Amperometric Determination of Glucose at Physiological pH by an Electrode Modified with a Composite Ni/Al-Layered Double Hydroxide and Electrochemically Reduced Graphene Oxide
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Instrumentation
2.3. Fabrication of the Modified Electrodes
2.4. Electrochemical Characterization
2.5. Evaluation of the Catalytic Activity Toward Glucose
3. Results and Discussion
3.1. Morphology of LDH and Composite
3.2. Electrochemical Characterization
- I.
- OH− > F− > Cl− > Br− > NO3− > I−
- II.
- CO32− > C10H4 N2O8S2− > SO42−
- III.
- HPO42− > HAsO42− > CrO42− > SO42− > MoO42−
3.3. Amperometric Detection of Glucose
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Diabetes Atlas. Available online: https://diabetesatlas.org (accessed on 9 June 2025).
- Sebokova, E.; Christ, A.; Boehringer, M.; Mizrahi, J. Dipeptidyl peptidase IV inhibitors: The next generation of new promising therapies for the management of type 2 diabetes. Cur. Top. Med. Chem. 2007, 7, 547–555. [Google Scholar] [CrossRef]
- Wang, J. Electrochemical glucose biosensors. Chem. Rev. 2008, 108, 814–825. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.H.; Kim, J.H. Advances in Continuous Glucose Monitoring and Integrated Devices for Management of Diabetes with Insulin-Based Therapy: Improvement in Glycemic Control. Diabetes Metab. J. 2023, 47, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Baranwal, J.; Barse, B.; Gatto, G.; Broncova, G.; Kumar, A. Electrochemical Sensors and Their Applications: A Review. Chemosensors 2022, 10, 363. [Google Scholar] [CrossRef]
- Moolayadukkam, S.; Thomas, S.; Sahoo, R.C.; Lee, C.H.; Lee, S.U.; Ramakrishna Matte, H.S.S. Role of Transition Metals in Layered Double Hydroxides for Differentiating the Oxygen Evolution and Non enzymatic Glucose Sensing. ACS Appl. Mater. Interfaces 2020, 12, 6193–6204. [Google Scholar] [CrossRef] [PubMed]
- Tonelli, D.; Gualandi, I.; Musella, E.; Scavetta, E. Synthesis and Characterization of Layered Double Hydroxides as Materials for Electrocatalytic Applications. Nanomaterials 2021, 11, 725. [Google Scholar] [CrossRef]
- Tonelli, D.; Scavetta, E.; Giorgetti, M. Layered-double-hydroxide-modified electrodes: Electroanalytical applications. Anal. Bioanal. Chem. 2013, 405, 603–614. [Google Scholar] [CrossRef]
- Tonelli, D.; Tonelli, M.; Gianvittorio, S.; Lesch, A. LDH-Based Voltammetric Sensors. Micromachines 2024, 15, 640. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.-M.; Zhang, L.; Qu, F.-L.; Lu, H.-X.; Zhang, X.-B.; Wu, Z.-S.; Huan, S.-Y.; Wang, Q.-A.; Shen, G.-L.; Yu, R.-Q. A nano-Ni based ultrasensitive nonenzymatic electrochemical sensor for glucose: Enhancing sensitivity through a nanowire array strategy. Biosens. Bioelectron. 2009, 25, 218–223. [Google Scholar] [CrossRef]
- Tang, S.; Yao, Y.; Chen, T.; Kong, D.; Shen, W.; Lee, H.K. Recent advances in the application of layered double hydroxides in analytical chemistry: A review. Anal. Chim. Acta 2020, 1103, 32–48. [Google Scholar] [CrossRef]
- Cavani, F.; Trifirò, F.; Vaccari, A. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal. Today 1991, 11, 173–301. [Google Scholar] [CrossRef]
- Mousty, C. Biosensing Applications of Clay-Modified Electrodes: A Review. Anal. Bioanal. Chem. 2010, 396, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Mousty, C.; Farhat, H. Recent advances in layered double hydroxides-based electrochemical sensors: Insight in transition metal contribution. Electroanalysis 2023, 35, e202200527. [Google Scholar] [CrossRef]
- Gualandi, I.; Vlamidis, Y.; Mazzei, L.; Musella, E.; Giorgetti, M.; Christian, M.; Morandi, V.; Scavetta, E.; Tonelli, D. Ni/Al Layered Double Hydroxide and Carbon Nanomaterial Composites for Glucose Sensing. ACS Appl. Nano Mater. 2019, 2, 143–155. [Google Scholar] [CrossRef]
