Fast Alkaline Hydrothermal Synthesis of Pyrophosphate BaCr2(P2O7)2 Nanoparticles and Their NIR Spectral Reflectance
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Hydrothermal Treatments
2.3. Characterisation
3. Results and Discussion
3.1. Chemical Stability of the Pyrophosphate BaCr2(P2O7)2 Single-Phase Under Acidic and Alkaline Hydrothermal Conditions
3.2. Tailoring the BaCr2(P2O7)2 Pigment Synthesis Assisted by Urea Under Hydrothermal Conditions
3.3. Structural Features of the BaCr2(P2O7)2 Powders Prepared Under Hydrothermal Conditions
3.4. Microstructural Analysis of BaCr2(P2O7)2 Pigments Produced Under Hydrothermal Conditions
3.5. BaCr2(P2O7)2 Pigments Colour and NIR Solar Reflectance Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tao, Z.; Zhang, W.; Huang, Y.; Wei, D.; Jin, S.H. A novel pyrophosphate BaCr2(P2O7)2 as green pigment with high NIR solar reflectance and durable chemical stability. Solid State Sci. 2014, 34, 78–84. [Google Scholar] [CrossRef]
- Béjaoui, A.; Horchani–Naifer, K.; Hahhi, M.; Férid, M. Crystal structure, physical properties and bond valence analysis of NaLuP2O7. Solid State Sci. 2014, 31, 46–53. [Google Scholar] [CrossRef]
- Handizi, A.; Boukhari, A.; Holt, E.M.; Aride, J.; Flandrois, S. Synthesis, structural characterization and magnetism of the solid solution: Copper nickel pyrophosphate. Mat. Res. Bull. 1993, 28, 1241–1247. [Google Scholar] [CrossRef]
- Rousse, G.; Rodríguez–Carvajal, J.; Wurm, C.; Masquelier, C. A neutron diffraction study of the antiferromagnetic diphosphate LiFeP2O7. Solid State Sci. 2002, 4, 973–978. [Google Scholar] [CrossRef]
- Wilson, S.T.; Lok, B.M.; Messina, C.A.; Cannan, T.R.; Flanigen, E.M. Aluminophosphate molecular sieves: A new class of microporous crystalline inorganic solids. J. Am. Chem. Soc. 1982, 104, 1146–1147. [Google Scholar] [CrossRef]
- Al–Thabaiti, S.A. Synthesis and characterization of a new cobalt polymeric spinels. Commun. Fac. Sci. Univ. Ank. 2003, 49, 5–14. [Google Scholar]
- Kwang–Hwa, L.; Pei–Fen, S.; Teng–Ming, C. AM3(P2O7)2 (A = alkaline–earth metals; M = Fe, Co, Ni): Diphosphates containing infinite chains of edge–sharing MO6 octahedra. Inorg. Chem. 1993, 32, 4373–4377. [Google Scholar]
- Llusar, M.; García, A.; Gargori, C.; Galindo, R.; Badenes, J.A.; Monrós, G. Synthesis of diphosphate Mn2-xMgxP2O7 solid solutions with thortveitite structure: New pink ceramic dyes for the colouration of ceramic glazes. J. Eur. Ceram. Soc. 2012, 32, 765–776. [Google Scholar] [CrossRef]
- Battle, P.D.; Gibb, T.C.; Nixon, S. The magnetic properties of the synthetic langbeinite KBaCr2(PO4)3. J. Solid State Chem. 1988, 75, 21–29. [Google Scholar] [CrossRef]
- Jarboui, A.; Rhaeim, A.B.; Hlel, F.; Guidara, K.; Gargouri, M. NMR study and electrical properties investigation of Zn2P2O7. Ionics 2010, 16, 67–73. [Google Scholar] [CrossRef]
