Preparation of Non-Covalent BPTCD/g-C3N4 Heterojunction Photocatalysts and Photodegradation of Organic Dyes Under Solar Irradiation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Photocatalysts Preparation
2.2.1. Preparation of g-C3N4 Nanosheets
2.2.2. BPTCD/g-C3N4 Heterojunction Photocatalyst
2.3. Characterisation
2.4. Photocatalytic Degradation Experiments
3. Results and Discussion
3.1. Characterisations
3.2. Photocatalytic Performance of BPTCD/g-C3N4 in Dye Solutions Under Simulated Sunlight Irradiation
3.2.1. Photocatalytic Degradation of MO
3.2.2. Effect of pH
3.2.3. Photocatalytic Active Species and Cyclic Stability
3.3. Degradation of MB by BPTCD/g-C3N4
3.4. Mechanisms of Enhanced Photocatalytic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, P.; Rani, N.; Kumar, S.; Kumar, P.; Mohan, B.; Pallavi; Bhankar, V.; Kataria, N.; Kumar, R.; Kumar, K. Assessing the biomass-based carbon dots and their composites for photocatalytic treatment of wastewater. J. Clean. Prod. 2023, 413, 137474. [Google Scholar] [CrossRef]
- Haleem, A.; Ullah, M.; Rehman, S.U.; Shah, A.; Farooq, M.; Saeed, T.; Ullah, I.; Li, H. In-Depth Photocatalytic Degradation Mechanism of the Extensively Used Dyes Malachite Green, Methylene Blue, Congo Red, and Rhodamine B via Covalent Organic Framework-Based Photocatalysts. Water 2024, 16, 1588. [Google Scholar] [CrossRef]
- Solis, M.; Solis, A.; Perez, H.I.; Manjarrez, N.; Flores, M. Microbial decolouration of azo dyes: A review. Process. Biochem. 2012, 47, 1723–1748. [Google Scholar] [CrossRef]
- Kim, Y.D.; Lee, J.J. An Investigation on Thermal Decomposition Behavior of Water-Soluble Azo Dyes. Fibers Polym. 2023, 24, 2799–2806. [Google Scholar] [CrossRef]
- Khan, S.; Noor, T.; Iqbal, N.; Yaqoob, L. Photocatalytic Dye Degradation from Textile Wastewater: A Review. ACS Omega 2024, 9, 21751–21767. [Google Scholar] [CrossRef]
- Ajaz, M.; Shakeel, S.; Rehman, A. Microbial use for azo dye degradation-a strategy for dye bioremediation. Int. Microbiol. 2020, 23, 149–159. [Google Scholar] [CrossRef]
- Chen, Z.S.; Zhang, S.; Liu, Y.; Alharbi, N.S.; Rabah, S.O.; Wang, S.H.; Wang, X.X. Synthesis and fabrication of g-C3N4-based materials and their application in elimination of pollutants. Sci. Total Environ. 2020, 731, 139054. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Yan, C.X.; Dong, J.Q.; Zhou, W.J.; Rosei, F.; Feng, Y.; Wang, L.N. Structure/Property Control in Photocatalytic Organic Semiconductor Nanocrystals. Adv. Funct. Mater. 2021, 31, 2104099. [Google Scholar] [CrossRef]
- Li, W.T.; Zhang, H.J.; Huang, S.J.; Xu, J.Y.; Liu, L.P.; Li, J.S.; Jing, J.F.; Zhu, Y.F. Electron-enriched supramolecular PDI-SiO2 promoting PDS activation for enhanced photocatalytic advanced oxidation. Appl. Catal. B—Environ. Energy 2024, 340, 123262. [Google Scholar] [CrossRef]
- Guo, R.T.; Wang, J.; Bi, Z.X.; Chen, X.; Hu, X.; Pan, W.G. Recent advances and perspectives of g-C3N4-based materials for photocatalytic dyes degradation. Chemosphere 2022, 295, 133834. [Google Scholar] [CrossRef]
