] [CrossRef]
- Degen, F.; Winter, M.; Bendig, D.; Tübke, J. Energy consumption of current and future production of lithium-ion and post lithium-ion battery cells. Nat. Energy 2023, 8, 1284–1295. [Google Scholar] [CrossRef]
- Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 Years of Lithium-Ion Batteries. Adv. Mater. 2018, 30, 1800561. [Google Scholar] [CrossRef]
- Li, Z.; Gao, R.; Feng, M.; Deng, Y.P.; Xiao, D.; Zheng, Y.; Zhao, Z.; Luo, D.; Liu, Y.; Zhang, Z.; et al. Modulating Metal–Organic Frameworks as Advanced Oxygen Electrocatalysts. Adv. Energy Mater. 2021, 11, 2003291. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, X.; Negnevitsky, M. Connecting battery technologies for electric vehicles from battery materials to management. iScience 2022, 25, 103744. [Google Scholar] [CrossRef]
- Xiao, M.; Li, W.; Yu, M.; Lin, B.; Peng, D.; Li, Z.; Or, S.W.; Sun, S.; Xing, Z. Enhanced electronic conductivity and ionic conductivity of Li2S by doping strategy. Matter 2025, 8, 101934. [Google Scholar] [CrossRef]
- Zheng, W.; Wu, L.; Shuai, Q.; Li, Z.; Wang, H.; Fu, W.; Jiang, Z.; Zhao, C.; Hua, Q. Mechanism for Adsorption, Dissociation, and Diffusion of Hydrogen in High-Entropy Alloy AlCrTiNiV: First-Principles Calculation. Nanomaterials 2024, 14, 1391. [Google Scholar] [CrossRef]
- Hui, X.; Zhang, P.; Li, J.; Zhao, D.; Li, Z.; Zhang, Z.; Wang, C.; Wang, R.; Yin, L. In Situ Integrating Highly Ionic Conductive LDH-Array@PVA Gel Electrolyte and MXene/Zn Anode for Dendrite-Free High-Performance Flexible Zn–Air Batteries. Adv. Energy Mater. 2022, 12, 2201393. [Google Scholar] [CrossRef]
- Wu, Q.; Zhong, Y.; Chen, R.; Ling, G.; Wang, X.; Shen, Y.; Hao, C. Cu-Ag-C@Ni3S4 with core shell structure and rose derived carbon electrode materials: An environmentally friendly supercapacitor with high energy and power density. Ind. Crops Prod. 2024, 222, 119676. [Google Scholar] [CrossRef]
- Li, G.; Sun, L.; Zhang, S.; Zhang, C.; Jin, H.; Davey, K.; Liang, G.; Liu, S.; Mao, J.; Guo, Z. Developing Cathode Materials for Aqueous Zinc Ion Batteries: Challenges and Practical Prospects. Adv. Funct. Mater. 2023, 34, 2301291. [Google Scholar] [CrossRef]
- Gourley, S.W.D.; Brown, R.; Adams, B.D.; Higgins, D. Zinc-ion batteries for stationary energy storage. Joule 2023, 7, 1415–1436. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Pang, W.K.; Lie, W.; Yuwono, J.A.; Liang, G.; Liu, S.; Angelo, A.M.D.; Deng, J.; Fan, Y.; et al. Solvent control of water O−H bonds for highly reversible zinc ion batteries. Nat. Commun. 2023, 14, 2720. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, G.; Deng, Y.P.; Liu, G.; Ren, D.; Zhang, Z.; Zhu, J.; Gao, R.; Jiang, Y.; Luo, D.; et al. Deep-Breathing Honeycomb-like Co-Nx-C Nanopolyhedron Bifunctional Oxygen Electrocatalysts for Rechargeable Zn-Air Batteries. iScience 2020, 23, 101404. [Google Scholar] [CrossRef]
- Li, Z.; Yang, J.; Ge, X.; Deng, Y.-P.; Jiang, G.; Li, H.; Sun, G.; Liu, W.; Zheng, Y.; Dou, H.; et al. Self-assembly of colloidal MOFs derived yolk-shelled microcages as flexible air cathode for rechargeable Zn-air batteries. Nano Energy 2021, 89, 106314. [Google Scholar] [CrossRef]
- Zhu, J.; Tie, Z.; Bi, S.; Niu, Z. Towards more sustainable aqueous zinc-ion batteries. Angew. Chem. 2024, 136, e202403712. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, Q.; Xia, Q.; Lei, Y.; Huang, X.L.; Tebyetekerwa, M.; Zhao, X.S. Interface challenges and optimization strategies for aqueous zinc-ion batteries. J. Energy Chem. 2023, 77, 642–659. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Q.; Hong, H.; Yang, S.; Zhang, R.; Wang, X.; Jin, X.; Xiong, B.; Bai, S.; Zhi, C. Lean-water hydrogel electrolyte for zinc ion batteries. Nat. Commun. 2023, 14, 3890. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, T.; Chen, D.; Tan, Y.; Zhou, W.; Li, L.; Li, W.; Li, G.; Han, W.; Fan, H.J.; et al. Protocol in Evaluating Capacity of Zn–Mn Aqueous Batteries: A Clue of pH. Adv. Mater. 2023, 35, e2300053. [Google Scholar] [CrossRef]
