Multifunctional Colloidal Quantum Dots-Based Light-Emitting Devices for On-Chip Integration
Abstract
1. Introduction
2. Properties of Colloidal Quantum Dots
2.1. Quantum Confinement
2.2. Carrier Dynamics
2.3. Core–Shell Heterostructures
3. Synthesis of Colloidal Quantum Dots
3.1. Hot Injection
3.2. Ligand-Assisted Reprecipitation
3.3. Microfluidic Flow Synthesis
4. Multifunctional Light-Emitting CQD Devices
4.1. Light-Emitting Field-Effect Transistors
4.2. Light-Emitting Solar Cells
4.3. Light-Emitting Memristors
4.4. On-Chip Integration
4.4.1. Toward Electrically Pumped Lasers
4.4.2. Photodetector
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ASE | Amplified spontaneous emission |
CQD | Colloidal quantum dot |
DFB | Distributed feedback |
EL | Electroluminescence/Electroluminescent |
EQE | External quantum efficiency |
ETL | Electron transport layer |
HTL | Hole transport layer |
LED | Light-emitting diode |
LEFET | Light-emitting field-effect transistor |
LEM | Light-emitting memristor |
LESC | Light-emitting solar cell |
PLQY | Photoluminescence quantum yield |
PV | Photovoltaic |
QD | Quantum dot |
TRPL | Time-resolved photoluminescence |
References
- Shirasaki, Y.; Supran, G.J.; Bawendi, M.G.; Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 2012, 7, 13–23. [Google Scholar] [CrossRef]
- Kagan, C.R.; Lifshitz, E.; Sargent, E.H.; Talapin, D.V. Building devices from colloidal quantum dots. Science 2016, 353, aac5523. [Google Scholar] [CrossRef] [PubMed]
- Litvin, A.P.; Martynenko, I.V.; Purcell-Milton, F.; Baranov, A.V.; Fedorov, A.V.; Gun’ko, Y.K. Colloidal quantum dots for optoelectronics. J. Mater. Chem. A 2017, 5, 13252–13275. [Google Scholar] [CrossRef]
- Garcia de Arquer, F.P.; Talapin, D.V.; Klimov, V.I.; Arakawa, Y.; Bayer, M.; Sargent, E.H. Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, eaaz8541. [Google Scholar] [CrossRef]
- Kim, T.; Shin, D.; Kim, M.; Kim, H.; Cho, E.; Choi, M.; Kim, J.; Jang, E.; Jeong, S. Development of Group III–V Colloidal Quantum Dots for Optoelectronic Applications. ACS Energy Lett. 2022, 8, 447–456. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, S.; Zhang, Y.; Al-Hartomy, O.A.; Wageh, S.; Al-Sehemi, A.G.; Hao, Y.; Gao, L.; Wang, H.; Zhang, H. Colloidal Quantum Dots: Synthesis, Composition, Structure, and Emerging Optoelectronic Applications. Laser Photonics Rev. 2022, 17, 2200551. [Google Scholar] [CrossRef]
- Ren, Y.; Yang, X.; Zhou, L.; Mao, J.Y.; Han, S.T.; Zhou, Y. Recent Advances in Ambipolar Transistors for Functional Applications. Adv. Funct. Mater. 2019, 29, 1902105. [Google Scholar] [CrossRef]
- Zaumseil, J. Recent Developments and Novel Applications of Thin Film, Light-Emitting Transistors. Adv. Funct. Mater. 2019, 30, 1905269. [Google Scholar] [CrossRef]
- Hu, X.; Abraham, A.S.; Incorvia, J.A.C.; Friedman, J.S. Hybrid Pass Transistor Logic with Ambipolar Transistors. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 301–310. [Google Scholar] [CrossRef]
- Liang, C.; Gu, H.; Xia, J.; Mei, S.; Pang, P.; Zhang, N.; Guo, J.; Guo, R.; Shen, Y.; Yang, S.; et al. Recent Progress in Perovskite-Based Reversible Photon–Electricity Conversion Devices. Adv. Funct. Mater. 2021, 32, 2108926. [Google Scholar] [CrossRef]
- Luo, M.; Tarasov, A.; Zhang, H.; Chu, J. Hybrid perovskites unlocking the development of light-emitting solar cells. Nat. Rev. Mater. 2024, 9, 295–297. [Google Scholar] [CrossRef]
- Kim, H.-B.; Yoon, Y.J.; Jeong, J.; Heo, J.; Jang, H.; Seo, J.H.; Walker, B.; Kim, J.Y. Peroptronic devices: Perovskite-based light-emitting solar cells. Energy Environ. Sci. 2017, 10, 1950–1957. [Google Scholar] [CrossRef]
- Kim, G.; Park, S.; Kim, S. Quantum Dots for Resistive Switching Memory and Artificial Synapse. Nanomaterials 2024, 14, 1575. [Google Scholar] [CrossRef]
- Wang, J.; Ilyas, N.; Ren, Y.; Ji, Y.; Li, S.; Li, C.; Liu, F.; Gu, D.; Ang, K.W. Technology and Integration Roadmap for Optoelectronic Memristor. Adv. Mater. 2024, 36, 2307393. [Google Scholar] [CrossRef]
- Xiao, Y.; Jiang, B.; Zhang, Z.; Ke, S.; Jin, Y.; Wen, X.; Ye, C. A review of memristor: Material and structure design, device performance, applications and prospects. Sci. Technol. Adv. Mater. 2023, 24, 2162323. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sciarrino, F.; Laing, A.; Thompson, M.G. Integrated photonic quantum technologies. Nat. Photonics 2019, 14, 273–284. [Google Scholar] [CrossRef]
- Nelson, D.; Byun, S.; Bullock, J.; Crozier, K.B.; Kim, S. Colloidal quantum dots as single photon sources. J. Mater. Chem. C 2024, 12, 5684–5695. [Google Scholar] [CrossRef]
- Zheng, C.-L.; Ni, P.-N.; Xie, Y.-Y.; Genevet, P. On-chip light control of semiconductor optoelectronic devices using integrated metasurfaces. Opto-Electron. Adv. 2025, 8, 240159. [Google Scholar] [CrossRef]
