Mechanism of Tailoring Laser-Induced Periodic Surface Structures on 4H-SiC Crystal Using Ultrashort-Pulse Laser
Abstract
1. Introduction
2. Materials and Methods
3. Experimental Results
3.1. Morphology of LIPSS on the SiC Surface
3.2. Incident Laser Energy
3.3. Incident Pulse Duration
3.4. Polarization
4. Discussion
4.1. Characteristics of Photothermal Weak Absorption
4.2. Electric Field Modulation Simulation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SiC | Silicon carbide |
LIPSS | Laser-induced periodic surface structures |
HSFL | High spatial frequency LIPSS |
LSFL | Low spatial frequency LIPSS |
HP-SiC | High-purity 4H-SiC |
N-SiC | Nitrogen-doped 4H-SiC |
HWP | Half-wave plate |
M | Mirror |
SEM | Scanning electron microscopy |
References
- Cheng, L.; Yang, J.Y.; Zheng, W. Bandgap, Mobility, Dielectric Constant, and Baliga’s Figure of Merit of 4H-SiC, GaN, and β-Ga2O3 from 300 to 620 K. ACS Appl. Electron. Mater. 2022, 4, 4140–4145. [Google Scholar] [CrossRef]
- Weitzel, C.E.; Moore, K.E. Performance comparison of wide bandgap semiconductor rf power devices. J. Electron. Mater. 1998, 27, 365–369. [Google Scholar] [CrossRef]
- Park, C.H.; Cheong, B.H.; Lee, K.H.; Chang, K.J. Structural and electronic properties of cubic, 2H, 4H, and 6H SiC. Phys. Rev. B 1994, 49, 4485–4493. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Jiang, P.Q.; Yang, R.G. Anisotropic thermal conductivity of 4H and 6H silicon carbide measured using time-domain thermoreflectance. Mater. Today Phys. 2017, 3, 70–75. [Google Scholar] [CrossRef]
- Wei, R.S.; Song, S.; Yang, K.; Cui, Y.X.; Peng, Y.; Chen, X.F.; Hu, X.B.; Xu, X.G. Thermal conductivity of 4H-SiC single crystals. J. Appl. Phys. 2013, 113, 053503. [Google Scholar] [CrossRef]
- Itoh, A.; Matsunami, H. Single crystal growth of SiC and electronic devices. Crit. Rev. Solid State Mater. Sci. 1997, 22, 111–197. [Google Scholar] [CrossRef]
- Roschke, M.; Schwierz, F. Electron mobility models for 4H, 6H, and 3C SiC. IEEE Trans. Electron Devices 2001, 48, 1442–1447. [Google Scholar] [CrossRef]
- Itas, Y.S.; Alsuhaibani, A.M.; Refat, M.S.; Alrahili, M.R. Envisaging the quantum capacitance in modified monolayer silicon carbide. Appl. Phys. A 2024, 130, 668. [Google Scholar] [CrossRef]
- Grinchuk, P.S.; Abuhimd, H.M.; Kiyashko, M.V.; Solovei, D.V.; Akulich, A.V.; Stepkin, M.O.; Lapitskaya, V.A.; Kuznetsova, T.A.; Danilova-Tretiak, S.M.; Evseeva, L.E. Advanced reaction-bonded SiC ceramics for space mirror blanks. J. Manuf. Processes 2024, 113, 275–290. [Google Scholar] [CrossRef]
- Ning, G.; Zhang, L.; Zhong, W.; Wang, S.; Liu, J.; Zhang, C. Damage and annealing behavior in neutron-irradiated SiC used as a post-irradiation temperature monitor. Nucl. Instrum. Methods Phys. Res. B 2022, 512, 91–95. [Google Scholar] [CrossRef]
- Ruddy, F.H.; Ottaviani, L.; Lyoussi, A.; Destouches, C.; Palais, O.; Reynard-Carette, C. Silicon Carbide Neutron Detectors for Harsh Nuclear Environments: A Review of the State of the Art. IEEE Trans. Nucl. Sci. 2022, 69, 792–803. [Google Scholar] [CrossRef]
- Huczko, A.; Dąbrowska, A.; Savchyn, V.; Popov, A.I.; Karbovnyk, I. Silicon carbide nanowires: Synthesis and cathodoluminescence. Phys. Status Solidi B 2009, 246, 2806–2808. [Google Scholar] [CrossRef]
- Lukin, D.M.; Dory, C.; Guidry, M.A.; Yang, K.Y.; Mishra, S.D.; Trivedi, R.; Radulaski, M.; Sun, S.; Vercruysse, D.; Ahn, G.H.; et al. 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics. Nat. Photonics 2020, 14, 330–334. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Z.H.; Xiao, Z.M.; Li, Z.J.; Hou, M.X.; Chen, X.; Gao, J.; Wong, C.P. Processing, property modulation and application of one-dimensional SiC nanostructure field emitters. Microelectron. Eng. 2023, 277, 112019. [Google Scholar] [CrossRef]