- Mahajan, A.V.; Nath, R.; Büttgen, N.; Kegler, C.; Loidl, A.; Bobroff, J. 31P NMR study of the spin S = ½ quasi–1D Heisenberg antiferromagnet BaCuP2O7. Phys. B Condens. Matter 2006, 378–380, 1148–1149. [Google Scholar] [CrossRef]
- Boukhari, A.; Moquine, A.; Flandrois, S. Synthesis and characterization of new copper (II) mixed diphosphates (M, Cu)2P2O7 with M = Mg, Ca, Sr and Ba. J. Solid State Chem. 1990, 87, 251–256. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, C.; Li, X.; Wu, D.; Li, J.; Huo, P.; Wang, H. Chemical precipitation synthesis of porous Ni2P2O7 nanowires for supercapacitor. J. Alloys Compd. 2019, 790, 36–41. [Google Scholar] [CrossRef]
- Sangeetha, S.; Basha, R.; Sreeram, K.J.; Sangilimuthu, S.N.; Unni–Nair, B. Functional pigments from chromium (III) oxide nanoparticles. Dyes Pigm. 2012, 94, 548–552. [Google Scholar] [CrossRef]
- Barba, A.; Gazulla, M.F.; Gómez, M.P.; Orduña, M. Characterisation of cobalt–containing ceramic pigments by WD–XRF and XRD. X–Ray Spectrom. 2006, 35, 383–389. [Google Scholar] [CrossRef]
- Corona–Martínez, D.A.; Rendón–Angeles, J.C.; Gonzalez, L.A.; Matamoros–Veloza, Z.; Yanagisawa, K.; Tamayo, A.; Alonso, J.R. Controllable synthesis of BaCuSi2O6 fine particles via a one–pot hydrothermal reaction with enhanced violet colour hue. Adv. Powder Technol. 2019, 30, 1473–1483. [Google Scholar] [CrossRef]
- Della, V.P.; Junkes, J.A.; Rambo, C.R.; Hotza, D. Synthesis of the ceramic pigment Victoria green (Ca3Cr2Si3O12) from CaCO3, Cr2O3 and SiO2. Quim. Nova. 2008, 31, 1004–1007. [Google Scholar] [CrossRef]
- Rendón–Angeles, J.C.; Matamoros–Veloza, Z.; Rodríguez–Galicia, J.L.; Seong, G.; Yanagisawa, K.; Tamayo, A.; Rubio, J.; Anaya–Chavira, L.A. One–pot hydrothermal synthesis of Victoria green (Ca3Cr2Si3O12) nanoparticles in alkaline fluids and its colour hue characterization. Nanomaterials. 2021, 11, 521. [Google Scholar] [CrossRef]
- Zoubitzky, L.; Coudert, F.X. CrystalNets.jl: Data retrieved from the materials project for BaCr2(P2O7)2 (mp–1192170) from database version v2025.02.12. post1. Available online: https://next-gen.materialsproject.org/materials/mp-1192170#related_materials (accessed on 15 June 2025).
- Vasquez–Elizondo, L.J.; Rendón–Angeles, J.C.; Matamoros–Veloza, Z.; López–Cuevas, J.; Yanagisawa, K. Urea decomposition enhancing the hydrothermal synthesis of lithium iron phosphate powders: Effect of the lithium precursor. Adv. Powder Technol. 2017, 28, 1593–1602. [Google Scholar] [CrossRef]
- Ridlington, J.W.; Buttler, L.G. Yeast inorganic pyrophosphatase. I. Binding of pyrophosphate, metal ion, and metal ion–pyrophosphate complexes. J. Biol. Chem. 1972, 22, 7303–7307. [Google Scholar] [CrossRef]
- Bandara, P.C.; Peña-Bahamonde, J.; Rodrigues, D.F. Redox mechanisms of conversion of Cr(VI) to Cr(III) by graphene oxide-polymer composite. Sci. Rep. 2020, 10, 9237. [Google Scholar] [CrossRef] [PubMed]
