Thermal, Mechanical, Morphological, and Piezoresistive Properties of Poly(ethylene-co-methacrylic acid) (EMAA) with Carbon Nanotubes and Expanded Graphite
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Electrical Properties
3.2. Morphological Investigation: FESEM Images
3.3. Thermal Analysis
3.3.1. Thermogravimetric Analysis (TGA)
3.3.2. Differential Scanning Calorimetry (DSC)
3.4. Mechanical Characterization
3.4.1. Dynamic Mechanical Analysis (DMA)
3.4.2. Tensile Test
3.5. Piezoresistive Response
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fallahi, A.; Bahramzadeh, Y.; Tabatabaie, S.E.; Shahinpoor, M. A Novel Multifunctional Soft Robotic Transducer Made with Poly (Ethylene-Co-Methacrylic Acid) Ionomer Metal Nanocomposite. Int. J. Intell. Robot. Appl. 2017, 1, 143–156. [Google Scholar] [CrossRef]
- Tiwari, S.; Bag, D.S.; Dwivedi, M. Poly (Ethylene-Co-Methacrylic Acid) (PEMA) Ionomers and Their Applications Including Self-Healing and Shape Memory Applications. J. Polym. Res. 2024, 31, 91. [Google Scholar] [CrossRef]
- da Cunha, R.B.; Agrawal, P.; Brito, G.d.F.; de Mélo, T.J.A. Exploring Shape Memory and Self-Healing Behavior in Sodium and Zinc Neutralized Ethylene/Methacrylic Acid (EMAA) Ionomers. J. Mater. Res. Technol. 2023, 27, 7304–7317. [Google Scholar] [CrossRef]
- Peñas-Caballero, M.; Chemello, E.; Grande, A.M.; Hernández Santana, M.; Verdejo, R.; Lopez-Manchado, M.A. Poly(Ethylene-Co-Methacrylic Acid) Coated Carbon Fiber for Self-Healing Composites. Compos. Part A Appl. Sci. Manuf. 2023, 169, 107537. [Google Scholar] [CrossRef]
- Zhang, Z.; Tie, Y.; Li, C. Low-Velocity Impact and Self-Healing Behavior of CFRP Laminates with Poly(Ethylene-Co-Methacrylic Acid) Filament Reinforcement. Polym. Compos. 2023, 44, 6012–6026. [Google Scholar] [CrossRef]
- Meure, S.; Wu, D.Y.; Furman, S. Polyethylene-Co-Methacrylic Acid Healing Agents for Mendable Epoxy Resins. Acta Mater. 2009, 57, 4312–4320. [Google Scholar] [CrossRef]
- Pingkarawat, K.; Dell’Olio, C.; Varley, R.J.; Mouritz, A.P. Poly(Ethylene-Co-Methacrylic Acid) (EMAA) as an Efficient Healing Agent for High Performance Epoxy Networks Using Diglycidyl Ether of Bisphenol A (DGEBA). Polymer 2016, 92, 153–163. [Google Scholar] [CrossRef]
- Dell’Olio, C.; Yuan, Q.; Varley, R.J. Epoxy/Poly(Ethylene-Co-Methacrylic Acid) Blends as Thermally Activated Healing Agents in an Epoxy/Amine Network. Macromol. Mater. Eng. 2015, 300, 70–79. [Google Scholar] [CrossRef]
- Nascimento, A.; Trappe, V.; Pavasaryte, L.; Melo, J.; Barbosa, A.P.C. Effects of Particle Size and Particle Concentration of Poly (Ethylene-Co-Methacrylic Acid) on Properties of Epoxy Resin. J. Appl. Polym. Sci. 2024, 141, e55677. [Google Scholar] [CrossRef]
- do Nascimento, A.A.; Trappe, V.; Diniz Melo, J.D.; Cysne Barbosa, A.P. Fatigue Behavior of Self-Healing Glass Fiber/Epoxy Composites with Addition of Poly (Ethylene-Co-Methacrylic Acid) (EMAA). Polym. Test. 2023, 117, 107863. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, G.; Lai, J.; Yu, T.X.; Zhang, X. Interlaminar Toughening and Self-Healing Mechanism for Hard-and-Soft Layered Composite Laminates. Compos. Part A Appl. Sci. Manuf. 2025, 189, 108623. [Google Scholar] [CrossRef]