- Zhou, L.; Tan, Y.; Tian, D.; Ye, T.; Zheng, F.; Qiu, F.; Zhang, H.; Zhang, N.; Li, M.; Sun, X.W.; et al. Integrated colloidal quantum dot devices for on-chip light sources. Chip 2025, 100152, in press. [Google Scholar] [CrossRef]
- Xiao, Z.; Liu, W.; Xu, S.; Zhou, J.; Ren, Z.; Lee, C. Recent Progress in Silicon-Based Photonic Integrated Circuits and Emerging Applications. Adv. Opt. Mater. 2023, 11, 2301028. [Google Scholar] [CrossRef]
- Zhou, Z.; Ou, X.; Fang, Y.; Alkhazraji, E.; Xu, R.; Wan, Y.; Bowers, J.E. Prospects and applications of on-chip lasers. eLight 2023, 3, 1. [Google Scholar] [CrossRef]
- Ren, A.; Yuan, L.; Xu, H.; Wu, J.; Wang, Z. Recent progress of III–V quantum dot infrared photodetectors on silicon. J. Mater. Chem. C 2019, 7, 14441–14453. [Google Scholar] [CrossRef]
- Chen, J.; Rong, K. Nanophotonic devices and circuits based on colloidal quantum dots. Mater. Chem. Front. 2021, 5, 4502–4537. [Google Scholar] [CrossRef]
- Barak, Y.; Meir, I.; Shapiro, A.; Jang, Y.; Lifshitz, E. Fundamental Properties in Colloidal Quantum Dots. Adv. Mater. 2018, 30, 1801442. [Google Scholar] [CrossRef]
- Liu, M.; Yazdani, N.; Yarema, M.; Jansen, M.; Wood, V.; Sargent, E.H. Colloidal quantum dot electronics. Nat. Electron. 2021, 4, 548–558. [Google Scholar] [CrossRef]
- Kim, J.; Roh, J.; Park, M.; Lee, C. Recent Advances and Challenges of Colloidal Quantum Dot Light-Emitting Diodes for Display Applications. Adv. Mater. 2024, 36, 2212220. [Google Scholar] [CrossRef]
- Jin, L.; Selopal, G.S.; Sun, X.W.; Rosei, F. Core-Shell Colloidal Quantum Dots for Energy Conversion. Adv. Energy Mater. 2024, 15, 2403574. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, G.; Liu, F.; Ding, C.; Zou, Z.; Shen, Q. Photoexcited carrier dynamics in colloidal quantum dot solar cells: Insights into individual quantum dots, quantum dot solid films and devices. Chem. Soc. Rev. 2020, 49, 49–84. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wei, J.; Wang, F.; Tang, Y.; Li, A.; Guo, Y.; Huang, P.; Brovelli, S.; Shen, H.; Li, H. Carrier Dynamics in Alloyed Chalcogenide Quantum Dots and Their Light-Emitting Devices. Adv. Energy Mater. 2021, 11, 2101693. [Google Scholar] [CrossRef]
- Moon, H.; Lee, C.; Lee, W.; Kim, J.; Chae, H. Stability of Quantum Dots, Quantum Dot Films, and Quantum Dot Light-Emitting Diodes for Display Applications. Adv. Mater. 2019, 31, 1804294. [Google Scholar] [CrossRef] [PubMed]
- Channa, A.I.; Bai, S.; Wang, Z.M.; Tong, X. Advancements in Eco-Friendly Colloidal Quantum Dots and their Application in Light Emitting Diodes: Achieving Bright and Color-Pure Emission for Displays. Laser Photonics Rev. 2024, 19, 2400678. [Google Scholar] [CrossRef]
- Fan, J.; Han, C.; Yang, G.; Song, B.; Xu, R.; Xiang, C.; Zhang, T.; Qian, L. Recent Progress of Quantum Dots Light-Emitting Diodes: Materials, Device Structures, and Display Applications. Adv. Mater. 2024, 36, 2312948. [Google Scholar] [CrossRef]
- Zhao, J.; Jiang, R.; Huang, M.; Qiao, Y.; Wang, S.; Zhang, W.; Tian, P.; Wang, J.; Guo, R.; Mei, S. Advancing Ecofriendly Indium Phosphide Quantum Dots: Comprehensive Strategies toward Color-Pure Luminescence for Wide Color Gamut Displays. ACS Energy Lett. 2025, 10, 2096–2132. [Google Scholar] [CrossRef]
- Cui, Z.; Yang, D.; Qin, S.; Wen, Z.; He, H.; Mei, S.; Zhang, W.; Xing, G.; Liang, C.; Guo, R. Advances, Challenges, and Perspectives for Heavy-Metal-Free Blue-Emitting Indium Phosphide Quantum Dot Light-Emitting Diodes. Adv. Opt. Mater. 2022, 11, 2202036. [Google Scholar] [CrossRef]
- He, H.; Mei, S.; Wen, Z.; Yang, D.; Yang, B.; Zhang, W.; Xie, F.; Xing, G.; Guo, R. Recent Advances in Blue Perovskite Quantum Dots for Light-Emitting Diodes. Small 2022, 18, 2103527. [Google Scholar] [CrossRef] [PubMed]
- Melnychuk, C.; Guyot-Sionnest, P. Multicarrier Dynamics in Quantum Dots. Chem. Rev. 2021, 121, 2325–2372. [Google Scholar] [CrossRef]
- Yue, L.; Li, J.; Qi, Y.; Chen, J.; Wang, X.; Cao, J. Auger Recombination and Carrier-Lattice Thermalization in Semiconductor Quantum Dots under Intense Excitation. Nano Lett. 2023, 23, 2578–2585. [Google Scholar] [CrossRef]
- Lin, X.; Yang, Y.; Li, X.; Lv, Y.; Wang, Z.; Du, J.; Luo, X.; Zhou, D.; Xiao, C.; Wu, K. Blue lasers using low-toxicity colloidal quantum dots. Nat. Nanotechnol. 2025, 20, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Whitworth, G.L.; Roda, C.; Dalmases, M.; Taghipour, N.; Dosil, M.; Nikolaidou, K.; Dehghanpour, H.; Konstantatos, G. Extended Short-Wave Infrared Colloidal Quantum Dot Lasers with Nanosecond Excitation. Adv. Mater. 2025, 37, 2410207. [Google Scholar] [CrossRef]
- Park, Y.S.; Bae, W.K.; Baker, T.; Lim, J.; Klimov, V.I. Effect of Auger Recombination on Lasing in Heterostructured Quantum Dots with Engineered Core/Shell Interfaces. Nano Lett. 2015, 15, 7319–7328. [Google Scholar] [CrossRef]
- Jain, A.; Voznyy, O.; Hoogland, S.; Korkusinski, M.; Hawrylak, P.; Sargent, E.H. Atomistic Design of CdSe/CdS Core-Shell Quantum Dots with Suppressed Auger Recombination. Nano Lett. 2016, 16, 6491–6496. [Google Scholar] [CrossRef]