- Jindal, H.; Kumar, D.; Sillanpaa, M.; Nemiwal, M. Current progress in polymeric graphitic carbon nitride-based photocatalysts for dye degradation. Inorg. Chem. Commun. 2021, 131, 108786. [Google Scholar] [CrossRef]
- Wang, X.C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80. [Google Scholar] [CrossRef]
- Sun, H.P.; Gao, W.X.; Yuan, L.Y.; Ge, Y.X.; Zheng, X.; Luo, C.X.; Liu, J.K.; Feng, Z.T. Facile fabrication of NiCl2/g-C3N4 composite as high-performance cathode material for thermal battery. Electrochim. Acta 2025, 512, 145420. [Google Scholar] [CrossRef]
- Wu, C.L.; Wu, S.J.; Huang, Q.F.; Sun, K.; Huang, X.Q.; Wang, J.J.; Yu, B. Potassium-modified carbon nitride photocatalyzed-aminoacylation of N-sulfonyl ketimines. Chin. Chem. Lett. 2025, 36, 110250. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, Y.B.; Liu, C.; Li, X.; Zhao, G.H.; Liu, R.H.; Wang, H.Y.; Jiang, Y.Y.; Zhang, Y.L.; Gao, Y.H.; et al. Construction of oxygen-doped g-C3N4/BiOCl (S-scheme) heterojunction: Efficient degradation of tetracycline in wastewater. J. Environ. Chem. Eng. 2024, 12, 113354. [Google Scholar] [CrossRef]
- Cao, L.G.; Zheng, Z.S.; Liu, Y.; Li, Z.Q.; Li, Y.L. Special sea urchin-like CdS/g-C3N4 photocatalyst with high specific surface area and efficient charge separation. J. Mater. Sci. 2022, 57, 17609–17621. [Google Scholar] [CrossRef]
- Aljuaid, A.; Almehmadi, M.; Alsaiari, A.A.; Allahyani, M.; Abdulaziz, O.; Alsharif, A.; Alsaiari, J.A.; Saih, M.; Alotaibi, R.T.; Khan, I. g-C3N4 Based Photocatalyst for the Efficient Photodegradation of Toxic Methyl Orange Dye: Recent Modifications and Future Perspectives. Molecules 2023, 28, 3199. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, Y.F.; Huang, F.L.; Song, S.F.; Ai, G.G.; Xin, X.; Zhao, B.; Zheng, Y.J.; Zhang, Z.P. Recent Advances in g-C3N4-Based Materials and Their Application in Energy and Environmental Sustainability. Molecules 2023, 28, 432. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, G.Q.; Dang, M.Y.; Dong, S.H.; Liu, Y.; Liu, T.; Ren, H.J.; Xia, A.; Lv, L. Study on surface modification of g-C3N4 photocatalyst. J. Alloys Compd. 2022, 908, 164507. [Google Scholar] [CrossRef]
- Khan, M.A.; Mutahir, S.; Shaheen, I.; Yuan, Q.; Bououdina, M.; Humayun, M. Recent advances over the doped g-C3N4 in photocatalysis: A review. Coord. Chem. Rev. 2025, 522, 216227. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. A critical review on graphitic carbon nitride (g-C3N4)-based materials: Preparation, modification and environmental application. Coord. Chem. Rev. 2022, 453, 214338. [Google Scholar] [CrossRef]
- Hong, K.H.; Sun, G. Photoactive antibacterial cotton fabrics treated by 3,3′,4,4′-benzophenonetetracarboxylic dianhydride. Carbohydr. Polym. 2011, 84, 1027–1032. [Google Scholar] [CrossRef]