- Hargou, K.; Pingkarawat, K.; Mouritz, A.P.; Wang, C.H. Ultrasonic Activation of Mendable Polymer for Self-Healing Carbon–Epoxy Laminates. Compos. B Eng. 2013, 45, 1031–1039. [Google Scholar] [CrossRef]
- Pingkarawat, K.; Wang, C.H.; Varley, R.J.; Mouritz, A.P. Mechanical Properties of Mendable Composites Containing Self-Healing Thermoplastic Agents. Compos. Part A Appl. Sci. Manuf. 2014, 65, 10–18. [Google Scholar] [CrossRef]
- Snyder, A.D.; Phillips, Z.J.; Turicek, J.S.; Diesendruck, C.E.; Nakshatrala, K.B.; Patrick, J.F. Prolonged in Situ Self-Healing in Structural Composites via Thermo-Reversible Entanglement. Nat. Commun. 2022, 13, 6511. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Huo, S.; Chevali, V.; Hall, W.; Offringa, A.; Song, P.; Wang, H. Carbon Fiber Reinforced Thermoplastics: From Materials to Manufacturing and Applications. Adv. Mater. 2025, 2418709. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Ji, Y.; Zhang, Q.; Zhao, H.; Chen, W.; Wang, D.; Meng, L.; Li, L. Preparation of Polyethylene and Ethylene/Methacrylic Acid Copolymer Blend Films with Tunable Surface Properties through Manipulating Processing Parameters during Film Blowing. Polymers 2019, 11, 1565. [Google Scholar] [CrossRef]
- Rajasekaran, D.; Maji, P.K. Recycling of Plastic Wastes with Poly (Ethylene-Co-Methacrylic Acid) Copolymer as Compatibilizer and Their Conversion into High-End Product. Waste Manag. 2018, 74, 135–143. [Google Scholar] [CrossRef]
- da Cunha, R.B.; Agrawal, P.; da Silva Lúcio, A.; Cunha, C.T.C.; de Figueiredo Brito, G.; de Mélo, T.J.A. Evaluation of Shape Memory and Self-Healing of Poly(ε-Caprolactone)/Poly(Ethylene-Co-Methacrylic Acid) Ionomer (PCL/EMAA-Zn) Blends. J. Mater. Sci. 2024, 59, 4700–4721. [Google Scholar] [CrossRef]
- Aliberti, F.; Sorrentino, A.; Palmieri, B.; Vertuccio, L.; De Tommaso, G.; Pantani, R.; Guadagno, L.; Martone, A. Lightweight 3D-Printed Heaters: Design and Applicative Versatility. Compos. C Open Access 2024, 15, 100527. [Google Scholar] [CrossRef]
- Aliberti, F.; Guadagno, L.; Longo, R.; Raimondo, M.; Pantani, R.; Sorrentino, A.; Catauro, M.; Vertuccio, L. Three-Dimensional Printed Nanocomposites with Tunable Piezoresistive Response. Nanomaterials 2024, 14, 1761. [Google Scholar] [CrossRef]
- Nitodas, S.; Shah, R.; Das, M. Research Advancements in the Mechanical Performance and Functional Properties of Nanocomposites Reinforced with Surface-Modified Carbon Nanotubes: A Review. Appl. Sci. 2025, 15, 374. [Google Scholar] [CrossRef]
- Saeed, M.A.; Abdelkader, A.; Alshammari, Y.; Valles, C.; Alkandary, A.; Saeed, M.A.; Alshammari, Y.; Alkandary, A.; Abdelkader, A. Graphene Applications in Composites, Energy, and Water Treatment. Macromol. Mater. Eng. 2025, 310, 2400316. [Google Scholar] [CrossRef]