- Taghipour, N.; Whitworth, G.L.; Othonos, A.; Dalmases, M.; Pradhan, S.; Wang, Y.; Kumar, G.; Konstantatos, G. Low-Threshold, Highly Stable Colloidal Quantum Dot Short-Wave Infrared Laser enabled by Suppression of Trap-Assisted Auger Recombination. Adv. Mater. 2022, 34, 2107532. [Google Scholar] [CrossRef]
- Guo, J.; Xie, M.; Li, H.; Zhang, L.; Zhang, L.; Zhang, X.; Zheng, W.; Tian, J. High Efficiency and Low Roll-Off Pure-Red Perovskite LED Enabled by Simultaneously Inhibiting Auger and Trap Recombination of Quantum Dots. Nano Lett. 2024, 24, 6410–6416. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, H.; Zhao, C.; Yuan, J. Surface chemistry-engineered perovskite quantum dot photovoltaics. Chem. Soc. Rev. 2025, 54, 3017–3060. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Cocchi, C.; Steenbock, T. Surface Defects and Symmetry Breaking Impact on the Photoluminescence of InP Quantum Dots. Nano Lett. 2025, 25, 10588–10593. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.M.; Knipe, J.M.; Orive, G.; Peppas, N.A. Quantum dots in biomedical applications. Acta Biomater. 2019, 94, 44–63. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Hao, M.; Ding, S.; Chen, P.; Wang, L. Surface Chemistry Engineering of Perovskite Quantum Dots: Strategies, Applications, and Perspectives. Adv. Mater. 2022, 34, 2105958. [Google Scholar] [CrossRef] [PubMed]
- Shan, Q.; Dong, Y.; Xiang, H.; Yan, D.; Hu, T.; Yuan, B.; Zhu, H.; Wang, Y.; Zeng, H. Perovskite Quantum Dots for the Next-Generation Displays: Progress and Prospect. Adv. Funct. Mater. 2024, 34, 2401284. [Google Scholar] [CrossRef]
- Carey, G.H.; Abdelhady, A.L.; Ning, Z.; Thon, S.M.; Bakr, O.M.; Sargent, E.H. Colloidal Quantum Dot Solar Cells. Chem. Rev. 2015, 115, 12732–12763. [Google Scholar] [CrossRef]
- Shin, D.; Park, Y.; Jeong, H.; Tran, H.C.V.; Jang, E.; Jeong, S. Exploring the Potential of Colloidal Quantum Dots for Near-Infrared to Short-Wavelength Infrared Applications. Adv. Energy Mater. 2024, 15, 2304550. [Google Scholar] [CrossRef]
- Hu, C.; Channa, A.I.; Xia, L.; Li, X.; Li, Z.; Wang, Z.M.; Tong, X. Colloidal InAs Quantum Dots: Synthesis, Properties, and Optoelectronic Devices. Adv. Funct. Mater. 2025, 35, 2500280. [Google Scholar] [CrossRef]
- Huang, P.; Liu, X.; Jin, G.; Liu, F.; Shen, H.; Li, H. Deep-Red InP Core-Multishell Quantum Dots for Highly Bright and Efficient Light-Emitting Diodes. Adv. Opt. Mater. 2023, 11, 2300612. [Google Scholar] [CrossRef]
- Wang, K.; Tao, Y.; Tang, Z.; Benetti, D.; Vidal, F.; Zhao, H.; Rosei, F.; Sun, X. Heterostructured core/gradient multi-shell quantum dots for high-performance and durable photoelectrochemical hydrogen generation. Nano Energy 2022, 100, 107524. [Google Scholar] [CrossRef]
- Murray, C.B.; Norris, D.J.; Bawendi, M.G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Y.; Deng, H.; Farooq, U.; Yang, X.; Khan, J.; Tang, J.; Song, H. High Quantum Yield Blue Emission from Lead-Free Inorganic Antimony Halide Perovskite Colloidal Quantum Dots. ACS Nano 2017, 11, 9294–9302. [Google Scholar] [CrossRef] [PubMed]
- Lignos, I.; Stavrakis, S.; Nedelcu, G.; Protesescu, L.; deMello, A.J.; Kovalenko, M.V. Synthesis of Cesium Lead Halide Perovskite Nanocrystals in a Droplet-Based Microfluidic Platform: Fast Parametric Space Mapping. Nano Lett. 2016, 16, 1869–1877. [Google Scholar] [CrossRef]
- Hong, D.; Zhang, Y.; Pan, S.; Liu, H.; Mao, W.; Zhang, W.; Ye, Y.; Wei, Z.; Lu, X.; Wang, X.; et al. Unveiling non-radiative center control in CsPbBr3 nanocrystals: A comprehensive comparative analysis of hot injection and ligand-assisted reprecipitation approaches. Nano Res. 2023, 17, 4525–4534. [Google Scholar] [CrossRef]
- Nugraha, M.I.; Indriyati, I.; Primadona, I.; Gedda, M.; Timuda, G.E.; Iskandar, F.; Anthopoulos, T.D. Recent Progress in Colloidal Quantum Dot Thermoelectrics. Adv. Mater. 2023, 35, 2210683. [Google Scholar] [CrossRef]
- Qiu, H.; Wu, J.; Li, M.; Hu, Z.; Yang, S.; Li, Y.; Gu, Y.; Cheng, H.; Zheng, Y. Oxygen-doped colloidal GaN quantum dots with blue emission. Mater. Today Chem. 2024, 35, 101888. [Google Scholar] [CrossRef]
- Liu, L.; Li, H.; Liu, Z.; Xie, Y.-H. Structure and band gap tunable CuInS2 nanocrystal synthesized by hot-injection method with altering the dose of oleylamine. Mater. Des. 2018, 149, 145–152. [Google Scholar] [CrossRef]
- Vighnesh, K.; Wang, S.; Liu, H.; Rogach, A.L. Hot-Injection Synthesis Protocol for Green-Emitting Cesium Lead Bromide Perovskite Nanocrystals. ACS Nano 2022, 16, 19618–19625. [Google Scholar] [CrossRef]
- Mei, S.; Yin, J.; Xing, Y.; He, H.; Gu, H.; Xia, J.; Zhang, W.; Liang, C.; Xing, G.; Guo, R. Designing high-performance pure-red metal halide perovskite materials and light-emitting diodes for Rec. 2020 display. Nano Energy 2024, 122, 109339. [Google Scholar] [CrossRef]