- Hou, A.; Sun, G. Multifunctional finishing of cotton fabrics with 3,3′,4,4′-benzophenone tetracarboxylic dianhydride: Reaction mechanism. Carbohydr. Polym. 2013, 95, 768–772. [Google Scholar] [CrossRef]
- Yang, C.; Xu, W.; Nan, Y.; Wang, Y.; Gao, C.; Hu, Y.; Chen, X. Preparation and characterization of acid and solvent resistant polyimide ultrafiltration membrane. Appl. Surf. Sci. 2019, 483, 278–284. [Google Scholar] [CrossRef]
- Li, M.; Xu, Y.; Gong, X.; Geng, P.; Gao, Z.; Qin, J.; Wang, Y.; Cheng, P. Ternary copolymerization photosensitive polyimide containing flexible group for liquid crystal alignment film. J. Polym. Res. 2022, 29, 287. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, J.; Yu, Y.; Dan, Y.; Jiang, L. 4,4,4″-Triaminotriphenylamine-based porous polyimide as a visible-light-driven photocatalyst. New J. Chem. 2018, 42, 12205–12211. [Google Scholar] [CrossRef]
- Yi, S.; Zou, Y.; Sun, S.; Dai, F.; Si, Y.; Sun, G. Rechargeable Photoactive Silk-Derived Nanofibrous Membranes for Degradation of Reactive Red 195. Acs Sustain. Chem. Eng. 2019, 7, 986–993. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, J.J.; Wang, G.X.; Hu, Q.S.; Chen, X.H. Ultrafast charge transfer in metal-free H2O2 photoproduction by anhydride modified g-C3N4. Chem. Commun. 2023, 59, 13046–13049. [Google Scholar] [CrossRef]
- Wang, X.Y.; Meng, J.Q.; Yang, X.; Hu, A.; Yang, Y.X.; Guo, Y.H. Fabrication of a Perylene Tetracarboxylic Diimide-Graphitic Carbon Nitride Heterojunction Photocatalyst for Efficient Degradation of Aqueous Organic Pollutants. ACS Appl. Mater. Interfaces 2019, 11, 588–602. [Google Scholar] [CrossRef]
- Liu, Y.A.; Ma, L.B.; Shen, C.C.; Wang, X.; Zhou, X.; Zhao, Z.W.; Xu, A.W. Highly enhanced visible-light photocatalytic hydrogen evolution on g-C3N4 decorated with vopc through π-π interaction. Chin. J. Catal. 2019, 40, 168–176. [Google Scholar] [CrossRef]
- Huang, G.; Zeng, D.L.; Ke, P.; Chen, Y. Preparation and characterization of Ag3PO4@g-C3N4 photocatalysts for dye wastewater treatment under visible-light irradiation. Inorg. Chem. Commun. 2024, 160, 111889. [Google Scholar] [CrossRef]
- Ma, X.G.; Wei, Y.; Wei, Z.; He, H.; Huang, C.Y.; Zhu, Y.F. Probing π-π stacking modulation of g-C3N4/graphene heterojunctions and corresponding role of graphene on photocatalytic activity. J. Colloid Interface Sci. 2017, 508, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.Y.; Tai, G.Y.; Li, G.; Lu, J.H.L.; Pan, Y.W.; Han, J.G.; Xing, W.N. Self-assembled perylene diimide decorated g-C3N4 heterojunction catalyst with strong interfacial charge transfer through π-π interaction for efficient boosted photocatalytic degradation of tetracycline. Surf. Interfaces 2024, 53, 105008. [Google Scholar] [CrossRef]
- Che, H.B.; Ngaw, C.K.; Hu, P.; Wang, J.S.; Li, Y.L.; Wang, X.K.; Teng, W.L. Fabrication of molybdenum doped carbon nitride nanosheets for efficiently photocatalytic water splitting. J. Alloys Compd. 2020, 849, 156440. [Google Scholar] [CrossRef]