- Zhan, X.; Su, K.; Tuo, X.; Gong, Y. Mechanical, Thermal, and Electrical Properties on 3D Printed Short Carbon Fiber Reinforced Polypropylene Composites. ACS Appl. Polym. Mater. 2024, 6, 3787–3795. [Google Scholar] [CrossRef]
- Lu, H.; Li, Z.; Qi, X.; Xu, L.; Chi, Z.; Duan, D.; Islam, M.Z.; Wang, W.; Jin, X.; Zhu, Y.; et al. Flexible, Electrothermal-Driven Controllable Carbon Fiber/Poly(Ethylene-Co-Vinyl Acetate) Shape Memory Composites for Electromagnetic Shielding. Compos. Sci. Technol. 2021, 207, 108697. [Google Scholar] [CrossRef]
- Chung, K.Y.; Xu, B.; Li, Z.; Liu, Y.; Han, J. Bioinspired Ultra-Stretchable Dual-Carbon Conductive Functional Polymer Fiber Materials for Health Monitoring, Energy Harvesting and Self-Powered Sensing. Chem. Eng. J. 2023, 454, 140384. [Google Scholar] [CrossRef]
- Yuan, J.; Li, Q.; Ding, L.; Shi, C.; Wang, Q.; Niu, Y.; Xu, C. Carbon Black/Multi-Walled Carbon Nanotube-Based, Highly Sensitive, Flexible Pressure Sensor. ACS Omega 2022, 7, 44428–44437. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Tang, Z.; Liu, P.; Gao, H.; Chang, Y.; Wang, G. Smart Utilization of Multifunctional Metal Oxides in Phase Change Materials. Matter 2020, 3, 708–741. [Google Scholar] [CrossRef]
- Marinho, T.; Costa, P.; Lizundia, E.; Costa, C.M.; Corona-Galván, S.; Lanceros-Méndez, S. Ceramic Nanoparticles and Carbon Nanotubes Reinforced Thermoplastic Materials for Piezocapacitive Sensing Applications. Compos. Sci. Technol. 2019, 183, 107804. [Google Scholar] [CrossRef]
- Tayyab, M.; Zizhe, L.; Rauf, S.; Xu, Z.; Sagar, R.U.R.; Faiz, F.; Tayyab, Z.; Rehman, R.U.; Imran, M.; Waheed, A.; et al. Advanced Fabrication Techniques for Polymer–Metal Nanocomposite Films: State-of-the-Art Innovations in Energy and Electronic Applications. Chem. Sci. 2025, 16, 3362–3407. [Google Scholar] [CrossRef]
- Idumah, C.I. Multifunctional Properties Optimization and Stimuli-Responsivity of Shape Memory Polymeric Nanoarchitectures and Applications. Polym. Eng. Sci. 2023, 63, 1857–1873. [Google Scholar] [CrossRef]
- Luan, C.; Movva, S.; Wang, K.; Yao, X.; Zhang, C.; Wang, B. Towards Next-Generation Fiber-Reinforced Polymer Composites: A Perspective on Multifunctionality. Funct. Compos. Struct. 2019, 1, 042002. [Google Scholar] [CrossRef]
- Anani, J.; Shokry, H.; Elkady, M. Nanofillers: Design, Performance and Prospects. In Handbook of Nanofillers; Springer: Singapore, 2024; pp. 1–35. [Google Scholar] [CrossRef]
- Basuli, U.; Chaki, T.K.; Chattopadhyay, S.; Sabharwal, S. Thermal and Mechanical Properties of Polymer-Nanocomposites Based on Ethylene Methyl Acrylate and Multiwalled Carbon Nanotube. Polym. Compos. 2010, 31, 1168–1178. [Google Scholar] [CrossRef]
- Basuli, U.; Chaki, T.K.; Setua, D.K.; Chattopadhyay, S. A Comprehensive Assessment on Degradation of Multi-Walled Carbon Nanotube-Reinforced EMA Nanocomposites. J. Therm. Anal. Calorim. 2011, 108, 1223–1234. [Google Scholar] [CrossRef]