- Ouyang, Q.; Wang, L.; Ahmad, W.; Rong, Y.; Li, H.; Hu, Y.; Chen, Q. A highly sensitive detection of carbendazim pesticide in food based on the upconversion-MnO2 luminescent resonance energy transfer biosensor. Food Chem. 2021, 349, 129157. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, H.; Fan, M.; Zhan, B.; Zuo, L.-J.; Chen, C.; Yan, L. Nanomicellar Electrolyte To Control Release Ions and Reconstruct Hydrogen Bonding Network for Ultrastable High-Energy-Density Zn–Mn Battery. J. Am. Chem. Soc. 2023, 145, 20109–20120. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Liu, Z.; Li, L.; Guo, S.; Xie, X.; Luo, Z.; Fang, G.; Liang, S. Reconstructing interfacial manganese deposition for durable aqueous zinc–manganese batteries. Natl. Sci. Rev. 2023, 10, nwad220. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Li, B.; Du, H.; Kang, F. Energetic Zinc Ion Chemistry: The Rechargeable Zinc Ion Battery. Angew. Chem. Int. Ed. 2011, 51, 933–935. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Yoon, C.S.; Lee, H.R.; Chung, K.Y.; Cho, B.W.; Oh, S.H. Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide. Sci. Rep. 2014, 4, 6066. [Google Scholar] [CrossRef]
- Pan, H.; Shao, Y.; Yan, P.; Cheng, Y.; Han, K.S.; Nie, Z.; Wang, C.; Yang, J.; Li, X.; Bhattacharya, P.; et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039. [Google Scholar] [CrossRef]
- Yuan, Y.; Sharpe, R.; He, K.; Li, C.; Saray, M.T.; Liu, T.; Yao, W.; Cheng, M.; Jin, H.; Wang, S.; et al. Understanding intercalation chemistry for sustainable aqueous zinc–manganese dioxide batteries. Nat. Sustain. 2022, 5, 890–898. [Google Scholar] [CrossRef]
- Li, X.; Xu, Z.; Qian, Y.; Hou, Z. In-situ regulated competitive proton intercalation and deposition/dissolution reaction of MnO2 for high-performance flexible zinc-manganese batteries. Energy Storage Mater. 2022, 53, 72–78. [Google Scholar] [CrossRef]
- Jin, Y.; Zou, L.; Liu, L.; Engelhard, M.H.; Patel, R.L.; Nie, Z.; Han, K.S.; Shao, Y.; Wang, C.; Zhu, J.; et al. Joint Charge Storage for High-Rate Aqueous Zinc–Manganese Dioxide Batteries. Adv. Mater. 2019, 31, e1900567. [Google Scholar] [CrossRef]
- Gao, X.; Wu, H.; Li, W.; Tian, Y.; Zhang, Y.; Wu, H.; Yang, L.; Zou, G.; Hou, H.; Ji, X. H(+) -Insertion Boosted alpha-MnO2 for an Aqueous Zn-Ion Battery. Small 2020, 16, e1905842. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Yao, Y.; Wang, Z.; Lu, Y.-C. Towards high-areal-capacity aqueous zinc–manganese batteries: Promoting MnO2 dissolution by redox mediators. Energy Environ. Sci. 2021, 14, 4418–4426. [Google Scholar] [CrossRef]
- Guo, X.; Zhou, J.; Bai, C.; Li, X.; Fang, G.; Liang, S. Zn/MnO2 battery chemistry with dissolution-deposition mechanism. Mater. Today Energy 2020, 16, 100396. [Google Scholar] [CrossRef]
- Mateos, M.; Makivic, N.; Kim, Y.S.; Limoges, B.; Balland, V. Accessing the Two-Electron Charge Storage Capacity of MnO2 in Mild Aqueous Electrolytes. Adv. Energy Mater. 2020, 10, 2000332. [Google Scholar] [CrossRef]
- Shu, C.; An, Y.; Liu, Y.; Xu, Y.; Ren, D.; Zhang, X.; Sun, J.; Ma, Z.; Huang, Y.; Kang, F. Construction of corrosion-resistant and dendrite-free zinc anode by coating nano-ceriumoxide for highly stable zinc battery. Chem. Eng. J. 2025, 509, 161096. [Google Scholar] [CrossRef]
- Kang, L.; Cui, M.; Jiang, F.; Gao, Y.; Luo, H.; Liu, J.; Liang, W.; Zhi, C. Nanoporous CaCO3 Coatings Enabled Uniform Zn Stripping/Plating for Long-Life Zinc Rechargeable Aqueous Batteries. Adv. Energy Mater. 2018, 8, 1801090. [Google Scholar] [CrossRef]