- DeVault, C.T.; Deckoff-Jones, S.; Liu, Y.; Hammock, I.N.; Sullivan, S.E.; Dibos, A.; Sorce, P.; Orcutt, J.; Awschalom, D.D.; Heremans, F.J.; et al. Silicon-On-Silicon Carbide Platform for Integrated Photonics. Adv. Opt. Mater. 2024, 12, 2401101. [Google Scholar] [CrossRef]
- Michaud, J.-F.; Portail, M.; Alquier, D.; Certon, D.; Dufour, I. Silicon-carbide-based MEMS for gas detection applications. Mater. Sci. Semicond. Process. 2024, 171, 107986. [Google Scholar] [CrossRef]
- Wu, R.; Chen, H.; Zhou, Y.; Guo, Y.; Ji, Z.; Li, L.; Yang, Y.; Wang, G.; Zhou, J.; Fu, Y. Advances in Silicon Carbides and Their MEMS Pressure Sensors for High Temperature and Pressure Applications. ACS Appl. Mater. Interfaces 2025, 17, 26117–26155. [Google Scholar] [CrossRef]
- Lu, D.; Xiao, Y.; Hu, Q.; Wang, X.; Wang, Y.; Wu, R. Hydrophobic Texture Screening of Laser Ablated Silicon Carbide Surface and Its Influencing Factors Analysis and Optimization. Adv. Eng. Mater. 2023, 25, 2201733. [Google Scholar] [CrossRef]
- Torres-Torres, D.; Torres-Torres, C.; Vega-Becerra, O.; Cheang-Wong, J.C.; Rodríguez-Fernández, L.; Crespo-Sosa, A.; Oliver, A. Structured strengthening by two-wave optical ablation in silica with gold nanoparticles. Opt. Laser Technol. 2015, 75, 115–122. [Google Scholar] [CrossRef]
- Zhang, D.; Ranjan, B.; Tanaka, T.; Sugioka, K. Multiscale Hierarchical Micro/Nanostructures Created by Femtosecond Laser Ablation in Liquids for Polarization-Dependent Broadband Antireflection. Nanomaterials 2020, 10, 1573. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wu, L.; Hu, Y.; Yang, X.; Liu, Y.; Li, J.; Tang, M.; Chen, R.; Ma, F.; Wang, J.; et al. Modulating porous silicon-carbon anode stability: Carbon/silicon carbide semipermeable layer mitigates silicon-fluorine reaction and enhances lithium-ion transport. J. Colloid Interface Sci. 2024, 674, 643–652. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.; Li, G.; Mao, J.; Dong, X.; Li, S.; Zhu, C.; Wu, G.; Chen, A.; Wei, Y.; Liu, X.; et al. Photoelectrocatalytic CO2 conversion over carbon @ silicon carbide composites. Catal. Today 2024, 430, 114519. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, G.; Li, Y.; Wang, L.; Lian, Y.; Yu, Y.; Zhao, H.; Wang, Y.; Lu, Z. Femtosecond laser-induced periodic surface structures on hard and brittle materials. Sci. China Technol. Sci. 2024, 67, 19–36. [Google Scholar] [CrossRef]
- Huang, Y.H.; Zhou, Y.Q.; Li, J.M.; Zhu, F.L. Femtosecond laser surface modification of 4H-SiC improves machinability. Appl. Surf. Sci. 2023, 615, 156436. [Google Scholar] [CrossRef]
- Tomita, T.; Kinoshita, K.; Matsuo, S.; Hashimoto, S. Effect of surface roughening on femtosecond laser-induced ripple structures. Appl. Phys. Lett. 2007, 90, 153115. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Ueno, S.; Kumai, R.; Kinoshita, K.; Murai, T.; Tomita, T.; Matsuo, S.; Hashimoto, S. Raman spectroscopic study of femtosecond laser-induced phase transformation associated with ripple formation on single-crystal SiC. Appl. Phys. A-Matter. 2010, 99, 23–27. [Google Scholar] [CrossRef]
- Miyagawa, R.; Ohno, Y.; Deura, M.; Yonenaga, I.; Eryu, O. Characterization of femtosecond-laser-induced periodic structures on SiC substrates. Jpn. J. Appl. Phys. 2018, 57, 025602. [Google Scholar] [CrossRef]
- Yan, Z.X.; Lin, Q.Y.; Li, G.J.; Zhang, Y.; Wang, W.J.; Mei, X.S. A combined model for formation mechanism of ripples induced by femtosecond laser on silicon carbide. Appl. Phys. A-Matter. 2020, 126, 915. [Google Scholar] [CrossRef]