- Cohen, E.; Ophir, A.; Kenig, S.; Barry, C.; Mead, J. Pyridine-Modified Polymer as a Non-Covalent Compatibilizer for Multi-Walled CNT/Poly[Ethylene-Co-(Methacrylic Acid)] Composites Fabricated by Direct Melt Mixing. Macromol. Mater. Eng. 2013, 298, 419–428. [Google Scholar] [CrossRef]
- Tita, S.P.S.; Magalhães, F.D.; Paiva, D.; Bertochi, M.A.Z.; Teixeira, G.F.; Pires, A.L.; Pereira, A.M.; Tarpani, J.R. Flexible Composite Films Made of EMAA−Na+ Ionomer: Evaluation of the Influence of Piezoelectric Particles on the Thermal and Mechanical Properties. Polymers 2022, 14, 2755. [Google Scholar] [CrossRef]
- Hia, I.L.; Snyder, A.D.; Turicek, J.S.; Blanc, F.; Patrick, J.F.; Therriault, D. Electrically Conductive and 3D-Printable Copolymer/MWCNT Nanocomposites for Strain Sensing. Compos. Sci. Technol. 2023, 232, 109850. [Google Scholar] [CrossRef]
- Cerezo, F.; Preston, C.; Shanks, R. Structural, Mechanical and Dielectric Properties of Poly(ethylene-co-821 Methyl Acrylate-co-acrylic Acid) Graphite Oxide Nanocomposites. RMIT University. Conference Contribution. 822. 2005. Available online: https://hdl.handle.net/10779/rmit.27335349.v1 (accessed on 5 June 2025).
- Vertuccio, L.; Foglia, F.; Pantani, R.; Romero-Sánchez, M.D.; Calderón, B.; Guadagno, L. Carbon Nanotubes and Expanded Graphite Based Bulk Nanocomposites for De-Icing Applications. Compos. B Eng. 2021, 207, 108583. [Google Scholar] [CrossRef]
- Bhawal, P.; Ganguly, S.; Das, T.K.; Mondal, S.; Choudhury, S.; Das, N.C. Superior Electromagnetic Interference Shielding Effectiveness and Electro-Mechanical Properties of EMA-IRGO Nanocomposites through the in-Situ Reduction of GO from Melt Blended EMA-GO Composites. Compos. B Eng. 2018, 134, 46–60. [Google Scholar] [CrossRef]
- De Vivo, B.; Lamberti, P.; Spinelli, G.; Tucci, V. A Morphological and Structural Approach to Evaluate the Electromagnetic Performances of Composites Based on Random Networks of Carbon Nanotubes. J. Appl. Phys. 2014, 115, 154311. [Google Scholar] [CrossRef]
- Li, C.; Thostenson, E.T.; Chou, T.W. Dominant Role of Tunneling Resistance in the Electrical Conductivity of Carbon Nanotube-Based Composites. Appl. Phys. Lett. 2007, 91, 223114. [Google Scholar] [CrossRef]
- Mergen, Ö.B.; Umut, E.; Arda, E.; Kara, S. A Comparative Study on the AC/DC Conductivity, Dielectric and Optical Properties of Polystyrene/Graphene Nanoplatelets (PS/GNP) and Multi-Walled Carbon Nanotube (PS/MWCNT) Nanocomposites. Polym. Test. 2020, 90, 106682. [Google Scholar] [CrossRef]
- Spinelli, G.; Lamberti, P.; Tucci, V.; Guadagno, L.; Vertuccio, L. Damage Monitoring of Structural Resins Loaded with Carbon Fillers: Experimental and Theoretical Study. Nanomaterials 2020, 10, 434. [Google Scholar] [CrossRef] [PubMed]
- Bocchini, S.; Frache, A.; Camino, G.; Claes, M. Polyethylene Thermal Oxidative Stabilisation in Carbon Nanotubes Based Nanocomposites. Eur. Polym. J. 2007, 43, 3222–3235. [Google Scholar] [CrossRef]
- Poomalai, P.; Ramaraj, B. Siddaramaiah Thermal and Mechanical Properties of Poly(Methyl Methacrylate) and Ethylene Vinyl Acetate Copolymer Blends. J. Appl. Polym. Sci. 2007, 106, 684–691. [Google Scholar] [CrossRef]