- Li, L.L.; Bodedla, G.B.; Liu, Z.T.; Zhu, X.J. Naphthalimide-porphyrin hybridized graphitic carbon nitride for enhanced photocatalytic hydrogen production. Appl. Surf. Sci. 2020, 499, 143755. [Google Scholar] [CrossRef]
- Xing, C.W.; Yu, G.Y.; Chen, T.; Liu, S.S.; Sun, Q.Q.; Liu, Q.; Hu, Y.J.; Liu, H.Y.; Li, X.Y. Perylenetetracarboxylic diimide covalently bonded with mesoporous g-CN to construct direct Z-scheme heterojunctions for efficient photocatalytic oxidative coupling of amines. Appl. Catal. B—Environ. 2021, 298, 120534. [Google Scholar] [CrossRef]
- Ranjith, R.; Karmegam, N.; Alsawalha, M.; Hu, X.F.; Jothimani, K. Construction of g-C3N4/CdS/BiVO4 ternary nanocomposite with enhanced visible-light-driven photocatalytic activity toward methylene blue dye degradation in the aqueous phase. J. Environ. Manag. 2023, 330, 117132. [Google Scholar] [CrossRef]
- Miao, H.; Wang, Y.Y.; Yang, X.M. Carbon dots derived from tobacco for visually distinguishing and detecting three kinds of tetracyclines. Nanoscale 2018, 10, 8139–8145. [Google Scholar] [CrossRef]
- Li, Q.P.; Wen, N.; Zhang, W.; Yu, L.S.; Shen, J.H.; Li, S.X.; Lv, Y.G. Preparation of g-C3N4/TCNQ Composite and Photocatalytic Degradation of Pefloxacin. Micromachines 2023, 14, 941. [Google Scholar] [CrossRef]
- Li, X.F.; Shen, X.L.; Qiu, Y.L.; Zhu, Z.L.; Zhang, H.; Yin, D.Q. Fe3O4 quantum dots mediated P-g-C3N4/BiOI as an efficient and recyclable Z-scheme photo-Fenton catalyst for tetracycline degradation and bacterial inactivation. J. Hazard. Mater. 2023, 456, 131677. [Google Scholar] [CrossRef]
- Han, Q.; Wang, B.; Gao, J.; Cheng, Z.H.; Zhao, Y.; Zhang, Z.P.; Qu, L.T. Atomically Thin Mesoporous Nanomesh of Graphitic C3N4 for High-Efficiency Photocatalytic Hydrogen Evolution. Acs Nano 2016, 10, 2745–2751. [Google Scholar] [CrossRef] [PubMed]
- Xia, P.; Cheng, B.; Jiang, J.; Tang, H. Localized π-conjugated structure and EPR investigation of g-C3N4 photocatalyst. Appl. Surf. Sci. 2019, 487, 335–342. [Google Scholar] [CrossRef]
- Zhang, M.X.; Xing, M.Y.; Dong, B.; Zhang, H.X.; Sun, X.J.; Li, Q.H.; Lu, X.S.; Mo, J.J.; Zhu, H.X. Thermal Polymerisation Synthesis of g-C3N4 for Photocatalytic Degradation of Rhodamine B Dye under Natural Sunlight. Water 2023, 15, 2903. [Google Scholar] [CrossRef]
- Guo, Y.D.; Li, C.X.; Guo, Y.Q.; Wang, X.G.; Li, X.M. Ultrasonic-assisted synthesis of mesoporous g-C3N4/Na-bentonite composites and its application for efficient photocatalytic simultaneous removal of Cr(VI) and RhB. Colloids Surf. A—Physicochem. Eng. Asp. 2019, 578, 123624. [Google Scholar] [CrossRef]
- Xu, J.; Gao, Q.; Wang, Z.; Zhu, Y. An all-organic 0D/2D supramolecular porphyrin/g-C3N4 heterojunction assembled via π-π interaction for efficient visible photocatalytic oxidation. Appl. Catal. B Environ. 2021, 291, 120059. [Google Scholar] [CrossRef]