- Gazzoli, D.; Occhiuzzi, M.; Cimino, A.; Minelli, G.; Valigi, M. Chromium oxidation states and XPS analysis of the chromia/zirconia system. Surf. Interface Anal. 1992, 18, 315–322. [Google Scholar] [CrossRef]
- Khalaf, M.M.; El–Lateef, H.M.A.; Mohamed, I.M.A. Novel electrocatalysts for ethylene glycol oxidation based on functionalized phosphates of bimetals Mn/Ni: Morphology, crystallinity, and electrocatalytic performance. Surf. Interfaces 2023, 38, 102850. [Google Scholar] [CrossRef]
- Fang, Y.; Chen, Z.; Shi, Y.; Zhang, W.; Dong, X. Li1.52Na4.48Cd8(PO4)2(P2O7)4: A new mixed–anion diphosphate containing four types of dimensions groups. Inorg. Chem. Commun. 2017, 86, 253–257. [Google Scholar] [CrossRef]
- Navarro, R.; Hernanz, A. Profile análisis of PO3–symmetric stretching infrared band. J. Mol. Struct. 1988, 175, 335–338. [Google Scholar] [CrossRef]
- Subba–Rao, G.V.; Rao, C.N.R. Infrared and electronic spectra of rare earth perovskites: Ortho–chromites, manganites and ferrites. Appl. Spectrosc. 1970, 24, 436–445. [Google Scholar]
- Dolić, S.D.; Jovanović, D.J.; Štrbac, D.; Đačanin–Far, L. Improved coloristic properties and high NIR reflectance of environment–friendly yellow pigments based on bismuth vanadate. Ceram. Int. 2018, 15, 22731–22737. [Google Scholar]
- Gao, Q.; Wu, X.; Zhu, R. Antifouling energy–efficient coatings based on BiOClxBr1–x microflowers: NIR reflective property and superhydrophobicity. Constr. Build Mater. 2020, 257, 119569. [Google Scholar] [CrossRef]
- Rosati, A.; Fedel, M.; Rossi, S. NIR reflective pigments for cool roof applications: A comprehensive review. J. Clean. Prod. 2021, 313, 127826. [Google Scholar] [CrossRef]
- Bai, M.; Li, W.; Zhu, H.; Guo, W.; Wang, S.; Wang, Y. Enhanced NIR reflectance black pigments based on CuCo2–xTixO4: Synthesis and properties. J. Solid State Chem. 2025, 341, 125056. [Google Scholar] [CrossRef]
- Wang, J.; Han, A.; Ye, M.; Chen, C. Thermal insulation performance of novel orange fabric coated with Fe3+ -doped La2Zr2O7 NIR solar reflectivity pigment. Sol. Energy 2022, 244, 218–226. [Google Scholar] [CrossRef]
- Oka, R.; Masui, T. Synthesis and characterization of black pigments based on calcium manganese oxides for high near–infrared (NIR) reflectance. RSC. Adv. 2016, 6, 90952–90957. [Google Scholar] [CrossRef]
- Yu, J.; Jiang, F.; Liu, J.; Wang, T.; Zhang, X.; Zhang, X.; Zhang, Q.; Zhang, R.; Wu, Q.; Hu, Q.; et al. Coloring and near-infrared reflection performance of low temperature synthesized novel (Cr, V)-ZrSiO4 jewel green pigments. Ceram. Int. 2023, 49, 38602–38613. [Google Scholar] [CrossRef]
- ASTM G173-03; Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface. ASTM: West Conshohocken, PA, USA, 2012. Available online: https://www.astm.org/Standards/G173.htm (accessed on 15 June 2025).