- Dittrich, B.; Wartig, K.A.; Hofmann, D.; Mülhaupt, R.; Schartel, B. Carbon Black, Multiwall Carbon Nanotubes, Expanded Graphite and Functionalized Graphene Flame Retarded Polypropylene Nanocomposites. Polym. Adv. Technol. 2013, 24, 916–926. [Google Scholar] [CrossRef]
- Umar, M.; Ofem, M.I.; Anwar, A.S.; Salisu, A.G. Thermo Gravimetric Analysis (TGA) of PA6/G and PA6/GNP Composites Using Two Processing Streams. J. King Saud Univ.-Eng. Sci. 2022, 34, 77–87. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M.; Naffakh, M.; Gómez, M.A.; Marco, C.; Ellis, G.; Martínez, M.T.; Ansón, A.; González-Domínguez, J.M.; Martínez-Rubi, Y.; Simard, B. Development and Characterization of PEEK/Carbon Nanotube Composites. Carbon 2009, 47, 3079–3090. [Google Scholar] [CrossRef]
- Tarani, E.; Terzopoulou, Z.; Bikiaris, D.N.; Kyratsi, T.; Chrissafis, K.; Vourlias, G. Thermal Conductivity and Degradation Behavior of HDPE/Graphene Nanocomposites: Pyrolysis, Kinetics and Mechanism. J. Therm. Anal. Calorim. 2017, 129, 1715–1726. [Google Scholar] [CrossRef]
- Yano, S.; Nagao, N.; Hattori, M.; Hirasawa, E.; Tadano, K. Dielectric Relaxations of Ethylene Ionomers. Macromolecules 1992, 25, 368–376. [Google Scholar] [CrossRef]
- Ming, Y.; Zhou, Z.; Hao, T.; Nie, Y. Polymer Nanocomposites: Role of Modified Filler Content and Interfacial Interaction on Crystallization. Eur. Polym. J. 2022, 162, 110894. [Google Scholar] [CrossRef]
- Lau, K.T.; Chipara, M.; Ling, H.Y.; Hui, D. On the Effective Elastic Moduli of Carbon Nanotubes for Nanocomposite Structures. Compos. B Eng. 2004, 35, 95–101. [Google Scholar] [CrossRef]
- Scarpa, F.; Adhikari, S.; Srikantha Phani, A. Effective Elastic Mechanical Properties of Single Layer Graphene Sheets. Nanotechnology 2009, 20, 065709. [Google Scholar] [CrossRef]
- Shi, J.X.; Natsuki, T.; Lei, X.W.; Ni, Q.Q. Equivalent Young’s Modulus and Thickness of Graphene Sheets for the Continuum Mechanical Models. Appl. Phys. Lett. 2014, 104, 223101. [Google Scholar] [CrossRef]
- Stimoniaris, A.Z.; Stergiou, C.A.; Delides, C.G. A detailed study of α-relaxation in epoxy/carbon nanoparticles 881 composites using computational analysis. Express Polym. Lett. 2012, 6, 120–128. [Google Scholar] [CrossRef]
- Menes, O.; Cano, M.; Benedito, A.; Giménez, E.; Castell, P.; Maser, W.K.; Benito, A.M. The Effect of Ultra-Thin Graphite on the Morphology and Physical Properties of Thermoplastic Polyurethane Elastomer Composites. Compos. Sci. Technol. 2012, 72, 1595–1601. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Sabaruddin, F.A.; Harussani, M.M.; Kamarudin, S.H.; Rayung, M.; Asyraf, M.R.M.; Aisyah, H.A.; Norrrahim, M.N.F.; Ilyas, R.A.; Abdullah, N.; et al. Mechanical Performance and Applications of CNTs Reinforced Polymer Composites—A Review. Nanomaterials 2021, 11, 2186. [Google Scholar] [CrossRef] [PubMed]
- Coleman, J.N.; Khan, U.; Gun’ko, Y.K. Mechanical Reinforcement of Polymers Using Carbon Nanotubes. Adv. Mater. 2006, 18, 689–706. [Google Scholar] [CrossRef]