- Wei, Y.; Hui, Y.; Lu, X.; Liu, C.; Zhang, Y.; Fan, Y.; Chen, W. One-pot preparation of NiMn layered double hydroxide-MOF material for highly sensitive electrochemical sensing of glucose. J. Electroanal. Chem. 2023, 933, 117276. [Google Scholar] [CrossRef]
- Wang, L.; Yang, Y.; Wang, B.; Duan, C.; Li, J.; Zheng, L.; Li, J.; Yin, Z. Bifunctional three-dimensional self-supporting multistage structure CC@ MOF-74(NiO)@NiCo LDH electrode for supercapacitors and non- enzymatic glucose sensors. J. Alloys Compd. 2021, 885, 160899. [Google Scholar] [CrossRef]
- Kachouei, M.A.; Shahrokhian, S.; Ezzati, M. Bimetallic CoZn-MOFs easily derived from CoZn-LDHs, as a suitable platform in fabrication of a non-enzymatic electrochemical sensor for detecting glucose in human fluids. Sens. Actuators B Chem. 2021, 344, 130254. [Google Scholar] [CrossRef]
- Zhu, R.; Song, Y.; Hu, J.; Zhu, K.; Liu, L.; Jiang, Y.; Xie, L.; Pang, H. Conductive Metal-Organic Framework Grown on the Nickel-Based Hydroxide to Realize High-Performance Electrochemical Glucose Sensing. Chem. Eur. J. 2024, 30, e202400982. [Google Scholar] [CrossRef]
- Song, D.; Wang, L.; Qu, Y.; Wang, B.; Li, Y.; Miao, X.; Yang, Y.; Duan, C. A High-Performance Three-Dimensional Hierarchical Structure MOF-Derived NiCo LDH Nanosheets for Non-Enzymatic Glucose Detection. J. Electrochem. Soc. 2019, 166, B1681. [Google Scholar] [CrossRef]
- Musella, E.; Gualandi, I.; Ferrari, G.; Mastroianni, D.; Scavetta, E.; Giorgetti, M.; Migliori, A.; Christian, M.; Morandi, V.; Denecke, R.; et al. Electrosynthesis of Ni/Al layered double hydroxide and reduced graphene oxide composites for the development of hybrid capacitors. Electrochim. Acta 2021, 365, 137294. [Google Scholar] [CrossRef]
- Tonelli, D.; Christian, M.; Musella, E.; Scavetta, E.; Gualandi, I. Design of nanohybrids based on layered double hydroxides and electrochemically reduced graphene oxide for energy applications. Catal. Today 2024, 427, 114401. [Google Scholar] [CrossRef]
- Varadwaj, G.B.B.; Nyamori, V.O. Layered double hydroxide- and graphene-based hierarchical nanocomposites: Synthetic strategies and promising applications in energy conversion and conservation. Nano Res. 2016, 9, 3598–3621. [Google Scholar] [CrossRef]
- Gualandi, I.; Scavetta, E.; Vlamidis, Y.; Casagrande, A.; Tonelli, D. Co/Al layered double hydroxide coated electrode for in flow amperometric detection of sugars. Electrochim. Acta 2015, 173, 67–75. [Google Scholar] [CrossRef]
- Miyata, S. Anion-exchange properties of hydrotalcite-like compounds. Clays Clay Min. 1983, 31, 305–311. [Google Scholar] [CrossRef]
- American Diabetes Association. Standards of Medical Care in Diabetes—2020 Abridged for Primary Care Providers. Clin. Diabetes 2020, 38, 10–38. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tonelli, D. Amperometric Determination of Glucose at Physiological pH by an Electrode Modified with a Composite Ni/Al-Layered Double Hydroxide and Electrochemically Reduced Graphene Oxide. Nanomaterials 2025, 15, 1172. https://doi.org/10.3390/nano15151172
Tonelli D. Amperometric Determination of Glucose at Physiological pH by an Electrode Modified with a Composite Ni/Al-Layered Double Hydroxide and Electrochemically Reduced Graphene Oxide. Nanomaterials. 2025; 15(15):1172. https://doi.org/10.3390/nano15151172
Chicago/Turabian StyleTonelli, Domenica. 2025. "Amperometric Determination of Glucose at Physiological pH by an Electrode Modified with a Composite Ni/Al-Layered Double Hydroxide and Electrochemically Reduced Graphene Oxide" Nanomaterials 15, no. 15: 1172. https://doi.org/10.3390/nano15151172
APA StyleTonelli, D. (2025). Amperometric Determination of Glucose at Physiological pH by an Electrode Modified with a Composite Ni/Al-Layered Double Hydroxide and Electrochemically Reduced Graphene Oxide. Nanomaterials, 15(15), 1172. https://doi.org/10.3390/nano15151172