Element | Wyckoff Position | Occupation | Spatial Coordinates (BaCr2(P2O7)2) | ||
---|---|---|---|---|---|
x/a | y/b | z/c | |||
Ba | 1a | 1 | 0.78918 | 0.72322 | 0.06838 |
Cr | 2i | 1 | 0.80807 | 0.85331 | 0.59828 |
P1 | 2i | 1 | 0.28179 | 0.68455 | 0.39885 |
P2 | 2i | 1 | 0.29919 | 0.76506 | 0.78656 |
O1 | 2i | 1 | 0.54268 | 0.77864 | 0.39328 |
O2 | 2i | 1 | 0.26785 | 0.62503 | 0.59072 |
O3 | 2i | 1 | 0.28371 | 0.65099 | 0.92607 |
O4 | 2i | 1 | 0.22382 | 0.51389 | 0.25542 |
O5 | 2i | 1 | 0.91599 | 0.10993 | 0.19970 |
O6 | 2i | 1 | 0.44831 | 0.12507 | 0.20392 |
O7 | 2i | 1 | 0.91709 | 0.17587 | 0.59447 |
Sample ID | Temperature (°C) | Time (h) | V H2O (mL) | NaOH * (M) | Urea (mmol/dm3) | Initial pH | Final pH | Phases Determined by XRD (wt.%) | Lattice Parameters | Lattice Strain | GOF | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Amorphous Phase | BaCr2(P2O7)2 | BaHCr2PO10 | a0 (Å) | b0 (Å) | c0 (Å) | ||||||||||
BCPN01 | 170 | 48 | 12.5 | - | - | 6.17 | 6.05 | 100 | - | - | - | - | - | - | |
BCPN02 | 200 | 12.5 | - | - | 6.14 | 5.94 | 100 | - | - | - | - | - | - | ||
BCPN03 | 240 | 12.5 | - | - | 6.15 | 5.9 | 100 | - | - | - | - | - | - | ||
BCPN05 | 240 | 48 | - | 0.5 | - | 12.57 | 12.66 | - | 61.8 (5) | 38.1 (5) | 5.4563 (10) | 7.5494 (10) | 7.6797 (10) | 0.78 (0.2) | 0.9 |
BCPN06 | - | 0.6 | - | 12.8 | 12.88 | - | 62.2 (4) | 37.7 (4) | 5.4380 (10) | 7.5749 (10) | 7.7038 (10) | 1.21 (0.1) | 0.9 | ||
BCPN07 | - | 0.65 | - | 12.89 | 12.99 | - | 69.9 (1) | 30.0 (1) | 5.4564 (10) | 7.5550 (20) | 7.6932 (20) | 1.56 (0.1) | 0.9 | ||
BCPN08 | - | 0.7 | - | 12.98 | 13.08 | - | 76.9 (1) | 24.0 (0) | 5.4334 (10) | 7.5772 (30) | 7.7070 (20) | 1.88 (0.1) | 0.9 | ||
BCPN09 | - | 1.0 | - | 13.59 | 13.61 | - | 74.0 (1) | 26.9 (1) | 5.4503 (20) | 7.5497 (20) | 7.6976 (30) | 1.95 (0.1) | 0.8 | ||
BCPN41 | - | 0.7 | 25 | 12.96 | 10.66 | - | 69.2 (2) | 30.7 (1) | 5.4632 (30) | 7.5745 (10) | 7.6869 (10) | 1.80 (0.1) | 0.8 | ||
BCPN43 | - | 0.7 | 50 | 12.96 | 10.44 | - | 100 | - | 5.4697 (30) | 7.5557 (20) | 7.6988 (20) | 1.81 (0.1) | 1.1 | ||
BCPN44 | - | 0.7 | 100 | 12.89 | 9.96 | 88.6 (1) | 11.3 (1) | - | 5.4690 (10) | 7.5782 (10) | 7.6988 (10) | 1.87 (0.1) | 1.0 | ||
BCPN45 | - | 0.7 | 150 | 12.88 | 9.7 | 100 | - | - | - | - | - | - | - | ||
BCPN46 | - | 0.7 | 200 | 12.87 | 9.46 | 100 | - | - | - | - | - | - | - | ||
BCPN47 | - | 0.7 | 75 | 12.95 | 10.01 | 100 | - | - | - | - | - | - | - | ||