- Zhao, R.; Yang, Y.; Liu, G.; Zhu, R.; Huang, J.; Chen, Z.; Gao, Z.; Chen, X.; Qie, L. Redirected Zn Electrodeposition by an Anti-Corrosion Elastic Constraint for Highly Reversible Zn Anodes. Adv. Funct. Mater. 2020, 31, 2001867. [Google Scholar] [CrossRef]
- Deng, C.; Xie, X.; Han, J.; Tang, Y.; Gao, J.; Liu, C.; Shi, X.; Zhou, J.; Liang, S. A Sieve-Functional and Uniform-Porous Kaolin Layer toward Stable Zinc Metal Anode. Adv. Funct. Mater. 2020, 30, 2000599. [Google Scholar] [CrossRef]
- Xie, X.; Liang, S.; Gao, J.; Guo, S.; Guo, J.; Wang, C.; Xu, G.; Wu, X.; Chen, G.; Zhou, J. Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 2020, 13, 503–510. [Google Scholar] [CrossRef]
- He, H.; Tong, H.; Song, X.; Song, X.; Liu, J. Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries. J. Mater. Chem. A 2020, 8, 7836–7846. [Google Scholar] [CrossRef]
- Bhoyate, S.; Mhin, S.; Jeon, J.-E.; Park, K.; Kim, J.; Choi, W. Stable and High-Energy-Density Zn-Ion Rechargeable Batteries Based on a MoS2-Coated Zn Anode. ACS Appl. Mater. Interfaces 2020, 12, 27249–27257. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zhao, J.; Hu, Z.; Li, J.; Li, J.; Zhang, Y.; Wang, C.; Cui, G. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 2019, 12, 1938–1949. [Google Scholar] [CrossRef]
- Hu, K.; Guan, X.; Lv, R.; Li, G.; Hu, Z.; Ren, L.; Wang, A.; Liu, X.; Luo, J. Stabilizing zinc metal anodes by artificial solid electrolyte interphase through a surface ion-exchanging strategy. Chem. Eng. J. 2020, 396, 125363. [Google Scholar] [CrossRef]
- Liu, M.; Yang, L.; Liu, H.; Amine, A.; Zhao, Q.; Song, Y.; Yang, J.; Wang, K.; Pan, F. Artificial Solid-Electrolyte Interface Facilitating Dendrite-Free Zinc Metal Anodes via Nanowetting Effect. ACS Appl. Mater. Interfaces 2019, 11, 32046–32051. [Google Scholar] [CrossRef]
- Yuksel, R.; Buyukcakir, O.; Seong, W.K.; Ruoff, R.S. Metal-Organic Framework Integrated Anodes for Aqueous Zinc-Ion Batteries. Adv. Energy Mater. 2020, 10, 1904215. [Google Scholar] [CrossRef]
- He, H.; Zeng, L.; Luo, D.; He, J.; Li, X.; Guo, Z.; Zhang, C. 3D Printing of Electron/Ion-Flux Dual-Gradient Anodes for Dendrite-Free Zinc Batteries. Adv. Mater. 2023, 35, e2211498. [Google Scholar] [CrossRef]
- Tian, H.; Feng, G.; Wang, Q.; Li, Z.; Zhang, W.; Lucero, M.; Feng, Z.; Wang, Z.-L.; Zhang, Y.; Zhen, C.; et al. Three-dimensional Zn-based alloys for dendrite-free aqueous Zn battery in dual-cation electrolytes. Nat. Commun. 2022, 13, 7922. [Google Scholar] [CrossRef]
- Kang, Z.; Wu, C.; Dong, L.; Liu, W.; Mou, J.; Zhang, J.; Chang, Z.; Jiang, B.; Wang, G.; Kang, F.; et al. 3D Porous Copper Skeleton Supported Zinc Anode toward High Capacity and Long Cycle Life Zinc Ion Batteries. ACS Sustain. Chem. Eng. 2019, 7, 3364–3371. [Google Scholar] [CrossRef]
- Li, C.; Shi, X.; Liang, S.; Ma, X.; Han, M.; Wu, X.; Zhou, J. Spatially homogeneous copper foam as surface dendrite-free host for zinc metal anode. Chem. Eng. J. 2020, 379, 122248. [Google Scholar] [CrossRef]
- Zhu, Y.; Cui, Y.; Alshareef, H.N. An Anode-Free Zn–MnO2 Battery. Nano Lett. 2021, 21, 1446–1453. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Zhang, X.; Qin, R.; Liu, X.; Fang, P.; Zheng, D.; Tong, Y.; Lu, X. Dendrite-Free Zinc Deposition Induced by Multifunctional CNT Frameworks for Stable Flexible Zn-Ion Batteries. Adv. Mater. 2019, 31, e1903675. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Ou, Y.; Wang, J.; Xiao, R.; Fu, L.; Yuan, Z.; Zhan, R.; Sun, Y. Chemically resistant Cu–Zn/Zn composite anode for long cycling aqueous batteries. Energy Storage Mater. 2020, 27, 205–211. [Google Scholar] [CrossRef]
- Cui, M.; Xiao, Y.; Kang, L.; Du, W.; Gao, Y.; Sun, X.; Zhou, Y.; Li, X.; Li, H.; Jiang, F.; et al. Quasi-Isolated Au Particles as Heterogeneous Seeds To Guide Uniform Zn Deposition for Aqueous Zinc-Ion Batteries. ACS Appl. Energy Mater. 2019, 2, 6490–6496. [Google Scholar] [CrossRef]