- Ma, P.C.; Siddiqui, N.A.; Marom, G.; Kim, J.K. Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1345–1367. [Google Scholar] [CrossRef]
- Wang, L.; Xu, X.; Chen, J.; Su, W.; Zhang, F.; Li, A.; Li, C.; Xu, C.; Sun, Y. Crack Sensing of Cardiomyocyte Contractility with High Sensitivity and Stability. ACS Nano 2022, 16, 12645–12655. [Google Scholar] [CrossRef]
- Georgopoulou, A.; Clemens, F. Piezoresistive Elastomer-Based Composite Strain Sensors and Their Applications. ACS Appl. Electron. Mater. 2020, 2, 1826–1842. [Google Scholar] [CrossRef]
- Meola, C.; Carlomagno, G.M.; Bonavolontà, C.; Valentino, M. Monitoring Composites under Bending Tests with Infrared Thermography. Adv. Opt. Technol. 2012, 2012, 720813. [Google Scholar] [CrossRef]
- Wu, S.; Ladani, R.B.; Zhang, J.; Ghorbani, K.; Zhang, X.; Mouritz, A.P.; Kinloch, A.J.; Wang, C.H. Strain Sensors with Adjustable Sensitivity by Tailoring the Microstructure of Graphene Aerogel/PDMS Nanocomposites. ACS Appl. Mater. Interfaces 2016, 8, 24853–24861. [Google Scholar] [CrossRef] [PubMed]
- Zare, Y.; Rhee, K.Y. Calculation of Tunneling Distance in Carbon Nanotubes Nanocomposites: Effect of Carbon Nanotube Properties, Interphase and Networks. J. Mater. Sci. 2020, 55, 5471–5480. [Google Scholar] [CrossRef]
- Kumar, S.; Gupta, T.K.; Varadarajan, K.M. Strong, Stretchable and Ultrasensitive MWCNT/TPU Nanocomposites for Piezoresistive Strain Sensing. Compos. B Eng. 2019, 177, 107285. [Google Scholar] [CrossRef]
- Ke, K.; Solouki Bonab, V.; Yuan, D.; Manas-Zloczower, I. Piezoresistive Thermoplastic Polyurethane Nanocomposites with Carbon Nanostructures. Carbon 2018, 139, 52–58. [Google Scholar] [CrossRef]
- Avilés, F.; Oliva-Avilés, A.I.; Cen-Puc, M. Piezoresistivity, Strain, and Damage Self-Sensing of Polymer Composites Filled with Carbon Nanostructures. Adv. Eng. Mater. 2018, 20, 1701159. [Google Scholar] [CrossRef]
- Garcia, J.R.; O’Suilleabhain, D.; Kaur, H.; Coleman, J.N. A Simple Model Relating Gauge Factor to Filler Loading in Nanocomposite Strain Sensors. ACS Appl. Nano Mater. 2021, 4, 2876–2886. [Google Scholar] [CrossRef]
- Li, J.; Fang, L.; Sun, B.; Li, X.; Kang, S.H. Review—Recent Progress in Flexible and Stretchable Piezoresistive Sensors and Their Applications. J. Electrochem. Soc. 2020, 167, 037561. [Google Scholar] [CrossRef]
- Sunil, S.; Naveen, V.; Porkodi, P.; Kottiyatil, A.J.; Madhavan, K.; Ghosh, P. Polymer Composite Sensors for Automotive, Aerospace, and Other Engineering Applications. In Polymeric Nanocomposite Materials for Sensor Applications; Woodhead Publishing: Cambridge, UK, 2023; pp. 479–500. [Google Scholar] [CrossRef]
- Hao, B.; Ma, Q.; Yang, S.; Mäder, E.; Ma, P.C. Comparative Study on Monitoring Structural Damage in Fiber-Reinforced Polymers Using Glass Fibers with Carbon Nanotubes and Graphene Coating. Compos. Sci. Technol. 2016, 129, 38–45. [Google Scholar] [CrossRef]