BCPN90 | 240 | 6 | - | 0.5 | 50 | 12.49 | 10.16 | - | 100 | 0 | 5.4615 (10) | 7.5440 (10) | 7.6828 (10) | 1.21 (0.1) | 1.1 |
BCPN93 | - | 0.7 | 50 | 12.87 | 10.53 | -- | 100 | 0 | 5.4335 (20) | 7.5472 (10) | 7.6811 (20) | 1.72 (0.2) | 1.1 | ||
BCPN105 | 24 | - | 0.5 | 50 | 12.53 | 10.23 | - | 100 | 0 | 5.4250 (10) | 7.5815 (20) | 7.7036 (20) | 1.17 (0.1) | 1.1 | |
BCPN108 | - | 0.7 | 50 | 12.87 | 10.49 | - | 100 | 0 | 5.4432 (10) | 7.5397 (20) | 7.7092 (30) | 1.99 (0.2) | 1.1 | ||
BCPN110 | 200 | 6 | - | 0.5 | 50 | 12.52 | 10.21 | - | 100 | 0 | 5.4472 (10) | 7.5306 (30) | 7.7022 (20) | 1.23 (0.1) | 0.8 |
BCPN107 | - | 0.7 | 50 | 12.75 | 10.49 | - | 100 | 0 | 5.4235 (30) | 7.5472 (30) | 7.7026 (40) | 1.82 (0.1) | 0.8 | ||
BCPN115 | 170 | - | 0.5 | 50 | 12.49 | 10.34 | - | 100 | 0 | 5.4629 (10) | 7.5720 (20) | 7.6949 (20) | 1.25 (0.1) | 0.9 | |
BCPN100 | - | 0.7 | 50 | 12.71 | 10.52 | - | 100 | 0 | 5.4496 (20) | 7.5747 (30) | 7.7070 (30) | 1.93 (0.1) | 0.9 |
Sample ID | Temperature (°C) | Time (h) | NaOH (M) | Crystalline Size (nm) | Crystalline Size * (nm) | Bandgap (eV) | Solar Reflectance (% R*) | CIELab Coordinates | RGB Colour Coordinates | Chroma Cab* | Colour Hue | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L* | a* | b* | R | G | B | ||||||||||
BCPN90 | 240 | 6 | 0.5 | 47.3 (6.2) | 42.0 (1.1) | 3.16 | 57.94 | 66.12 | −7.94 | −4.58 | 137 | 166 | 170 | 9.16 | |
BCPN91 | 0.6 | 53.8 (1.2) | 54.1 (6.1) | 3.11 | 58.99 | 67.58 | −9.84 | −1.94 | 138 | 171 | 168 | 10.03 | |||
BCPN92 | 0.7 | 57.1 (1.8) | 57.8 (2.8) | 3.09 | 59.76 | 68.72 | −10.49 | −2.31 | 139 | 175 | 172 | 10.75 | |||
BCPN93 | 1.0 | 65.3 (1.1) | 62.3 (6.2) | 3.09 | 60.40 | 70.99 | −10.32 | −3.94 | 144 | 181 | 182 | 11.05 | |||
BCPN105 | 24 | 0.5 | 54.7 (1.1) | 55.7 (1.1) | 3.18 | 62.93 | 65.48 | −9.00 | −4.08 | 133 | 165 | 168 | 9.88 | ||
BCPN106 | 0.6 | 66.0 (1.2) | 60.2 (2.1) | 3.13 | 63.60 | 68.22 | −9.88 | −3.14 | 138 | 173 | 173 | 10.36 | |||
BCPN107 | 0.7 | 69.9 (1.4) | 66.3 (1.2) | 3.10 | 65.23 | 68.07 | −13.21 | −3.11 | 129 | 175 | 172 | 13.57 | |||
BCPN108 | 1.0 | 75.0 (9.3) | 72.5 (1.4) | 3.08 | 67.03 | 72.20 | −15.25 | −2.85 | 134 | 187 | 183 | 15.51 | |||
BCPN120 | 48 | 0.5 | 133.8 (50.1) | 51.3 (1.1) | 3.16 | 61.72 | 73.87 | −9.24 | −3.95 | 154 | 188 | 190 | 10.05 | ||
BCPN121 | 0.6 | 221.7 (40.5) | 60.6 (9.3) | 3.13 | 63.76 | 69.78 | −12.94 | −1.86 | 143 | 178 | 174 | 13.07 | |||
BCPN122 | 0.7 | 309.2 (102.8) | 62.4 (6.1) | 3.09 | 66.05 | 67.29 | −14.59 | −2.54 | 133 | 174 | 171 | 14.80 | |||