- Wang, D.; Wang, L.; Liang, G.; Li, H.; Liu, Z.; Tang, Z.; Liang, J.; Zhi, C. A Superior δ-MnO2 Cathode and a Self-Healing Zn-δ-MnO2 Battery. ACS Nano 2019, 13, 10643–10652. [Google Scholar] [CrossRef]
- Liu, G.; Huang, H.; Bi, R.; Xiao, X.; Ma, T.; Zhang, L. K+ pre-intercalated manganese dioxide with enhanced Zn2+ diffusion for high rate and durable aqueous zinc-ion batteries. J. Mater. Chem. A 2019, 7, 20806–20812. [Google Scholar] [CrossRef]
- Sada, K.; Senthilkumar, B.; Barpanda, P. Cryptomelane K1.33Mn8O16 as a cathode for rechargeable aqueous zinc-ion batteries. J. Mater. Chem. A 2019, 7, 23981–23988. [Google Scholar] [CrossRef]
- Cui, J.; Wu, X.; Yang, S.; Li, C.; Tang, F.; Chen, J.; Chen, Y.; Xiang, Y.; Wu, X.; He, Z. Cryptomelane-Type KMn8O16 as Potential Cathode Material—For Aqueous Zinc Ion Battery. Front. Chem. 2018, 6, 352. [Google Scholar] [CrossRef]
- Sun, T.; Nian, Q.; Zheng, S.; Shi, J.; Tao, Z. Layered Ca0.28MnO2·0.5H2O as a High Performance Cathode for Aqueous Zinc-Ion Battery. Small 2020, 16, e2000597. [Google Scholar] [CrossRef]
- Xie, Q.; Cheng, G.; Xue, T.; Huang, L.; Chen, S.; Sun, Y.; Sun, M.; Wang, H.; Yu, L. Alkali ions pre-intercalation of δ-MnO2 nanosheets for high-capacity and stable Zn-ion battery. Mater. Today Energy 2022, 24, 100934. [Google Scholar] [CrossRef]
- Chen, Q.; Lou, X.; Yuan, Y.; You, K.; Li, C.; Jiang, C.; Zeng, Y.; Zhou, S.; Zhang, J.; Hou, G.; et al. Surface Adsorption and Proton Chemistry of Ultra-Stabilized Aqueous Zinc–Manganese Dioxide Batteries. Adv. Mater. 2023, 35, e2306294. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Wan, H.; Zhang, B.; Wang, C.; Gan, Y.; Tan, Q.; Wang, N.; Yao, J.; Zheng, Z.; Liang, P.; et al. Co2+/3+/4+-Regulated Electron State of Mn-O for Superb Aqueous Zinc-Manganese Oxide Batteries. Adv. Energy Mater. 2020, 11, 2003203. [Google Scholar] [CrossRef]
- Sun, K.; Shen, Y.; Min, J.; Pang, J.; Zheng, Y.; Gu, T.; Wang, G.; Chen, L. MOF-derived Zn/Co co-doped MnO/C microspheres as cathode and Ti3C2@Zn as anode for aqueous zinc-ion full battery. Chem. Eng. J. 2023, 454, 140394. [Google Scholar] [CrossRef]
- Zhong, Y.; Xu, X.; Veder, J.-P.; Shao, Z. Self-Recovery Chemistry and Cobalt-Catalyzed Electrochemical Deposition of Cathode for Boosting Performance of Aqueous Zinc-Ion Batteries. iScience 2020, 23, 100943. [Google Scholar] [CrossRef]
- Long, J.; Gu, J.; Yang, Z.; Mao, J.; Hao, J.; Chen, Z.; Guo, Z. Highly porous, low band-gap NixMn3−xO4(0.55 ≤x≤ 1.2) spinel nanoparticles within situcoated carbon as advanced cathode materials for zinc-ion batteries. J. Mater. Chem. A 2019, 7, 17854–17866. [Google Scholar] [CrossRef]
- Lian, S.; Sun, C.; Xu, W.; Huo, W.; Luo, Y.; Zhao, K.; Yao, G.; Xu, W.; Zhang, Y.; Li, Z.; et al. Built-in oriented electric field facilitating durable Zn MnO2 battery. Nano Energy 2019, 62, 79–84. [Google Scholar] [CrossRef]
- Li, X.; Ji, C.; Shen, J.; Feng, J.; Mi, H.; Xu, Y.; Guo, F.; Yan, X. Amorphous Heterostructure Derived from Divalent Manganese Borate for Ultrastable and Ultrafast Aqueous Zinc Ion Storage. Adv. Sci. 2023, 10, e2205794. [Google Scholar] [CrossRef]
- Islam, S.; Alfaruqi, M.H.; Putro, D.Y.; Park, S.; Kim, S.; Lee, S.; Ahmed, M.S.; Mathew, V.; Sun, Y.K.; Hwang, J.Y.; et al. In Situ Oriented Mn Deficient ZnMn2O4@C Nanoarchitecture for Durable Rechargeable Aqueous Zinc-Ion Batteries. Adv. Sci. 2021, 8, 2002636. [Google Scholar] [CrossRef]
- Tan, Q.; Li, X.; Zhang, B.; Chen, X.; Tian, Y.; Wan, H.; Zhang, L.; Miao, L.; Wang, C.; Gan, Y.; et al. Valence Engineering via In Situ Carbon Reduction on Octahedron Sites Mn3O4 for Ultra-Long Cycle Life Aqueous Zn-Ion Battery. Adv. Energy Mater. 2020, 10, 2001050. [Google Scholar] [CrossRef]