- Sanchez, S.L.; Tang, Y.; Hu, B.; Yang, J.; Ahmadi, M. Understanding the ligand-assisted reprecipitation of CsPbBr3 nanocrystals via high-throughput robotic synthesis approach. Matter 2023, 6, 2900–2918. [Google Scholar] [CrossRef]
- Oh, K.; Jung, K.; Park, D.; Lee, M.-J. Highly luminescent CH3NH3PbBr3 quantum dots with 96.5% photoluminescence quantum yield achieved by synergistic combination of single-crystal precursor and capping ligand optimization. J. Alloys Compd. 2021, 859, 157842. [Google Scholar]
- Thokala, S.; Kumar Gupta, R.; Garg, A.; Prakash Singh, S. The effect of alkylamines on the morphology and optical properties of organic perovskites. Sol. Energy 2021, 226, 483–488. [Google Scholar] [CrossRef]
- Baek, J.; Shen, Y.; Lignos, I.; Bawendi, M.G.; Jensen, K.F. Multistage Microfluidic Platform for the Continuous Synthesis of III-V Core/Shell Quantum Dots. Angew. Chem. Int. Ed. 2018, 57, 10915–10918. [Google Scholar] [CrossRef] [PubMed]
- Kubendhiran, S.; Bao, Z.; Dave, K.; Liu, R.-S. Microfluidic Synthesis of Semiconducting Colloidal Quantum Dots and Their Applications. ACS Appl. Nano Mater. 2019, 2, 1773–1790. [Google Scholar] [CrossRef]
- Li, G.-X.; Li, Q.; Cheng, R.; Chen, S. Synthesis of quantum dots based on microfluidic technology. Curr. Opin. Chem. Eng. 2020, 29, 34–41. [Google Scholar] [CrossRef]
- Volk, A.A.; Epps, R.W.; Abolhasani, M. Accelerated Development of Colloidal Nanomaterials Enabled by Modular Microfluidic Reactors: Toward Autonomous Robotic Experimentation. Adv. Mater. 2021, 33, 2004495. [Google Scholar] [CrossRef]
- Chen, G.; Zhu, X.; Xing, C.; Wang, Y.; Xu, X.; Bao, J.; Huang, J.; Zhao, Y.; Wang, X.; Zhou, X.; et al. Machine Learning-Assisted Microfluidic Synthesis of Perovskite Quantum Dots. Adv. Photonics Res. 2022, 4, 2200230. [Google Scholar] [CrossRef]
- Chen, X.; Lv, H. Intelligent control of nanoparticle synthesis on microfluidic chips with machine learning. NPG Asia Mater. 2022, 14, 69. [Google Scholar] [CrossRef]
- Barnes, C.; Sonwane, A.R.; Sonnenschein, E.C.; Del Giudice, F. Machine learning enhanced droplet microfluidics. Phys. Fluids 2023, 35, 092003. [Google Scholar] [CrossRef]
- Wu, X.; Chen, A.; Yu, X.; Tian, Z.; Li, H.; Jiang, Y.; Xu, J. Microfluidic Synthesis of Multifunctional Micro-/Nanomaterials from Process Intensification: Structural Engineering to High Electrochemical Energy Storage. ACS Nano 2024, 18, 20957–20979. [Google Scholar] [CrossRef] [PubMed]
- Ning, Y.; Guan, S.; Cheng, C.; Zhang, B.; Qin, B.; Huang, B. Microfluidic synthesis of monodispersed sharp emitting perovskite CsPbBr3 quantum dots via multidimensional parameterization. J. Mater. Chem. C 2025, 13, 758–765. [Google Scholar] [CrossRef]
- Khan, S.M.; Gumus, A.; Nassar, J.M.; Hussain, M.M. CMOS Enabled Microfluidic Systems for Healthcare Based Applications. Adv. Mater. 2018, 30, e1705759. [Google Scholar] [CrossRef] [PubMed]
- Weng, W.Y.; Di, A.; Zhang, X.; Tsai, Y.C.; Hsiao, Y.T.; Chien, J.C. Subtractive Microfluidics in CMOS. In Proceedings of the 2024 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2024. [Google Scholar]
- Kahmann, S.; Shulga, A.; Loi, M.A. Quantum Dot Light-Emitting Transistors—Powerful Research Tools and Their Future Applications. Adv. Funct. Mater. 2019, 30, 1904174. [Google Scholar] [CrossRef]
- Ahmad, W.; Gong, Y.; Abbas, G.; Khan, K.; Khan, M.; Ali, G.; Shuja, A.; Tareen, A.K.; Khan, Q.; Li, D. Evolution of low-dimensional material-based field-effect transistors. Nanoscale 2021, 13, 5162–5186. [Google Scholar] [CrossRef] [PubMed]
- Zaumseil, J.; Friend, R.H.; Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. Nat. Mater. 2005, 5, 69–74. [Google Scholar] [CrossRef]
- Song, C.; Yang, J.; Chen, Y.; Yu, Y.; Yu, S. Precise Control of Charge States in Single Quantum Dots Using Bipolar Junction Transistors. ACS Photonics 2025, 12, 2695–2700. [Google Scholar] [CrossRef]
- Chin, X.Y.; Cortecchia, D.; Yin, J.; Bruno, A.; Soci, C. Lead iodide perovskite light-emitting field-effect transistor. Nat. Commun. 2015, 6, 7383. [Google Scholar] [CrossRef]
- Nugraha, M.I.; Hausermann, R.; Bisri, S.Z.; Matsui, H.; Sytnyk, M.; Heiss, W.; Takeya, J.; Loi, M.A. High mobility and low density of trap states in dual-solid-gated PbS nanocrystal field-effect transistors. Adv. Mater. 2015, 27, 2107–2112. [Google Scholar] [CrossRef] [PubMed]
- Shulga, A.G.; Kahmann, S.; Dirin, D.N.; Graf, A.; Zaumseil, J.; Kovalenko, M.V.; Loi, M.A. Electroluminescence Generation in PbS Quantum Dot Light-Emitting Field-Effect Transistors with Solid-State Gating. ACS Nano 2018, 12, 12805–12813. [Google Scholar] [PubMed]
- Hu, H.; Wen, G.; Wen, J.; Huang, L.B.; Zhao, M.; Wu, H.; Sun, Z. Ambipolar Charge Storage in Type-I Core/Shell Semiconductor Quantum Dots toward Optoelectronic Transistor-Based Memories. Adv. Sci. 2021, 8, e2100513. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Leng, Y.B.; Sun, T.; Zhu, S.; Cai, H.; Han, P.; Zhang, Y.Q.; Qin, J.; Xu, R.; Yi, Z.; et al. Drosophila Visual System Inspired Ambipolar OFET for Motion Detection. Adv. Funct. Mater. 2024, 35, 2415457. [Google Scholar] [CrossRef]