- Kim, Y.J.; Cha, J.Y.; Ham, H.; Huh, H.; So, D.S.; Kang, I. Preparation of Piezoresistive Nano Smart Hybrid Material Based on Graphene. Curr. Appl. Phys. 2011, 11, S350–S352. [Google Scholar] [CrossRef]
- Wang, B.; Lee, B.K.; Kwak, M.J.; Lee, D.W. Graphene/Polydimethylsiloxane Nanocomposite Strain Sensor. Rev. Sci. Instrum. 2013, 84, 105005. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, M.; Devnani, G.L. Nanocomposites Based on Polymer Blends and CNT. In Handbook of Carbon Nanotubes; Springer: Cham, Switzerland, 2021; pp. 1–23. [Google Scholar] [CrossRef]
- Tamayo-vegas, S.; Muhsan, A.; Liu, C.; Tarfaoui, M.; Lafdi, K. The Effect of Agglomeration on the Electrical and Mechanical Properties of Polymer Matrix Nanocomposites Reinforced with Carbon Nanotubes. Polymers 2022, 14, 1842. [Google Scholar] [CrossRef] [PubMed]
- Coetzee, D.; Militký, J.; Wiener, J.; Venkataraman, M. Comparison of the Synthesis, Properties, and Applications of Graphite, Graphene, and Expanded Graphite. Adv. Struct. Mater. 2023, 201, 71–87. [Google Scholar] [CrossRef]
- Hassan, T.; Salam, A.; Khan, A.; Khan, S.U.; Khanzada, H.; Wasim, M.; Khan, M.Q.; Kim, I.S. Functional Nanocomposites and Their Potential Applications: A Review. J. Polym. Res. 2021, 28, 36. [Google Scholar] [CrossRef]
- Orellana, J.; Araya-Hermosilla, E.; Pucci, A.; Araya-Hermosilla, R.; Orellana, J.; Araya-Hermosilla, E.; Pucci, A.; Araya-Hermosilla, R. Polymer-Assisted Graphite Exfoliation: Advancing Nanostructure Preparation and Multifunctional Composites. Polymers 2024, 16, 2273. [Google Scholar] [CrossRef]
- Huang, B. Carbon Nanotubes and Their Polymeric Composites: The Applications in Tissue Engineering. Biomanuf. Rev. 2020, 5, 3. [Google Scholar] [CrossRef]
- Zhang, D.; Tan, C.; Zhang, W.; Pan, W.; Wang, Q.; Li, L. Expanded Graphite-Based Materials for Supercapacitors: A Review. Molecules 2022, 27, 716. [Google Scholar] [CrossRef]
Analysis | Device | Method |
---|---|---|
TGA | Mettler TGA/SDTA 851 (Mettler-Toledo Columbus, OH, USA) | Temperature range from 25 °C to 900 °C, in air, heating rate 10 °C/min |
DSC | Mettler DSC 822/400 (Mettler-Toledo Columbus, OH, USA) | Temperature range from −20 °C to 115 °C, heating and following cooling scan at 10 °C/min |
DMA | DMA 2980 TA instrument (New Castle, DE 19720, USA) | Tensile mode at 1 Hz frequency, from −60 °C to 105 °C, at 3 °C/min |
FESEM | SEM LEO 1525 (Carl Zeiss SMT AG, Oberkochen, Germany) | All samples were placed on a carbon tab previously stuck to an aluminum stub and then covered with a 250 Å thick gold film using a sputter coater (Agar mod. 108 A—Agar Scientific, Stansted, UK) |
AFM-TUNA | NanoScope Analysis 1.80 (Build R1.126200; Bruker, Billerica, MA, USA) | The optimized parameters for this technique are reported in Table S1 of the Supplementary Materials |
Sample | CNT (%) | ∆Hm (J/g) | ∆Hc (J/g) | Tm (°C) | Tc (°C) | Xc (%) |
---|---|---|---|---|---|---|
EMAA | 0 | 43.0 | 54.9 | 102.1 | 82.2 | 14.8 |
EMAA 5% CNT | 5 | 51.3 | 49.9 | 100.2 | 85.0 | 17.7 |