- Xiong, T.; Yu, Z.G.; Wu, H.; Du, Y.; Xie, Q.; Chen, J.; Zhang, Y.W.; Pennycook, S.J.; Lee, W.S.V.; Xue, J. Defect Engineering of Oxygen-Deficient Manganese Oxide to Achieve High-Performing Aqueous Zinc Ion Battery. Adv. Energy Mater. 2019, 9, 1803815. [Google Scholar] [CrossRef]
- Han, M.; Huang, J.; Liang, S.; Shan, L.; Xie, X.; Yi, Z.; Wang, Y.; Guo, S.; Zhou, J. Oxygen Defects in β-MnO2 Enabling High-Performance Rechargeable Aqueous Zinc/Manganese Dioxide Battery. iScience 2020, 23, 100797. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Deng, S.; Luo, M.; Pan, G.; Zeng, Y.; Lu, X.; Ai, C.; Liu, Q.; Xiong, Q.; Wang, X.; et al. Defect Promoted Capacity and Durability of N-MnO2–x Branch Arrays via Low-Temperature NH3 Treatment for Advanced Aqueous Zinc Ion Batteries. Small 2019, 15, e1905452. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Deng, S.; Pan, G.; Zhang, H.; Liu, B.; Wang, X.L.; Zheng, X.; Liu, Q.; Wang, X.; Xia, X.; et al. Introducing Oxygen Defects into Phosphate Ions Intercalated Manganese Dioxide/Vertical Multilayer Graphene Arrays to Boost Flexible Zinc Ion Storage. Small Methods 2020, 4, 1900828. [Google Scholar] [CrossRef]
- Koketsu, T.; Ma, J.; Morgan, B.J.; Body, M.; Legein, C.; Dachraoui, W.; Giannini, M.; Demortière, A.; Salanne, M.; Dardoize, F.; et al. Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. Nat. Mater. 2017, 16, 1142–1148. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Metz, P.; Hey, T.; Gong, Y.; Liu, D.; Edwards, D.D.; Howe, J.Y.; Huang, R.; Misture, S.T. The critical role of point defects in improving the specific capacitance of δ-MnO2 nanosheets. Nat. Commun. 2017, 8, 14559. [Google Scholar] [CrossRef]
- Zhu, C.; Fang, G.; Liang, S.; Chen, Z.; Wang, Z.; Ma, J.; Wang, H.; Tang, B.; Zheng, X.; Zhou, J. Electrochemically induced cationic defect in MnO intercalation cathode for aqueous zinc-ion battery. Energy Storage Mater. 2020, 24, 394–401. [Google Scholar] [CrossRef]
- Li, W.; Gao, X.; Chen, Z.; Guo, R.; Zou, G.; Hou, H.; Deng, W.; Ji, X.; Zhao, J. Electrochemically activated MnO cathodes for high performance aqueous zinc-ion battery. Chem. Eng. J. 2020, 402, 125509. [Google Scholar] [CrossRef]
- Chen, X.; Li, W.; Xu, Y.; Zeng, Z.; Tian, H.; Velayutham, M.; Shi, W.; Li, W.; Wang, C.; Reed, D.; et al. Charging activation and desulfurization of MnS unlock the active sites and electrochemical reactivity for Zn-ion batteries. Nano Energy 2020, 75, 104869. [Google Scholar] [CrossRef]
- Cai, Y.; Chua, R.; Huang, S.; Ren, H.; Srinivasan, M. Amorphous manganese dioxide with the enhanced pseudocapacitive performance for aqueous rechargeable zinc-ion battery. Chem. Eng. J. 2020, 396, 125221. [Google Scholar] [CrossRef]
- Bi, S.; Wu, Y.; Cao, A.; Tian, J.; Zhang, S.; Niu, Z. Free-standing three-dimensional carbon nanotubes/amorphous MnO2 cathodes for aqueous zinc-ion batteries with superior rate performance. Mater. Today Energy 2020, 18, 100548. [Google Scholar] [CrossRef]
- Dai, L.; Wang, Y.; Sun, L.; Ding, Y.; Yao, Y.; Yao, L.; Drewett, N.E.; Zhang, W.; Tang, J.; Zheng, W. Jahn–Teller Distortion Induced Mn2+-Rich Cathode Enables Optimal Flexible Aqueous High-Voltage Zn-Mn Batteries. Adv. Sci. 2021, 8, 2004995. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Gao, X.; Xu, X.; Jiang, Y.; Gao, X.; Yin, R.; Shi, W.; Liu, W.; Lu, G.; Cao, X. MnO2 nanosheet-assembled hollow polyhedron grown on carbon cloth for flexible aqueous zinc-ion batteries. ChemSusChem 2020, 13, 1537–1545. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Zhao, J.; Yang, L.; Liang, Q.; Madhavi, S.; Yan, Q. Inverse opal manganese dioxide constructed by few-layered ultrathin nanosheets as high-performance cathodes for aqueous zinc-ion batteries. Nano Res. 2019, 12, 1347–1353. [Google Scholar] [CrossRef]