- Park, Y.J.; Kim, M.; Song, A.; Kim, J.Y.; Chung, K.B.; Walker, B.; Seo, J.H.; Wang, D.H. Light-Emitting Transistors with High Color Purity Using Perovskite Quantum Dot Emitters. ACS Appl. Mater. Interfaces 2020, 12, 35175–35180. [Google Scholar] [CrossRef]
- Lee, S.; Lee, H.J.; Ji, Y.; Lee, K.H.; Hong, K. Electrochemiluminescent Transistors: A New Strategy toward Light-Emitting Switching Devices. Adv. Mater. 2021, 33, e2005456. [Google Scholar] [CrossRef]
- Bederak, D.; Shulga, A.; Kahmann, S.; Talsma, W.; Pelanskis, J.; Dirin, D.N.; Kovalenko, M.V.; Loi, M.A. Heterostructure from PbS Quantum Dot and Carbon Nanotube Inks for High-Efficiency Near-Infrared Light-Emitting Field-Effect Transistors. Adv. Electron. Mater. 2022, 8, 2101126. [Google Scholar]
- Zhang, X.; Guo, M.; Li, J.; Dai, T.; Yang, Z.; Lou, Z.; Hou, Y.; Teng, F.; Hu, Y. Low-voltage perovskite light-emitting transistors: A novel approach utilizing solution-processed high-k inorganic dielectrics for full-color emission. J. Mater. Chem. C 2025, 13, 8694–8701. [Google Scholar] [CrossRef]
- Chen, H.; Huang, W.; Marks, T.J.; Facchetti, A.; Meng, H. Recent Advances in Multi-Layer Light-Emitting Heterostructure Transistors. Small 2021, 17, e2007661. [Google Scholar]
- Chen, Y.; Hua, J.; Li, Y.; Zhang, Q.; Shao, H.; Li, W.; Ling, H.; Xu, X.; Huang, W.; Yi, M. Selective Release of Excitatory-Inhibitory Neurotransmitters Emulated by Unipolar Synaptic Transistors via Gate Voltage Amplitude Modulation. Adv. Mater. Technol. 2022, 8, 2201367. [Google Scholar] [CrossRef]
- Schornbaum, J.; Zakharko, Y.; Held, M.; Thiemann, S.; Gannott, F.; Zaumseil, J. Light-emitting quantum dot transistors: Emission at high charge carrier densities. Nano Lett. 2015, 15, 1822–1828. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Wu, J.; Li, Y.; Cao, F.; Wang, F.; Wu, Q.; Shen, P.; Zhang, C.; Luo, Y.; Wang, L.; et al. Light-emitting field-effect transistors with EQE over 20% enabled by a dielectric-quantum dots-dielectric sandwich structure. Sci. Bull. 2022, 67, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Chen, Q.; Zeng, H.; Shan, L.; An, C.; Zhuang, B.; Chen, H.; Guo, T.; Hu, W. Quantum Dot Light-Emitting Synaptic Transistor for Parallel Data Transmission of Diverse Artificial Neural Network. Adv. Mater. Technol. 2023, 8, 2300225. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, J.; Zhang, L.; Feng, Y.; Wang, D.; Ding, Z.; Geng, C.; Qaid, S.M.H.; Jiang, Y.; Yuan, M. Efficient Charge Injection for Perovskite Light-Emitting Transistor. Adv. Opt. Mater. 2024, 12, 2400447. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, M.; Li, J.; Song, B.; Meng, F.; Wang, Z.; Lou, Z.; Hou, Y.; Hu, Y.; Teng, F. Enhanced light-emitting transistors utilizing multi-dimensional CsPbBr3 perovskite films and PVP-modified ZTO semiconductor layers. J. Mater. Chem. C 2024, 12, 14887–14892. [Google Scholar] [CrossRef]
- Miao, Z.; Gao, C.; Shen, M.; Wang, P.; Gao, H.; Wei, J.; Deng, J.; Liu, D.; Qin, Z.; Wang, P.; et al. Organic light-emitting transistors with high efficiency and narrow emission originating from intrinsic multiple-order microcavities. Nat. Mater. 2025, 24, 917–924. [Google Scholar] [CrossRef]
- Klein, M.; Li, J.; Bruno, A.; Soci, C. Co-Evaporated Perovskite Light-Emitting Transistor Operating at Room Temperature. Adv. Electron. Mater. 2021, 7, 2100403. [Google Scholar] [CrossRef]
- Klein, M.; Wang, Y.; Tian, J.; Ha, S.T.; Paniagua-Dominguez, R.; Kuznetsov, A.I.; Adamo, G.; Soci, C. Polarization-Tunable Perovskite Light-Emitting Metatransistor. Adv. Mater. 2023, 35, e2207317. [Google Scholar] [CrossRef]
- He, P.; Lan, L.; Deng, C.; Wang, J.; Peng, J.; Cao, Y. Highly efficient and stable hybrid quantum-dot light-emitting field-effect transistors. Mater. Horiz. 2020, 7, 2439–2449. [Google Scholar] [CrossRef]
- Wheeler, L.M.; Moore, D.T.; Ihly, R.; Stanton, N.J.; Miller, E.M.; Tenent, R.C.; Blackburn, J.L.; Neale, N.R. Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide. Nat. Commun. 2017, 8, 1722. [Google Scholar] [CrossRef]
- Bati, A.S.R.; Zhong, Y.L.; Burn, P.L.; Nazeeruddin, M.K.; Shaw, P.E.; Batmunkh, M. Next-generation applications for integrated perovskite solar cells. Commun. Mater. 2023, 4, 2. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L.; Zhou, Y.; Cui, Y.; Chen, Z.; Liu, Y.; Li, J.; Long, Y.; Gao, Y. Thermochromic Energy Efficient Windows: Fundamentals, Recent Advances, and Perspectives. Chem. Rev. 2023, 123, 7025–7080. [Google Scholar] [CrossRef]
- Liu, S.; Du, Y.; Zhang, R.; He, H.; Pan, A.; Ho, T.C.; Zhu, Y.; Li, Y.; Yip, H.L.; Jen, A.K.Y.; et al. Perovskite Smart Windows: The Light Manipulator in Energy-Efficient Buildings. Adv. Mater. 2024, 36, e2306423. [Google Scholar] [CrossRef]