- Gan, J.S.; Li, X.B.; Arif, U.; Ali, F.; Ali, A.; Raziq, F.; Ali, N.; Yang, Y.; Wang, Z.G. Development and characterization of silver modified novel graphitic-carbon nitride (Ag-ZnO/C3N4) coupled with metal oxide photocatalysts for accelerated degradation of dye-based emerging pollutants. Surf. Interfaces 2023, 39, 102938. [Google Scholar] [CrossRef]
- Yan, Q.C.Z.C.; Guo, L.Y.; Zhang, H.; Zhang, L.C.; Wang, W.M. Role of maze like structure and Y2O3 on Al-based amorphous ribbon surface in MO solution degradation. J. Mol. Liq. 2020, 318, 114318. [Google Scholar] [CrossRef]
- Chen, P.; Liang, Y.M.; Xu, Y.F.; Zhao, Y.L.; Song, S.X. Synchronous photosensitized degradation of methyl orange and methylene blue in water by visible-light irradiation. J. Mol. Liq. 2021, 334, 116159. [Google Scholar] [CrossRef]
- Sun, M.F.; Xie, Y.C.; Huang, J.Y.; Liu, C.Y.; Dong, Y.J.; Li, S.J.; Zeng, C. Oxygen-deficient AgIO3 for efficiently photodegrading organic contaminants under natural sunlight. J. Environ. Manag. 2024, 363, 121393. [Google Scholar] [CrossRef]
- Feng, Z.; Zeng, L.; Zhang, Q.L.; Ge, S.F.; Zhao, X.Y.; Lin, H.J.; He, Y.M. In situ preparation of g-C3N4/Bi4O5I2 complex and its elevated photoactivity in Methyl Orange degradation under visible light. J. Environ. Sci. 2020, 87, 149–162. [Google Scholar] [CrossRef]
- Zhou, J.H.; Zhao, Z.W.; Wang, Y.; Ding, Z.X.; Xu, X.; Peng, W.; Fan, J.Y.; Zhou, X.; Liu, J. BiOCl0.875Br0.125/polydopamine functionalized PVDF membrane for highly efficient visible-light-driven photocatalytic degradation of roxarsone and simultaneous arsenic immobilization. Chem. Eng. J. 2020, 402, 126048. [Google Scholar] [CrossRef]
- Sun, Y.N.; Wang, D.D.; Zhu, Y.F. Deep degradation of pollutants by perylene diimide supramolecular photocatalyst with unique Bi-planar π-π conjugation. Chem. Eng. J. 2022, 438, 135667. [Google Scholar] [CrossRef]
- Jiang, R.R.; Lu, G.H.; Liu, J.C.; Wu, D.H.; Yan, Z.H.; Wang, Y.H. Incorporation of π-conjugated molecules as electron donors in g-C3N4 enhances photocatalytic H-production. Renew. Energy 2021, 164, 531–540. [Google Scholar] [CrossRef]
- Chen, C.-X.; Yang, S.-S.; Ding, J.; Wang, G.-Y.; Zhong, L.; Zhao, S.-Y.; Zang, Y.-N.; Jiang, J.-Q.; Ding, L.; Zhao, Y.; et al. Non-covalent self-assembly synthesis of AQ2S@rGO nanocomposite for the degradation of sulfadiazine under solar irradiation: The indispensable effect of chloride. Appl. Catal. B—Environ. 2021, 298, 120495. [Google Scholar] [CrossRef]
- Huang, S.; Xiong, F.; Yu, M.; Zhou, Y.; Xu, J.; Liu, J. Synthesis of Ag-loaded NaNbO3/g-C3N4 heterojunction for enhanced photocatalytic degradation of methyl orange. Mater. Sci. Semicond. Process. 2025, 192, 109401. [Google Scholar] [CrossRef]
- Orooji, Y.; Ghanbari, M.; Amiri, O.; Salavati-Niasari, M. Facile fabrication of silver iodide/graphitic carbon nitride nanocomposites by notable photo-catalytic performance through sunlight and antimicrobial activity. J. Hazard. Mater. 2020, 389, 122079. [Google Scholar] [CrossRef]