- Feng, D.; Gao, T.-N.; Zhang, L.; Guo, B.; Song, S.; Qiao, Z.-A.; Dai, S. Boosting High-Rate Zinc-Storage Performance by the Rational Design of Mn2O3 Nanoporous Architecture Cathode. Nano-Micro Lett. 2019, 12, 14. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Xu, Y.; Wang, Y.; Wang, X.; Shi, L.; Wu, D.; Zou, P.; Nairan, A.; Lin, Z.; Kang, F.; et al. Holey nickel nanotube reticular network scaffold for high-performance flexible rechargeable Zn/MnO2 batteries. Chem. Eng. J. 2019, 370, 330–336. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Z.; Jiang, L.; Tian, W.; Zhang, C.; Cai, C.; Hu, L. A long-lifespan, flexible zinc-ion secondary battery using a paper-like cathode from single-atomic layer MnO2 nanosheets. Nanoscale Adv. 2019, 1, 4365–4372. [Google Scholar] [CrossRef]
- Guo, C.; Liu, H.; Li, J.; Hou, Z.; Liang, J.; Zhou, J.; Zhu, Y.; Qian, Y. Ultrathin δ-MnO2 nanosheets as cathode for aqueous rechargeable zinc ion battery. Electrochim. Acta 2019, 304, 370–377. [Google Scholar] [CrossRef]
- Liu, M.; Zhao, Q.; Liu, H.; Yang, J.; Chen, X.; Yang, L.; Cui, Y.; Huang, W.; Zhao, W.; Song, A.; et al. Tuning phase evolution of β-MnO2 during microwave hydrothermal synthesis for high-performance aqueous Zn ion battery. Nano Energy 2019, 64, 103942. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Ao, H.; Liu, D.; Shi, L.; Wang, C.; Zhu, Y.; Qian, Y. Appropriately hydrophilic/hydrophobic cathode enables high-performance aqueous zinc-ion batteries. Energy Storage Mater. 2020, 30, 337–345. [Google Scholar] [CrossRef]
- Deng, S.; Tie, Z.; Yue, F.; Cao, H.; Yao, M.; Niu, Z. Rational design of ZnMn2O4 quantum dots in a carbon framework for durable aqueous zinc-ion batteries. Angew. Chem. 2022, 134, e202115877. [Google Scholar] [CrossRef]
- Shi, M.; Xiao, P.; Yang, C.; Sheng, Y.; Wang, B.; Jiang, J.; Zhao, L.; Yan, C. Scalable gas-phase synthesis of 3D microflowers confining MnO2 nanowires for highly-durable aqueous zinc-ion batteries. J. Power Sources 2020, 463, 228209. [Google Scholar] [CrossRef]
- Wang, C.; Wang, M.; He, Z.; Liu, L.; Huang, Y. Rechargeable Aqueous Zinc–Manganese Dioxide/Graphene Batteries with High Rate Capability and Large Capacity. ACS Appl. Energy Mater. 2020, 3, 1742–1748. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, J.; Huang, Q.; Zheng, Z.; Hiralal, P.; Zheng, F.; Ozgit, D.; Su, S.; Chen, S.; Tan, P.-H.; et al. Flexible high energy density zinc-ion batteries enabled by binder-free MnO2/reduced graphene oxide electrode. npj Flex. Electron. 2018, 2, 21. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, S.; Deng, S.; Wu, W.; Zeng, Y.; Xia, X.; Pan, G.; Tong, Y.; Lu, X. 3D CNTs Networks Enable MnO2 Cathodes with High Capacity and Superior Rate Capability for Flexible Rechargeable Zn–MnO2 Batteries. Small Methods 2019, 3, 1900525. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, M.; Tao, Y.; Zhang, K.; Cai, M.; Ding, Y.; Liu, X.; Hayat, T.; Alsaedi, A.; Dai, S. Electrochemically Derived Graphene-Like Carbon Film as a Superb Substrate for High-Performance Aqueous Zn-Ion Batteries. Adv. Funct. Mater. 2019, 30, 1907120. [Google Scholar] [CrossRef]
- Dhiman, A.; Ivey, D.G. Electrodeposited Manganese Oxide on Carbon Paper for Zinc-Ion Battery Cathodes. Batter. Supercaps 2019, 3, 293–305. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, X.; Han, J.; Zhang, X.; Sun, X.; Li, C.; Liu, W.; Li, Q.; Ma, Y. High-Performance Cable-Type Flexible Rechargeable Zn Battery Based on MnO2@CNT Fiber Microelectrode. ACS Appl. Mater. Interfaces 2018, 10, 24573–24582. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, S.; Li, Y.; Liu, B.; Pan, G.; Liu, Q.; Wang, X.; Xia, X.; Tu, J. Anchoring MnO2 on nitrogen-doped porous carbon nanosheets as flexible arrays cathodes for advanced rechargeable Zn–MnO2 batteries. Energy Storage Mater. 2020, 29, 52–59. [Google Scholar] [CrossRef]