EMAA 10% CNT | 10 | 51.1 | 52.7 | 97.05 | 85.4 | 17.6 |
EMAA 15% CNT | 15 | 41.6 | 43.1 | 97.99 | 86.6 | 14.3 |
Sample | EG (%) | ∆Hm (J/g) | ∆Hc (J/g) | Tm (°C) | Tc (°C) | Xc (%) |
---|---|---|---|---|---|---|
EMAA | 0 | 43.0 | 54.9 | 102.1 | 82.2 | 14.7 |
EMAA 10% EG | 10 | 53.5 | 57.0 | 100.1 | 84.4 | 18.3 |
EMAA 15% EG | 15 | 52.5 | 57.4 | 98.19 | 84.4 | 17.9 |
EMAA 30% EG | 30 | 51.4 | 53.1 | 98.66 | 84.9 | 17.6 |
Property | Carbon Nanotubes (CNTs) | Expanded Graphite (EG) | Ref. |
---|---|---|---|
Electrical properties | High conductivity at lower loadings due to rope-like shape. Lower sensitivity strain than EG at the same strain. | Higher loadings to achieve similar CNT conductivity due to the sheet-like shape. Higher strain sensitivity than CNTs at the same strain. | [75,76,77] |
Dispersion | Challenging due to agglomeration, CNT dispersion requires functionalization or the use of surfactants. | Easier exfoliation, but high loadings can lead to phase separation (aggregation). | [76,78,79] |
Mechanical performance | Enhancement of tensile strength and elongation at break. | Reduction in flexibility and brittleness increase at high content. | [78,79,80] |
Cost | High cost, due to complex synthesis and purification. | Low cost, derived from natural graphite. | [77,78] |
Processability | Moderate impact on viscosity; manageable at low loadings. | High loadings increase viscosity, complicating melt processing. | [76,78,79] |
Environmental Impact | Potential toxicity and environmental persistence. | Generally safer, though chemical exfoliation may have environmental concerns. | [78,80,81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aliberti, F.; Vertuccio, L.; Longo, R.; Sorrentino, A.; Pantani, R.; Guadagno, L.; Raimondo, M. Thermal, Mechanical, Morphological, and Piezoresistive Properties of Poly(ethylene-co-methacrylic acid) (EMAA) with Carbon Nanotubes and Expanded Graphite. Nanomaterials 2025, 15, 994. https://doi.org/10.3390/nano15130994
Aliberti F, Vertuccio L, Longo R, Sorrentino A, Pantani R, Guadagno L, Raimondo M. Thermal, Mechanical, Morphological, and Piezoresistive Properties of Poly(ethylene-co-methacrylic acid) (EMAA) with Carbon Nanotubes and Expanded Graphite. Nanomaterials. 2025; 15(13):994. https://doi.org/10.3390/nano15130994
Chicago/Turabian StyleAliberti, Francesca, Luigi Vertuccio, Raffaele Longo, Andrea Sorrentino, Roberto Pantani, Liberata Guadagno, and Marialuigia Raimondo. 2025. "Thermal, Mechanical, Morphological, and Piezoresistive Properties of Poly(ethylene-co-methacrylic acid) (EMAA) with Carbon Nanotubes and Expanded Graphite" Nanomaterials 15, no. 13: 994. https://doi.org/10.3390/nano15130994
APA StyleAliberti, F., Vertuccio, L., Longo, R., Sorrentino, A., Pantani, R., Guadagno, L., & Raimondo, M. (2025). Thermal, Mechanical, Morphological, and Piezoresistive Properties of Poly(ethylene-co-methacrylic acid) (EMAA) with Carbon Nanotubes and Expanded Graphite. Nanomaterials, 15(13), 994. https://doi.org/10.3390/nano15130994