BCPN123 | 1.0 | 342.4 (151.7) | 64.1 (6.1) | 3.09 | 67.46 | 66.41 | −15.48 | −2.74 | 129 | 172 | 169 | 15.72 | |||
BCPN110 | 200 | 24 | 0.5 | 54.6 (4.5) | 53.2 (8.9) | 3.15 | 61.28 | 67.01 | −8.86 | −3.32 | 141 | 167 | 169 | 9.46 | |
BCPN111 | 0.6 | 60.7 (2.0) | 59.8 (5.1) | 3.11 | 63.53 | 68.22 | −12.08 | −2.42 | 137 | 170 | 168 | 12.32 | |||
BCPN112 | 0.7 | 63.5 (6.2) | 60.7 (1.1) | 3.11 | 64.28 | 58.96 | −12.88 | −3.14 | 137 | 174 | 173 | 13.25 | |||
BCPN113 | 1.0 | 71.8 (1.9) | 64.7 (1.3) | 3.09 | 66.74 | 65.29 | −15.30 | −2.50 | 108 | 150 | 147 | 15.50 | |||
BCPN114 | 170 | 0.5 | 50.6 (4.6) | 54.8 (0.9) | 3.18 | 55.41 | 65.29 | −7.55 | −4.70 | 139 | 163 | 169 | 8.89 | ||
BCPN115 | 0.6 | 60.6 (5.2) | 62.5 (0.9) | 3.13 | 57.73 | 65.2 | −7.54 | −4.75 | 139 | 163 | 169 | 8.91 | |||
BCPN116 | 0.7 | 62.1 (1.5) | 67.2 (0.9) | 3.11 | 58.88 | 65.66 | −8.06 | −4.82 | 139 | 164 | 170 | 9.39 | |||
BCPN117 | 1.0 | 70.5 (1.4) | 79.5 (3.4) | 3.08 | 59.06 | 63.5 | −9.12 | −3.60 | 133 | 159 | 161 | 9.80 | |||
TiO2 | - | - | - | <5000 | - | 79.01 | 97.85 | 0.32 | 1.65 | 251 | 249 | 246 | 1.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrillo-Ramírez, D.E.; Rendón-Angeles, J.C.; Matamoros-Veloza, Z.; López-Cuevas, J.; Juárez-Ramírez, I.; Ueda, T. Fast Alkaline Hydrothermal Synthesis of Pyrophosphate BaCr2(P2O7)2 Nanoparticles and Their NIR Spectral Reflectance. Nanomaterials 2025, 15, 982. https://doi.org/10.3390/nano15130982
Carrillo-Ramírez DE, Rendón-Angeles JC, Matamoros-Veloza Z, López-Cuevas J, Juárez-Ramírez I, Ueda T. Fast Alkaline Hydrothermal Synthesis of Pyrophosphate BaCr2(P2O7)2 Nanoparticles and Their NIR Spectral Reflectance. Nanomaterials. 2025; 15(13):982. https://doi.org/10.3390/nano15130982
Chicago/Turabian StyleCarrillo-Ramírez, Diego Emiliano, Juan Carlos Rendón-Angeles, Zully Matamoros-Veloza, Jorge López-Cuevas, Isaías Juárez-Ramírez, and Tadaharu Ueda. 2025. "Fast Alkaline Hydrothermal Synthesis of Pyrophosphate BaCr2(P2O7)2 Nanoparticles and Their NIR Spectral Reflectance" Nanomaterials 15, no. 13: 982. https://doi.org/10.3390/nano15130982
APA StyleCarrillo-Ramírez, D. E., Rendón-Angeles, J. C., Matamoros-Veloza, Z., López-Cuevas, J., Juárez-Ramírez, I., & Ueda, T. (2025). Fast Alkaline Hydrothermal Synthesis of Pyrophosphate BaCr2(P2O7)2 Nanoparticles and Their NIR Spectral Reflectance. Nanomaterials, 15(13), 982. https://doi.org/10.3390/nano15130982