- Ma, L.; Li, L.; Liu, Y.; Zhu, J.; Meng, T.; Zhang, H.; Jiang, J.; Li, C.M. Building better rechargeable Zn–Mn batteries with a highly active Mn3O4/carbon nanowire cathode and neutral Na2SO4/MnSO4electrolyte. Chem. Commun. 2018, 54, 10835–10838. [Google Scholar] [CrossRef]
- Gao, Q.-L.; Li, D.-S.; Liu, X.-M.; Wang, Y.-F.; Liu, W.-L.; Ren, M.-M.; Kong, F.-G.; Wang, S.-J.; Zhou, R.-C. Biomass-derived mesoporous carbons materials coated by α-Mn3O4 with ultrafast zinc-ion diffusion ability as cathode for aqueous zinc ion batteries. Electrochim. Acta 2020, 335, 135642. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, G.; Yan, M.; Xiong, T.; He, P.; He, L.; Xu, X.; Mai, L. Graphene Scroll-Coated α-MnO2 Nanowires as High-Performance Cathode Materials for Aqueous Zn-Ion Battery. Small 2018, 14, e1703850. [Google Scholar] [CrossRef]
- Fu, Y.; Wei, Q.; Zhang, G.; Wang, X.; Zhang, J.; Hu, Y.; Wang, D.; Zuin, L.; Zhou, T.; Wu, Y.; et al. High-Performance Reversible Aqueous Zn-Ion Battery Based on Porous MnOx Nanorods Coated by MOF-Derived N-Doped Carbon. Adv. Energy Mater. 2018, 8, 1801445. [Google Scholar] [CrossRef]
- Liu, W.; Liu, P.; Hao, R.; Huang, Y.; Chen, X.; Cai, R.; Yan, J.; Liu, K. One-Dimensional MnO2 Nanowires Space-Confined in Hollow Mesoporous Carbon Nanotubes for Enhanced Zn2+ Storage Performance. ChemElectroChem 2020, 7, 1166–1171. [Google Scholar] [CrossRef]
- Zhu, C.; Fang, G.; Zhou, J.; Guo, J.; Wang, Z.; Wang, C.; Li, J.; Tang, Y.; Liang, S. Binder-free stainless steel@Mn3O4 nanoflower composite: A high-activity aqueous zinc-ion battery cathode with high-capacity and long-cycle-life. J. Mater. Chem. A 2018, 6, 9677–9683. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, X.; Liu, R.; Li, X.; Bai, Y.; Xiao, H.; Wang, Y.; Yuan, G. Tailoring Three-Dimensional Composite Architecture for Advanced Zinc-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 19191–19199. [Google Scholar] [CrossRef]
- Li, Z.; Huang, Y.; Zhang, J.; Jin, S.; Zhang, S.; Zhou, H. One-step synthesis of MnOx/PPy nanocomposite as a high-performance cathode for a rechargeable zinc-ion battery and insight into its energy storage mechanism. Nanoscale 2020, 12, 4150–4158. [Google Scholar] [CrossRef] [PubMed]
- Cai, K.; Luo, S.-H.; Qian, L.; Meng, X.; Yan, S.-X.; Guo, J.; Wang, Q.; Ji, X.-B.; Zhou, X.-Y. Three-dimensional porous composite Mn2O3@PPy as cathode material for zinc ion battery with high energy density. J. Power Sources 2023, 564, 232854. [Google Scholar] [CrossRef]
- Luo, S.; Xie, L.; Han, F.; Wei, W.; Huang, Y.; Zhang, H.; Zhu, M.; Schmidt, O.G.; Wang, L. Nanoscale Parallel Circuitry Based on Interpenetrating Conductive Assembly for Flexible and High-Power Zinc Ion Battery. Adv. Funct. Mater. 2019, 29, 1901336. [Google Scholar] [CrossRef]
- Wei, S.; Wang, Y.; Chen, S.; Song, L. Structure regulation and synchrotron radiation investigation of cathode materials for aqueous Zn-ion batteries. Chem. Sci. 2024, 15, 7848–7869. [Google Scholar] [CrossRef]
- Nishad, H.S.; Gupta, S.P.; Khan, N.S.; Biradar, A.V.; Lee, J.; Mane, S.M.; Walke, P.S. Structural transformation of hydrated WO3 into SnWO4 via Sn incorporation enables a superior pseudocapacitor and aqueous zinc-ion battery. Energy Fuels 2023, 37, 7501–7510. [Google Scholar] [CrossRef]
Coatings on Zn Anode | Current Density | Specific Capacity (mAh g−1) | Cycling Numbers | Ref. |
---|---|---|---|---|
Nanoporous CaCO3 | 1 A g−1 | 177 | 1000 cycles | [38] |
TiO2/PVDF | 2 C | 234 | 300 cycles | [39] |
Kaolin (Al2(Si2O5)(OH)4) | 0.5 A g−1 | 190 | 600 cycles | [40] |
3D nanoporous ZnO | 0.5 A g−1 | 212.9 | 500 cycles | [41] |
Al2O3 layer | 1 A g−1 | 158.4 | 1000 cycles | [42] |
MoS2 | 0.1 A g−1 | 638 | 2000 cycles | [43] |
In2O3/In(OH)3 | 1.5 A g−1 | 190 | 400 cycles | [45] |
ZIF-8 derived carbon | 0.1 A g−1 | 266.5 | 100 cycles | [47] |
Materials | Current Density | Specific Capacity (mAh g−1) | Cycling Numbers | Ref. |
