High-Field Nonlinear Terahertz Conductivities of Iron Ultrathin Films
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.; Maldonado, P.; Jin, Z.; Seifert, T.S.; Arabski, J.; Schmerber, G.; Beaurepaire, E.; Bonn, M.; Kampfrath, T.; Oppeneer, P.M.; et al. Ultrafast terahertz magnetometry. Nat. Commun. 2020, 11, 4247. [Google Scholar] [CrossRef] [PubMed]
- Kampfrath, T.; Ulbrich, R.G.; Leuenberger, F.; Münzenberg, M.; Sass, B.; Felsch, W. Ultrafast magneto-optical response of iron thin films. Phys. Rev. B 2002, 65, 104429. [Google Scholar] [CrossRef]
- Huang, L.; Lee, S.H.; Kim, S.D.; Shim, J.H.; Shin, H.J.; Kim, S.; Park, J.; Park, S.Y.; Choi, Y.S.; Kim, H.J.; et al. Universal field-tunable terahertz emission by ultrafast photoinduced demagnetization in Fe, Ni, and Co ferromagnetic films. Sci. Rep. 2020, 10, 15843. [Google Scholar] [CrossRef] [PubMed]
- Mendil, J.; Nieves, P.; Chubykalo-Fesenko, O.; Walowski, J.; Santos, T.; Pisana, S.; Münzenberg, M. Resolving the role of femtosecond heated electrons in ultrafast spin dynamics. Sci. Rep. 2014, 4, 3980. [Google Scholar] [CrossRef]
- Bigot, J.Y.; Vomir, M.; Beaurepaire, E. Coherent ultrafast magnetism induced by femtosecond laser pulses. Nat. Phys. 2009, 5, 515–520. [Google Scholar] [CrossRef]
- Nakamura, K.; Nomura, T.; Pradipto, A.-M.; Nawa, K.; Akiyama, T.; Ito, T. Effect of heavy-metal insertions at Fe/MgO interfaces on electric-field-induced modification of magnetocrystalline anisotropy. J. Magn. Magn. Mater. 2017, 429, 214–220. [Google Scholar] [CrossRef]
- Ye, J.; He, W.; Wu, Q.; Liu, H.; Zhang, X.; Chen, Z.; Cheng, Z. Determination of magnetic anisotropy constants in Fe ultrathin film on vicinal Si(111) by anisotropic magnetoresistance. Sci. Rep. 2013, 3, 2148. [Google Scholar] [CrossRef]
- Gul, Q.; He, W.; Li, Y.; Sun, R.; Li, N.; Yang, X.; Li, Y.; Gong, Z.Z.; Xie, Z.K.; Zhang, X.Q.; et al. Thickness dependent manipulation of uniaxial magnetic anisotropy in Fe-thin films by oblique deposition. Chin. Phys. B 2018, 27, 097504. [Google Scholar] [CrossRef]
- Jeyaramane, A.C.; Prasad, C.D.V. Magnetization and Magnetic Microscopy Studies in Fe Thin Films. J. Electron. Mater. 2021, 50, 1119–1131. [Google Scholar] [CrossRef]
- Bensehil, I.; Kharmouche, A.; Bourzami, A. Synthesis, Structural, and Magnetic Properties of Fe Thin Films. J. Supercond. Nov. Magn. 2017, 30, 795–799. [Google Scholar] [CrossRef]
- Wang, W.T.; Guan, D.Y.; Yang, G.; Yang, G.Z.; Zhou, Y.L.; Lu, H.B.; Chen, Z.H. Nonlinear optical properties of thin iron films grown on MgO (100) by pulsed laser deposition. Thin Solid Films 2005, 471, 86–90. [Google Scholar] [CrossRef]
- Choi, G.M.; Schleife, A.; Cahill, D.G. Optical-helicity-driven magnetization dynamics in metallic ferromagnets. Nat. Commun. 2017, 8, 15085. [Google Scholar] [CrossRef]
- Mishra, S.B. Inverse Faraday effect in 3d, 4d, and 5d transition metals. Phys. Rev. B 2025, 111, 174413. [Google Scholar] [CrossRef]