- Deng, C.; Yang, Y.; Wu, J.; Tan, L.; Liu, F.; Du, Y.; Chen, Q.; Chen, X.; Sun, L.; Sun, W.; et al. Defect Passivation via Dual-Interface Synergistic Modulation in Perovskite Solar Cells. ACS Energy Lett. 2025, 10, 3132–3142. [Google Scholar] [CrossRef]
- Li, X.; Ahangar, H.; Yang, S.; Huang, J.; Sheibani, E.; Kuklin, A.V.; Luo, X.; Ghahfarokhi, F.A.; Wei, C.; Agren, H.; et al. Defect Passivating Hole Transporting Material for Large-Area and Stable Perovskite Quantum-Dot Light-Emitting Diodes. ACS Nano 2025, 19, 6784–6794. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lu, C.; Liu, M.; Zhu, C.; Zhang, J.; Qin, S.; Liu, Z.; Liu, M.; Zhao, Y.; Wang, F.; et al. Solvent-assisted reaction for spontaneous defect passivation in perovskite solar cells. Nat. Photonics 2025, 19, 985–991. [Google Scholar] [CrossRef]
- Xiao, S.; Gao, J.; Ding, B.; Yuan, B.; Gao, Y.; Liu, Q.; Qin, Z.; Tao, H.; Ma, L.; Ke, W.; et al. Multi-Hydroxyl and Chloric Buried Interface Bridges Enable Synergistically High-Efficiency Perovskite Solar Cells. Small 2025, 21, e2500174. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Hao, M.; Lin, T.; Bai, Y.; Wang, L. Ligand engineering of perovskite quantum dots for efficient and stable solar cells. J. Energy Chem. 2022, 69, 626–648. [Google Scholar] [CrossRef]
- Jia, D.; Chen, J.; Qiu, J.; Ma, H.; Yu, M.; Liu, J.; Zhang, X. Tailoring solvent-mediated ligand exchange for CsPbI3 perovskite quantum dot solar cells with efficiency exceeding 16.5%. Joule 2022, 6, 1632–1653. [Google Scholar]
- Aqoma, H.; Lee, S.-H.; Imran, I.F.; Hwang, J.-H.; Lee, S.-H.; Jang, S.-Y. Alkyl ammonium iodide-based ligand exchange strategy for high-efficiency organic-cation perovskite quantum dot solar cells. Nat. Energy 2024, 9, 324–332. [Google Scholar] [CrossRef]
- Li, D.; Zhao, C.; Zhang, X.; Zhao, X.; Huang, H.; Li, H.; Li, F.; Yuan, J. Dual-Phase Ligand Engineering Enables 18.21% FAPbI(3) Quantum Dot Solar Cells. Adv. Mater. 2025, 37, e2417346. [Google Scholar] [CrossRef]
- Chuang, C.H.; Brown, P.R.; Bulovic, V.; Bawendi, M.G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 2014, 13, 796–801. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ye, L.; Wu, T.; Hua, Y.; Zhang, X. Band Engineering of Perovskite Quantum Dot Solids for High-Performance Solar Cells. Adv. Mater. 2024, 36, e2404495. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yan, J.; Zhao, X.; Ma, T.; Zhang, A.; Chen, S.; Shen, G.; Khalaf, G.M.G.; Zhang, J.; Chen, C.; et al. Synergistic Enhancement of Efficient Perovskite/Quantum Dot Tandem Solar Cells Based on Transparent Electrode and Band Alignment Engineering. Adv. Energy Mater. 2024, 14, 2400219. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, C.; Zhang, X.; Sun, J.; Ling, X.; Shi, J.; Hu, L.; Zhou, Z.; Wu, X.; Han, W.; et al. Electroluminescent Solar Cells Based on CsPbI3 Perovskite Quantum Dots. Adv. Funct. Mater. 2021, 32, 2108615. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, Y.; Zhang, L.; Niu, P.; Zhou, R.; Lyu, M.; Lu, H.; Zhu, J. Aromatic Carboxylic Acid Ligand Management for CsPbBr3 Quantum Dot Light-Emitting Solar Cells. ACS Appl. Nano Mater. 2022, 5, 10495–10503. [Google Scholar] [CrossRef]
- Su, Y.; Xiang, H.; Wang, Y.; Li, H.; Wang, Y.; Lv, X.; Xie, M.; Zhang, S.; Fan, Z.; Yuan, J.; et al. Amidation-Retarded Synthesis of Perovskite Quantum Dots with Low Defect Density and Enhanced Carrier Transport for Efficient Light Emitting Diodes and Solar Cells. Adv. Mater. 2025, 37, e2506397. [Google Scholar]
- Lv, Z.; Wang, Y.; Chen, J.; Wang, J.; Zhou, Y.; Han, S.T. Semiconductor Quantum Dots for Memories and Neuromorphic Computing Systems. Chem. Rev. 2020, 120, 3941–4006. [Google Scholar] [CrossRef]
- Li, H.; Li, Q.; Sun, T.; Zhou, Y.; Han, S.-T. Recent advances in artificial neuromorphic applications based on perovskite composites. Mater. Horiz. 2024, 11, 5499–5532. [Google Scholar] [CrossRef]
- Pazos, S.; Xu, X.; Guo, T.; Zhu, K.; Alshareef, H.N.; Lanza, M. Solution-processed memristors: Performance and reliability. Nat. Rev. Mater. 2024, 9, 358–373. [Google Scholar] [CrossRef]
- Xu, J.; Luo, Z.; Chen, L.; Zhou, X.; Zhang, H.; Zheng, Y.; Wei, L. Recent advances in flexible memristors for advanced computing and sensing. Mater. Horiz. 2024, 11, 4015–4036. [Google Scholar] [CrossRef]
- Fan, Q.; Shang, J.; Yuan, X.; Zhang, Z.; Sha, J. Emerging Liquid-Based Memristive Devices for Neuromorphic Computation. Small Methods 2025, 9, e2402218. [Google Scholar] [CrossRef]
- Lanza, M.; Pazos, S.; Aguirre, F.; Sebastian, A.; Le Gallo, M.; Alam, S.M.; Ikegawa, S.; Yang, J.J.; Vianello, E.; Chang, M.F.; et al. The growing memristor industry. Nature 2025, 640, 613–622. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, C.; Xu, Z.; Liu, Y.; Hu, H.; Guo, T.; Kim, T.W.; Chai, Y.; Li, F. Light-Emitting Memristors for Optoelectronic Artificial Efferent Nerve. Nano Lett. 2021, 21, 6087–6094. [Google Scholar] [CrossRef]