---|---|---|---|---|
3D Zn anode on 3D copper | 0.4 A g−1 | 173 | 300 cycles | [50] |
Zn on Cu foam | 1 A g−1 | 207 | 500 cycles | [51] |
Zn on CNTs/ carbon cloth | 20 mA cm−2 | 167 | 1000 cycles | [53] |
Cu/Zn composite | 1 mA cm−2 | 46 mV overpotential | 1500 cycles | [54] |
Nano Au on Zn anode | 0.5 A g−1 | 67 | 2000 cycles | [55] |
Materials | Current Density | Specific Capacity (mAh g−1) | Cycling Numbers | Ref. |
---|---|---|---|---|
Na+ doped MnO2 | 20 C | 106 | 10,000 cycles | [56] |
K+ doped MnO2 | 5 C | 180 | 400 cycles | [57] |
Ca2+ doped MnO2 | 175 mA g−1 | 298 | 5000 cycles | [60] |
Co2+ doped MnO2 | 300 mA g−1 | 435 | 100 cycles | [65] |
NiMn2O4@C | 0.4 A g−1 | 129 | 850 cycles | [66] |
Ti4+ doped MnO2 | 100 mA g−1 | 225 | 200 cycles | [67] |
Materials | Current Density | Specific Capacity (mAh g−1) | Cycling Numbers | Ref. |
---|---|---|---|---|
Od-Mn3O4@C | 5 A g−1 | 84 | 12,000 cycles | [70] |
Od-MnO2 | 5 A g−1 | 105 | 100 cycles | [71] |
Dd-β-MnO2 | 100 mA g−1 | 276 | 50 cycles | [72] |
N doped MnO2-x | 1 A g−1 | 173 | 1000 cycles | [73] |
P doped MnO2-x | 2 A g−1 | 186 | 1000 cycles | [74] |
MnO with Mn defects | 1 A g−1 | 116 | 1500 cycles | [77] |
Amorphous MnO2-δ | 1 A g−1 | 147 | 1000 cycles | [80] |
Materials | Current Density | Specific Capacity (mAh g−1) | Cycling Numbers | Ref. |
---|---|---|---|---|
Hollow polyhedron MnO2 nanosheets | 1 A g−1 | 264 | 300 cycles | [83] |
Inverse opal MnO2 | 300 mA g−1 | 263 | 100 cycles | [84] |
Nanoporous Mn2O3 | 3.08 A g−1 | 146 | 3000 cycles | [85] |
2D MnO2 nanosheets | 100 mA g−1 | 274 | 600 cycles | [87] |
2–4 nm δ-MnO2 nanosheets | 100 mA g−1 | 133 | 100 cycles | [88] |
Pyrolusite phase MnO2 | 4 C | 134 | 1000 cycles | [89] |
MnO2 with 103° contact angle | 20 C | 108 | 5000 cycles | [90] |
Materials | Current Density | Specific Capacity (mAh g−1) | Cycling Numbers | Ref. |
---|---|---|---|---|
3D MnO2@graphene | 2 A g−1 | 192 | 10,000 cycles | [92] |
MnO2/rGO | 6 A g−1 | 172 | 500 cycles | [94] |
MnO2/CNTs/CC | 10.8 A g−1 | 177 | 2000 cycles | [95] |
MnO2/carbon film | 1 A g−1 | 188 | 1000 cycles | [96] |
MnO2/carbon paper | 1 A g−1 | 163 | 200 cycles | [97] |
Mn3O4/carbon nanowire | 10 A g−1 | 135 | 2000 cycles | [100] |
Mn3O4/litchi shell-derived carbon | 600 mA g−1 | 275 | 1000 cycles | [101] |
MnO2/graphene scroll | 3 A g−1 | 145 | 3000 cycles | [102] |
Mn3O4/stainless steel mesh | 500 mA g−1 | 296 | 500 cycles | [105] |
Mn2O3/polypyrrole | 400 mA g−1 | 178 | 2000 cycles | [108] |
MnO2/MXene | 5 A g−1 | 130 | 400 cycles | [109] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Zhou, Y.; Liu, Y.; Li, B.; Li, Z.; Zhang, Y.; Wang, D.; Qiu, R.; Shuai, Q.; Xue, Y.; et al. Advancing Zinc–Manganese Oxide Batteries: Mechanistic Insights, Anode Engineering, and Cathode Regulation. Nanomaterials 2025, 15, 1439. https://doi.org/10.3390/nano15181439
Zhao C, Zhou Y, Liu Y, Li B, Li Z, Zhang Y, Wang D, Qiu R, Shuai Q, Xue Y, et al. Advancing Zinc–Manganese Oxide Batteries: Mechanistic Insights, Anode Engineering, and Cathode Regulation. Nanomaterials. 2025; 15(18):1439. https://doi.org/10.3390/nano15181439
Chicago/Turabian StyleZhao, Chuang, Yiheng Zhou, Yudong Liu, Bo Li, Zhaoqiang Li, Yu Zhang, Deqiang Wang, Ruilin Qiu, Qilin Shuai, Yuan Xue, and et al. 2025. "Advancing Zinc–Manganese Oxide Batteries: Mechanistic Insights, Anode Engineering, and Cathode Regulation" Nanomaterials 15, no. 18: 1439. https://doi.org/10.3390/nano15181439
APA StyleZhao, C., Zhou, Y., Liu, Y., Li, B., Li, Z., Zhang, Y., Wang, D., Qiu, R., Shuai, Q., Xue, Y., Wang, H., Shen, X., Wen, W., Wu, D., & Hua, Q. (2025). Advancing Zinc–Manganese Oxide Batteries: Mechanistic Insights, Anode Engineering, and Cathode Regulation. Nanomaterials, 15(18), 1439. https://doi.org/10.3390/nano15181439