- Feng, Z.; Tan, W.; Jin, Z.; Chen, Y.J.; Zhong, Z.; Zhang, L.; Sun, S.; Tang, J.; Jiang, Y.; Wu, P.H.; et al. Anomalous Nernst effect induced terahertz emission in a single ferromagnetic film. Nano Lett. 2023, 23, 8171–8179. [Google Scholar] [CrossRef]
- Lan, Z.; Li, Z.; Xu, H.; Liu, F.; Jin, Z.; Peng, Y.; Zhu, Y. Unveiling of Terahertz emission from ultrafast demagnetization and the anomalous Hall effect in a single ferromagnetic film. Chin. Phys. Lett. 2024, 41, 044203. [Google Scholar] [CrossRef]
- Chen, X.H.; Wang, H.T.; Wang, C.; Ouyang, C.; Wei, G.S.; Nie, T.X.; Zhao, W.S.; Miao, J.G.; Li, Y.T.; Wang, L.; et al. Efficient Generation and Arbitrary Manipulation of Chiral Terahertz Waves Emitted from Bi2Te3-Fe Heterostructures. Adv. Photonics Res. 2021, 2, 2000099. [Google Scholar] [CrossRef]
- Sun, Y.; Yu, P.; Zhang, Y.; Wu, Y.; Zhang, J.; Nie, T. Terahertz emission from spin to charge conversion in type-II dirac semimetal PtTe2-ferromagnet heterostructure. Results in Physics 2024, 59, 107592. [Google Scholar] [CrossRef]
- Peng, Y.; Huang, J.; Luo, J.; Yang, Z.; Wang, L.; Wu, X.; Zang, X.; Yu, C.; Gu, M.; Hu, Q.; et al. Three-step one-way model in terahertz biomedical detection. PhotoniX 2021, 2, 12. [Google Scholar] [CrossRef]
- Lyu, J.; Shen, S.; Chen, L.; Zhu, Y.; Zhuang, S. Frequency selective fingerprint sensor: The Terahertz unity platform for broadband chiral enantiomers multiplexed signals and narrowband molecular AIT enhancement. PhotoniX 2023, 4, 28. [Google Scholar] [CrossRef]
- Takahashi, M. Terahertz vibrations and hydrogen-bonded networks in crystals. Crystals 2014, 4, 74–103. [Google Scholar] [CrossRef]
- Bowlan, P.; Martinez-Moreno, E.; Reimann, K.; Elsaesser, T.; Woerner, M. Ultrafast terahertz response of multilayer graphene in the nonperturbative regime. Phys. Rev. B 2014, 89, 041408. [Google Scholar] [CrossRef]
- Wu, K.; Rahman, M. Pulse generation and compression techniques for microwave electronics and ultrafast systems. Electromagn. Sci. 2023, 1, 0010131. [Google Scholar] [CrossRef]
- Xu, H.; Yang, Y.; Jin, Z.; Wang, P.; Feng, Z.; Wang, T.; Yue, W.; Chen, C.; Chen, F.; Zhu, Y.; et al. Generation and manipulation of light-induced orbital transport in Co/Zr/Al2O3 heterostructure probed with ultrafast terahertz emission. Commun. Phys. 2025, 8, 115. [Google Scholar] [CrossRef]
- Zhao, H.; Tan, Y.; Zhang, L.; Zhang, R.; Shalaby, M.; Zhang, C.; Zhao, Y.; Zhang, X.C. Ultrafast hydrogen bond dynamics of liquid water revealed by terahertz-induced transient birefringence. Light: Sci. Appl. 2020, 9, 136. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Wang, C.; Zhang, B.; Zhang, Z.; Xiong, Z.; Zu, X.; Liu, Z.; Hu, Z.; Odunmbaku, G.O.; Zheng, Y.; et al. Real-time observation of the buildup of polaron in α-FAPbI3. Nat. Commun. 2023, 14, 917. [Google Scholar] [CrossRef]
- Kampfrath, T.; Tanaka, K.; Nelson, K.A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nature Photon. 2013, 7, 680–690. [Google Scholar] [CrossRef]
- Kumar, K.S.; Prajapati, G.L.; Dagar, R.; Vagadia, M.; Rana, D.S.; Tonouchi, M. Terahertz electrodynamics in transition metal oxides. Adv. Opt. Mater. 2019, 8, 1900958. [Google Scholar] [CrossRef]