- Yen, M.-C.; Lee, C.-J.; Liu, K.-H.; Peng, Y.; Leng, J.; Chang, T.-H.; Chang, C.-C.; Tamada, K.; Lee, Y.-J. All-inorganic perovskite quantum dot light-emitting memories. Nat. Commun. 2021, 12, 4460. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Lin, Z.; Yang, J.; Chen, C.; Liu, D.; Shan, L.; Hu, Y.; Guo, T.; Chen, H. Cross-layer transmission realized by light-emitting memristor for constructing ultra-deep neural network with transfer learning ability. Nat. Commun. 2024, 15, 1930. [Google Scholar] [CrossRef]
- Geiregat, P.; Van Thourhout, D.; Hens, Z. A bright future for colloidal quantum dot lasers. NPG Asia Mater. 2019, 11, 41. [Google Scholar] [CrossRef]
- Shang, C.; Wan, Y.; Selvidge, J.; Hughes, E.; Herrick, R.; Mukherjee, K.; Duan, J.; Grillot, F.; Chow, W.W.; Bowers, J.E. Perspectives on Advances in Quantum Dot Lasers and Integration with Si Photonic Integrated Circuits. ACS Photonics 2021, 8, 2555–2566. [Google Scholar] [CrossRef]
- Jung, H.; Ahn, N.; Klimov, V.I. Prospects and challenges of colloidal quantum dot laser diodes. Nat. Photonics 2021, 15, 643–655. [Google Scholar] [CrossRef]
- Park, Y.-S.; Roh, J.; Diroll, B.T.; Schaller, R.D.; Klimov, V.I. Colloidal quantum dot lasers. Nat. Rev. Mater. 2021, 6, 382–401. [Google Scholar] [CrossRef]
- Ahn, N.; Livache, C.; Pinchetti, V.; Klimov, V.I. Colloidal Semiconductor Nanocrystal Lasers and Laser Diodes. Chem. Rev. 2023, 123, 8251–8296. [Google Scholar] [CrossRef] [PubMed]
- Gunnarsson, W.B.; Roh, K.; Zhao, L.; Murphy, J.P.; Grede, A.J.; Giebink, N.C.; Rand, B.P. Toward Nonepitaxial Laser Diodes. Chem. Rev. 2023, 123, 7548–7584. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Park, Y.S.; Klimov, V.I. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nat. Mater. 2018, 17, 42–49. [Google Scholar] [CrossRef]
- Hahm, D.; Pinchetti, V.; Livache, C.; Ahn, N.; Noh, J.; Li, X.; Du, J.; Wu, K.; Klimov, V.I. Colloidal quantum dots enable tunable liquid-state lasers. Nat. Mater. 2025, 24, 48–55. [Google Scholar] [CrossRef]
- Jung, H.; Park, Y.S.; Ahn, N.; Lim, J.; Fedin, I.; Livache, C.; Klimov, V.I. Two-band optical gain and ultrabright electroluminescence from colloidal quantum dots at 1000 A cm−2. Nat. Commun. 2022, 13, 3734. [Google Scholar] [CrossRef]
- Roh, J.; Park, Y.S.; Lim, J.; Klimov, V.I. Optically pumped colloidal-quantum-dot lasing in LED-like devices with an integrated optical cavity. Nat. Commun. 2020, 11, 271. [Google Scholar] [CrossRef]
- Ahn, N.; Livache, C.; Pinchetti, V.; Jung, H.; Jin, H.; Hahm, D.; Park, Y.S.; Klimov, V.I. Electrically driven amplified spontaneous emission from colloidal quantum dots. Nature 2023, 617, 79–85. [Google Scholar] [CrossRef]
- Tan, Y.; Huang, Y.; Wu, D.; Wang, Y.; Sun, X.W.; Choi, H.W.; Wang, K. Low-threshold surface-emitting colloidal quantum-dot circular Bragg laser array. Light. Sci. Appl. 2025, 14, 36. [Google Scholar] [CrossRef]
- Guo, R.; Zhang, M.; Ding, J.; Liu, A.; Huang, F.; Sheng, M. Advances in colloidal quantum dot-based photodetectors. J. Mater. Chem. C 2022, 10, 7404–7422. [Google Scholar] [CrossRef]
- Zou, T.; Choi, T.; Liu, A.; Zhu, H.; Noh, Y.-Y. Printed quantum dot photodetectors for applications from the high-energy to the infrared region. Nano Energy 2024, 125, 109539. [Google Scholar] [CrossRef]
- Mu, G.; Tan, Y.; Bi, C.; Liu, Y.; Hao, Q.; Tang, X. Visible to mid-wave infrared PbS/HgTe colloidal quantum dot imagers. Nat. Photonics 2024, 18, 1147–1154. [Google Scholar] [CrossRef]
- Qin, T.; Mu, G.; Zhao, P.; Tan, Y.; Liu, Y.; Zhang, S.; Luo, Y.; Hao, Q.; Chen, M.; Tang, X. Mercury telluride colloidal quantum-dot focal plane array with planar p-n junctions enabled by in situ electric field–activated doping. Sci. Adv. 2023, 9, eadg7827. [Google Scholar] [CrossRef]
- Liao, K.; Lian, Y.; Yu, M.; Du, Z.; Dai, T.; Wang, Y.; Yan, H.; Wang, S.; Lu, C.; Chan, C.T.; et al. Hetero-integrated perovskite/Si3N4 on-chip photonic system. Nat. Photonics 2025, 19, 358–368. [Google Scholar] [CrossRef]
- Mu, G.; Zheng, X.; Tan, Y.; Liu, Y.; Hao, Q.; Weng, K.; Tang, X. Colloidal Quantum-Dot Heterojunction Imagers for Room-Temperature Thermal Imaging. Adv. Mater. 2025, 37, e2416877. [Google Scholar] [CrossRef]
- Bossavit, E.; Mastrippolito, D.; Gureghian, C.; Colle, A.; De Pesseroey, D.; Paye, M.; Sergeeva, K.; Cavallo, M.; Ma, Y.; Khalili, A.; et al. Ultrasharp, Cavity Enhanced, Broadly Tunable Infrared Detection Using Colloidal Quantum Dots. Nano Lett. 2025, 25, 9485–9491. [Google Scholar] [CrossRef]
- Elsinger, L.; Petit, R.; Van Acker, F.; Zawacka, N.K.; Tanghe, I.; Neyts, K.; Detavernier, C.; Geiregat, P.; Hens, Z.; Van Thourhout, D. Waveguide-Coupled Colloidal Quantum Dot Light Emitting Diodes and Detectors on a Silicon Nitride Platform. Laser Photonics Rev. 2021, 15, 2000230. [Google Scholar] [CrossRef]