- Xu, R.; Wei, G.; Xie, Z.; Diao, S.; Wen, J.; Tang, T.; Jiang, L.; Li, M.; Hu, G. V2C MXene-modified g-C3N4 for enhanced visible-light photocatalytic activity. J. Alloy. Compd. 2023, 970. [Google Scholar] [CrossRef]
- Liu, Q.; Meng, Y.; Liu, Q.; Xu, M.; Hu, Y.; Chen, S. Synthesis of Ag3PO4/Ag/g-C3N4 Composite for Enhanced Photocatalytic Degradation of Methyl Orange. Molecules 2023, 28, 6082. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, X.; Song, H.; Chen, C.; Han, F.; Wen, C. Protonated graphitic carbon nitride coated metal-organic frameworks with enhanced visible-light photocatalytic activity for contaminants degradation. Appl. Surf. Sci. 2018, 441, 85–98. [Google Scholar] [CrossRef]
- Yan, H.; Zhu, Z.; Long, Y.; Li, W. Single-source-precursor-assisted synthesis of porous WO3/g-C3N4 with enhanced photocatalytic property. Colloids Surf. A Physicochem. Eng. Asp. 2019, 582, 123857. [Google Scholar] [CrossRef]
- Liu, F.; Nguyen, T.-P.; Wang, Q.; Massuyeau, F.; Dan, Y.; Jiang, L. Construction of -scheme-g-C3N4/Ag/P3HT heterojunction for enhanced visible-light photocatalytic degradation of tetracycline (TC) and methyl orange (MO). Appl. Surf. Sci. 2019, 496, 143653. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, R.; Shang, Y.; Fei, J.; Fu, F. Synergism of 3D g-C3N4 decorated Bi2WO6 microspheres with efficient visible light catalytic activity. J. Phys. Chem. Solids 2018, 119, 19–28. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, Y.; Wang, Y.; Yang, Y.; Wang, P.; Shi, L.; Feng, L.; Fang, S.; Liu, Q.; Ma, L.; et al. Synthesis and photocatalytic activity of g-C3N4/ZnO composite microspheres under visible light exposure. Ceram. Int. 2022, 48, 3293–3302. [Google Scholar] [CrossRef]
Photocatalysts | SBET (m2/g−1) | Pore Size (nm) | Pore Volume (cm3/g−1) |
---|---|---|---|
g-C3N4 | 11.115 | 3.065 | 0.058 |
BPTCD | 2.158 | 2.174 | 0.003 |
BPTCD/g-C3N4-60% | 15.085 | 1.171 | 0.054 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, X.; Jia, G.; Chen, R.; Zhang, Y. Preparation of Non-Covalent BPTCD/g-C3N4 Heterojunction Photocatalysts and Photodegradation of Organic Dyes Under Solar Irradiation. Nanomaterials 2025, 15, 1131. https://doi.org/10.3390/nano15141131
Wei X, Jia G, Chen R, Zhang Y. Preparation of Non-Covalent BPTCD/g-C3N4 Heterojunction Photocatalysts and Photodegradation of Organic Dyes Under Solar Irradiation. Nanomaterials. 2025; 15(14):1131. https://doi.org/10.3390/nano15141131
Chicago/Turabian StyleWei, Xing, Gaopeng Jia, Ru Chen, and Yalong Zhang. 2025. "Preparation of Non-Covalent BPTCD/g-C3N4 Heterojunction Photocatalysts and Photodegradation of Organic Dyes Under Solar Irradiation" Nanomaterials 15, no. 14: 1131. https://doi.org/10.3390/nano15141131
APA StyleWei, X., Jia, G., Chen, R., & Zhang, Y. (2025). Preparation of Non-Covalent BPTCD/g-C3N4 Heterojunction Photocatalysts and Photodegradation of Organic Dyes Under Solar Irradiation. Nanomaterials, 15(14), 1131. https://doi.org/10.3390/nano15141131