- Zhang, R.; Huang, C.; Wang, J.; Feng, S.; Zhu, H. Evolution of micro/nano-structural arrays on crystalline silicon carbide by femtosecond laser ablation. Mater. Sci. Semicond. Process. 2021, 121, 105299. [Google Scholar] [CrossRef]
- Jiao, L.; Kong, D.; Zhang, X.; Wang, H.; Dai, Y.; Song, J. Ripple period adjustment on SiC surface based on electron dynamics control and its polarization anisotropy. Appl. Phys. A 2021, 127, 22. [Google Scholar] [CrossRef]
- Shen, J.; Chen, H.; Chen, J.; Lin, L.; Gu, Y.; Jiang, Z.; Li, J.; Sun, T. Mechanistic difference between Si-face and C-face polishing of 4H–SiC substrates in aqueous and non-aqueous slurries. Ceram. Int. 2023, 49, 7274–7283. [Google Scholar] [CrossRef]
- Obara, G.; Shimizu, H.; Enami, T.; Mazur, E.; Terakawa, M.; Obara, M. Growth of high spatial frequency periodic ripple structures on SiC crystal surfaces irradiated with successive femtosecond laser pulses. Opt. Express 2013, 21, 26323–26334. [Google Scholar] [CrossRef] [PubMed]
- Long, J.Y.; Peng, Q.F.; Chen, G.P.; Zhang, Y.L.; Xie, X.Z.; Pan, G.S.; Wang, X.F. Centimeter-scale low-damage micromachining on single-crystal 4H-SiC substrates using a femtosecond laser with square-shaped Flat-Top focus spots. Ceram. Int. 2021, 47, 23134–23143. [Google Scholar] [CrossRef]
- Cunha, R.; Tasso de Paula, K.; Andrade, M.B.; Pimenta, A.C.S.; Misoguti, L.; Mendonça, C.R. Femtosecond laser-induced microstructuring and color centers in silicon carbide. Ceram. Int. 2025; in press. [Google Scholar] [CrossRef]
- Tanaka, H.; Kimoto, T.; Mori, N. Theoretical study on high-field carrier transport and impact ionization coefficients in 4H-SiC. Mater. Sci. Semicond. Process. 2024, 173, 108126. [Google Scholar] [CrossRef]
- Chen, J.; Dong, J.; Zhang, Q.; Wu, Z. Three-Dimensional Photothermal Microscopy of KDP Crystals; SPIE: Bellingham, WA, USA, 2014; Volume 9203. [Google Scholar]
- Lu, Z.; Zhang, Z.; Jiang, D.; Kou, H.; Zhang, B.; Xu, Z.; Zhao, Y.; Wu, A.; Su, L. Investigation of the photothermal weak absorption and laser damage characteristics of a Nd,Y:SrF2 crystal. CrystEngComm 2024, 26, 4130–4136. [Google Scholar] [CrossRef]
- Duc, D.H.; Naoki, I.; Kazuyoshi, F. A study of near-infrared nanosecond laser ablation of silicon carbide. Int. J. Heat Mass Transf. 2013, 65, 713–718. [Google Scholar] [CrossRef]
Weak Photothermal Absorption (ppm) | HP-SiC (Average Value of Irradiation Position) | N-SiC (Average Value of Irradiation Position) |
---|---|---|
1th pulse | 76.63 | 82.19 |
2nd pulse | 82.34 | 88.13 |
3rd pulse | 86.15 | 92.37 |
4th pulse | 90.63 | 99.75 |
5th pulse | 96.86 | 110.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, E.; Shan, C.; Zhao, X.; Kou, H.; Wu, Q.; Jiang, D.; Peng, X.; Xu, P.; Sui, Z.; Gao, Y. Mechanism of Tailoring Laser-Induced Periodic Surface Structures on 4H-SiC Crystal Using Ultrashort-Pulse Laser. Nanomaterials 2025, 15, 1398. https://doi.org/10.3390/nano15181398
Wang E, Shan C, Zhao X, Kou H, Wu Q, Jiang D, Peng X, Xu P, Sui Z, Gao Y. Mechanism of Tailoring Laser-Induced Periodic Surface Structures on 4H-SiC Crystal Using Ultrashort-Pulse Laser. Nanomaterials. 2025; 15(18):1398. https://doi.org/10.3390/nano15181398
Chicago/Turabian StyleWang, Erxi, Chong Shan, Xiaohui Zhao, Huamin Kou, Qinghui Wu, Dapeng Jiang, Xing Peng, Penghao Xu, Zhan Sui, and Yanqi Gao. 2025. "Mechanism of Tailoring Laser-Induced Periodic Surface Structures on 4H-SiC Crystal Using Ultrashort-Pulse Laser" Nanomaterials 15, no. 18: 1398. https://doi.org/10.3390/nano15181398
APA StyleWang, E., Shan, C., Zhao, X., Kou, H., Wu, Q., Jiang, D., Peng, X., Xu, P., Sui, Z., & Gao, Y. (2025). Mechanism of Tailoring Laser-Induced Periodic Surface Structures on 4H-SiC Crystal Using Ultrashort-Pulse Laser. Nanomaterials, 15(18), 1398. https://doi.org/10.3390/nano15181398