- Pietryga, J.M.; Park, Y.S.; Lim, J.; Fidler, A.F.; Bae, W.K.; Brovelli, S.; Klimov, V.I. Spectroscopic and Device Aspects of Nanocrystal Quantum Dots. Chem. Rev. 2016, 116, 10513–10622. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gu, Y.; Li, X.; Liu, Y.; Liu, F.; Wu, W. Recent Progress of Quantum Dot Infrared Photodetectors. Adv. Opt. Mater. 2023, 11, 2300970. [Google Scholar] [CrossRef]
- Sergeeva, K.A.; Zhang, H.; Portniagin, A.S.; Bossavit, E.; Mu, G.; Kershaw, S.V.; Ithurria, S.; Guyot-Sionnest, P.; Keuleyan, S.; Delerue, C.; et al. The Rise of HgTe Colloidal Quantum Dots for Infrared Optoelectronics. Adv. Funct. Mater. 2024, 34, 2405307. [Google Scholar] [CrossRef]
- Li, S.; Jang, J.H.; Chung, W.; Seung, H.; Park, S.I.; Ma, H.; Pyo, W.J.; Choi, C.; Chung, D.S.; Kim, D.H.; et al. Ultrathin Self-Powered Heavy-Metal-Free Cu-In-Se Quantum Dot Photodetectors for Wearable Health Monitoring. ACS Nano 2023, 17, 20013–20023. [Google Scholar] [CrossRef]
- Zhang, X.; Mu, G.; Zhang, Y.; Jiang, Y.; Yan, Y. Heavy metal-free colloidal quantum dots: Preparation and application in infrared photodetectors. J. Mater. Chem. C 2024, 12, 15811–15832. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, L.; Schreier, J.; Bi, Y.; Black, A.; Malla, A.; Goossens, S.; Konstantatos, G. Silver telluride colloidal quantum dot infrared photodetectors and image sensors. Nat. Photonics 2024, 18, 236–242. [Google Scholar] [CrossRef]
- Mao, C.; Yao, F.; Aleksandrov, D.; Liu, F.; Wu, W. Silver Telluride Quantum Dots on Silicon Near-Infrared Photodetectors. ACS Appl. Mater. Interfaces 2025, 17, 31230–31236. [Google Scholar] [CrossRef]
- Ye, M.; Biesold, G.M.; Zhang, M.; Wang, W.; Bai, T.; Lin, Z. Multifunctional quantum dot materials for perovskite solar cells: Charge transport, efficiency and stability. Nano Today 2021, 40, 101286. [Google Scholar] [CrossRef]
- Chi, W.; Banerjee, S.K. Application of Perovskite Quantum Dots as an Absorber in Perovskite Solar Cells. Angew. Chem. Int. Ed. 2022, 61, e202112412. [Google Scholar] [CrossRef]
- Huang, C.Y.; Li, H.; Wu, Y.; Lin, C.H.; Guan, X.; Hu, L.; Kim, J.; Zhu, X.; Zeng, H.; Wu, T. Inorganic Halide Perovskite Quantum Dots: A Versatile Nanomaterial Platform for Electronic Applications. Nano-Micro Lett. 2022, 15, 16. [Google Scholar] [CrossRef]
- Liu, L.; Najar, A.; Wang, K.; Du, M.; Liu, S.F. Perovskite Quantum Dots in Solar Cells. Adv. Sci. 2022, 9, e2104577. [Google Scholar] [CrossRef] [PubMed]
- Khanonkin, I.; Bauer, S.; Mikhelashvili, V.; Eyal, O.; Lorke, M.; Jahnke, F.; Reithmaier, J.P.; Eisenstein, G. On the principle operation of tunneling injection quantum dot lasers. Prog. Quantum Electron. 2022, 81, 100362. [Google Scholar] [CrossRef]
- Ahn, N.; Park, Y.S.; Livache, C.; Du, J.; Gungor, K.; Kim, J.; Klimov, V.I. Optically Excited Lasing in a Cavity-Based, High-Current-Density Quantum Dot Electroluminescent Device. Adv. Mater. 2023, 35, e2206613. [Google Scholar] [CrossRef]
- Wang, K.; Tao, Y.; Tang, Z.; Zhao, H.; Sun, X.; Rosei, F.; Liu, D.; Xiong, Y. Stability of photoelectrochemical cells based on colloidal quantum dots. Chem. Soc. Rev. 2025, 54, 3513–3534. [Google Scholar] [CrossRef]
- Rasal, A.S.; Yadav, S.; Yadav, A.; Kashale, A.A.; Manjunatha, S.T.; Altaee, A.; Chang, J.-Y. Carbon Quantum Dots for Energy Applications: A Review. ACS Appl. Nano Mater. 2021, 4, 6515–6541. [Google Scholar] [CrossRef]
- Li, Z.; Channa, A.I.; Wang, Z.M.; Tong, X. Tailoring Eco-Friendly Colloidal Quantum Dots for Photoelectrochemical Hydrogen Generation. Small 2023, 19, e2305146. [Google Scholar] [CrossRef] [PubMed]
- Sohal, N.; Singla, S.; Malode, S.J.; Basu, S.; Maity, B.; Shetti, N.P. Bioresource-Based Graphene Quantum Dots and Their Applications: A Review. ACS Appl. Nano Mater. 2023, 6, 10925–10943. [Google Scholar] [CrossRef]
Methods | Conditions | Advantages | Disadvantages |
---|---|---|---|
Hot injection |
|
|
|
LARP |
|
|
|
Microfluidic flow |
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Zhao, J.; Qiao, Y.; Liu, X.; Mei, S. Multifunctional Colloidal Quantum Dots-Based Light-Emitting Devices for On-Chip Integration. Nanomaterials 2025, 15, 1422. https://doi.org/10.3390/nano15181422
Li R, Zhao J, Qiao Y, Liu X, Mei S. Multifunctional Colloidal Quantum Dots-Based Light-Emitting Devices for On-Chip Integration. Nanomaterials. 2025; 15(18):1422. https://doi.org/10.3390/nano15181422
Chicago/Turabian StyleLi, Ruoyang, Jie Zhao, Yifei Qiao, Xiaoyan Liu, and Shiliang Mei. 2025. "Multifunctional Colloidal Quantum Dots-Based Light-Emitting Devices for On-Chip Integration" Nanomaterials 15, no. 18: 1422. https://doi.org/10.3390/nano15181422
APA StyleLi, R., Zhao, J., Qiao, Y., Liu, X., & Mei, S. (2025). Multifunctional Colloidal Quantum Dots-Based Light-Emitting Devices for On-Chip Integration. Nanomaterials, 15(18), 1422. https://doi.org/10.3390/nano15181422