- Koch, M.; Mittleman, D.M.; Ornik, J.; Castro-Camus, E. Terahertz time-domain spectroscopy. Nat. Rev. Methods Primers 2023, 3, 48. [Google Scholar] [CrossRef]
- Hangyo, M.; Tani, M.; Nagashima, T. Terahertz time-domain spectroscopy of solids: A review. Int. J. Infrared Millimeter Waves 2005, 26, 1661–1690. [Google Scholar] [CrossRef]
- Mitra, S.; Avazpour, L.; Knezevic, I. Terahertz conductivity of two-dimensional materials: A review. J. Phys. Condens. Matter 2025, 37, 133005. [Google Scholar] [CrossRef]
- Zhang, T.; Zheng, Z.Y.; Zhang, M.R.; Li, S.S.; Huang, H.C.; Zhang, Z.L. Investigation of dielectric properties and conductivity of polyvinyl chloride composites by terahertz time-domain spectroscopy. Polymer Testing 2024, 134, 108446. [Google Scholar] [CrossRef]
- Krewer, K.L.; Mics, Z.; Arabski, J.; Schmerber, G.; Beaurepaire, E.; Bonn, M.; Turchinovich, D. Accurate terahertz spectroscopy of supported thin films by precise substrate thickness correction. Opt. Lett. 2018, 43, 447–450. [Google Scholar] [CrossRef] [PubMed]
- Krewer, K.L.; Zhang, W.; Arabski, J.; Schmerber, G.; Beaurepaire, E.; Bonn, M.; Turchinovich, D. Thickness-dependent electron momentum relaxation times in iron films. Appl. Phys. Lett. 2020, 116, 102406. [Google Scholar] [CrossRef]
- Huang, L.; Zhao, Y.; Le Thi, N.; Lee, S.H.; Peng, Z.; Kim, S.; Jun Shin, H.; Park, J.; Kim, H.J.; Hong, J.-I.; et al. Observation of magnetoconductivity with terahertz probes for ferromagnetic Fe films. Curr. Appl. Phys. 2022, 41, 81–85. [Google Scholar] [CrossRef]
- Zhou, C.; Li, T.; Wei, X.; Yan, B. Effect of the sputtering power on the structure, morphology and magnetic properties of Fe films. Metals 2020, 10, 896. [Google Scholar] [CrossRef]
- Shin, H.J.; Nguyen, V.L.; Lim, S.C.; Son, J.-H. Ultrafast nonlinear travel of hot carriers driven by high-field terahertz pulse. J. Phys. B At. Mol. Opt. Phys. 2018, 51, 144003. [Google Scholar] [CrossRef]
- Li, D.; Guo, Y.; Jin, Z.; Dong, X.; Zhang, C.; Balakin, A.V.; Shkurinov, A.P.; Peng, Y.; Zhu, Y.; Zhuang, S. Strong terahertz pulse induced Pockels and Kerr effect in crystalline quartz for ultrafast pulse switching. Appl. Phys. Lett. 2024, 125, 051103. [Google Scholar] [CrossRef]
- Sharma, G.; Al-Naib, I.; Hafez, H.; Morandotti, R.; Cooke, D.G.; Ozaki, T. Carrier density dependence of the nonlinear absorption of intense THz radiation in GaAs. Opt. Express 2012, 20, 18016–18024. [Google Scholar] [CrossRef]
- Roskos, H.G.; Thomson, M.D.; Kreß, M.; Löffler, T. Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications. Laser Photon. Rev. 2007, 1, 349–368. [Google Scholar] [CrossRef]
- Lourembam, J.; Srivastava, A.; La-O-Vorakiat, C.; Rotella, H.; Venkatesan, T.; Chia, E.E.M. New Insights into the Diverse Electronic Phases of a Novel Vanadium Dioxide Polymorph: A Terahertz Spectroscopy Study. Sci Rep 2015, 5, 9182. [Google Scholar] [CrossRef]
- Cheng, B.; Wang, Y.; Barbalas, D.; Higo, T.; Nakatsuji, S.; Armitage, N.P. Terahertz conductivity of the magnetic Weyl semimetal Mn3Sn films. Appl. Phys. Lett. 2019, 115, 012405. [Google Scholar] [CrossRef]
- Sajadi, M.; Wolf, M.; Kampfrath, T. Terahertz-field-induced optical birefringence in common window and substrate materials. Opt. Express 2015, 23, 28985. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Tkach, A.; Casper, F.; Spetter, V.; Grimm, H.; Thomas, A.; Kampfrath, T.; Bonn, M.; Kläui, M.; Turchinovich, D. Accessing the fundamentals of magnetotransport in metals with terahertz probes. Nat. Phys. 2015, 11, 761–776. [Google Scholar] [CrossRef]
- Zheng, W.; Sun, B.; Li, D.; Gali, S.M.; Zhang, H.; Fu, S.; Di Virgilio, L.; Li, Z.; Yang, S.; Zhou, S.; et al. Band Transport by Large Fröhlich Polarons in MXenes. Nature Physics 2022, 18, 544–550. [Google Scholar] [CrossRef]
- Cocker, T.L.; Baillie, D.; Buruma, M.; Titova, L.V.; Sydora, R.D.; Marsiglio, F.; Hegmann, F.A. Microscopic origin of the Drude-Smith model. Phys. Rev. B 2017, 96, 205439. [Google Scholar] [CrossRef]
- Thoman, A.; Kern, A.; Helm, H.; Walther, M. Nanostructured gold films as broadband terahertz antireflection coatings. Phys. Rev. B 2008, 77, 195405. [Google Scholar] [CrossRef]
- Lloyd-Hughes, J.; Jeon, T.I. A review of the terahertz conductivity of bulk and nano-materials. J. Infrared Millim. Terahertz Waves 2012, 33, 871–925. [Google Scholar] [CrossRef]
- Zhu, Y.F.; Lang, X.Y.; Zheng, W.T.; Jiang, Q. Electron scattering and electrical conductance in polycrystalline metallic films and wires: Impact of grain boundary scattering related to melting point. ACS Nano 2010, 4, 3781–3788. [Google Scholar] [CrossRef]
- Nenno, D.M.; Scheuer, L.; Sokoluk, D.; Keller, S.; Torosyan, G.; Brodyanski, A.; Lösch, J.; Battiato, M.; Schneider, H.C.; Beigang, R.; et al. Modification of spintronic terahertz emitter performance through defect engineering. Sci. Rep. 2019, 9, 13348. [Google Scholar] [CrossRef]
- Walther, M.; Cooke, D.G.; Sherstan, C.; Hajar, M.; Freeman, M.R.; Hegmann, F.A. Terahertz conductivity of thin gold films at the metal-insulator percolation transition. Phys. Rev. B 2007, 76, 125408. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Lan, Z.; Guo, Y.; Li, D.; Xi, L.; Zhang, H.; Jin, Z. High-Field Nonlinear Terahertz Conductivities of Iron Ultrathin Films. Nanomaterials 2025, 15, 1386. https://doi.org/10.3390/nano15181386
Zhu L, Lan Z, Guo Y, Li D, Xi L, Zhang H, Jin Z. High-Field Nonlinear Terahertz Conductivities of Iron Ultrathin Films. Nanomaterials. 2025; 15(18):1386. https://doi.org/10.3390/nano15181386
Chicago/Turabian StyleZhu, Lewen, Zhiqiang Lan, Yingyu Guo, Danni Li, Lin Xi, Huiping Zhang, and Zuanming Jin. 2025. "High-Field Nonlinear Terahertz Conductivities of Iron Ultrathin Films" Nanomaterials 15, no. 18: 1386. https://doi.org/10.3390/nano15181386
APA StyleZhu, L., Lan, Z., Guo, Y., Li, D., Xi, L., Zhang, H., & Jin, Z. (2025). High-Field Nonlinear Terahertz Conductivities of Iron Ultrathin Films. Nanomaterials, 15(18), 1386. https://doi.org/10.3390/nano15181386