Zinc Oxide Nanoparticles as Next-Generation Feed Additives: Bridging Antimicrobial Efficacy, Growth Promotion, and Sustainable Strategies in Animal Nutrition
Abstract
1. Introduction
2. Green Synthesis and Physicochemical Tailoring of ZnO NPs
2.1. Green Synthesis Methods (Plant-/Microbe-Mediated) and Their Environmental Benefits
2.2. Comparison of ZnO Nanoparticles with Conventional Zinc Oxide: Bioavailability, Ecotoxicity, and Environmental Impact
3. ZnO NPs as Multifunctional Feed Additives: Mechanisms and Applications
3.1. Antibacterial Action
3.2. Anti-Inflammatory and Antioxidant Regulation
3.2.1. Anti-Inflammatory Effects: Reduction of Inflammatory Reactions and Tissue Damage
3.2.2. Antioxidant Properties: Reducing Oxidative Stress and Cell Damage
3.3. Growth Performance and Product Quality Improvements
3.3.1. Therapeutic Effect
3.3.2. Immunomodulatory Effects of Zinc Oxide Nanoparticles in Animal Production
Terrestrial Livestock Applications
Aquatic Species Applications
3.3.3. Growth Promotion and Productivity Improvement
Growth Promotion Mechanisms and Feed Efficiency Optimization
Improving Poultry Performance
Effects on Meat and Egg Quality
3.4. Reproductive Health and Genetic Enhancement
4. Dissolution and Bioavailability of Zinc Oxide Nanoparticles in Acidic Environments
5. Toxicity and Safety Considerations
6. Environmental Fate and Ecotoxicity of Zinc Oxide Nanoparticles in Animal Feed
7. Regulatory Landscape and Mitigation Strategies
8. Summary and Future Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Behrens, I.; Pena, A.I.V.; Alonso, M.J.; Kissel, T. Comparative uptake studies of bioadhesive and non-bioadhesive nanoparticles in human intestinal cell lines and rats: The effect of mucus on particle adsorption and transport. Pharm. Res. 2002, 19, 1185–1193. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.P.; Kelly, D.P.; Schneider, P.W.; Trochimowicz, H.J. Inhalation toxicity study on rats exposed to titanium tetrachloride atmospheric hydrolysis products for two years. Toxicol. Appl. Pharmacol. 1986, 83, 30–45. [Google Scholar] [CrossRef] [PubMed]
- Oberdorster, G.; Ferin, J.; Lehnert, B.E. Correlation between particle size, in vivo particle persistence, and lung injury. Environ. Health Perspect. 1994, 102, 173–179. [Google Scholar] [CrossRef]
- Jamdagni, P.; Khatri, P.; Rana, J.S. Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J. King Saud Univ. Sci. 2018, 30, 168–175. [Google Scholar] [CrossRef]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano Micro Lett. 2015, 7, 219–242. [Google Scholar] [CrossRef]
- Banumathi, B.; Vaseeharan, B.; Ishwarya, R.; Govindarajan, M.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Benelli, G. Toxicity of herbal extracts used in ethno-veterinary medicine and green-encapsulated ZnO nanoparticles against Aedes aegypti and microbial pathogens. Parasitol. Res. 2017, 116, 1637–1651. [Google Scholar] [CrossRef] [PubMed]
- Bogdan, J.; Plawinska-Czarnak, J.; Zarzynska, J. Nanoparticles of titanium and zinc oxides as novel agents in tumor treatment: A review. Nanoscale Res. Lett. 2017, 12, 225. [Google Scholar] [CrossRef]
- Al-Khaial, M.Q.; Chan, S.Y.; Abu-Zurayk, R.A.; Alnairat, N. Biosynthesis and characterization of zinc oxide nanoparticles (ZnO-NPs) utilizing banana peel extract. Inorganics 2024, 12, 121. [Google Scholar] [CrossRef]
- Gangadoo, S.; Stanley, D.; Hughes, R.J.; Moore, R.J.; Chapman, J. Nanoparticles in feed: Progress and prospects in poultry research. Trends Food Sci. Technol. 2016, 58, 115–126. [Google Scholar] [CrossRef]
- Ghanbari, M.; Bazarganipour, M.; Salavati-Niasari, M. Photodegradation and removal of organic dyes using cui nanostructures, green synthesis and characterization. Sep. Purif. Technol. 2017, 173, 27–36. [Google Scholar] [CrossRef]
- Kwabena, D.E.; Wee, B.S.; Fun, C.S.; Kok, K.Y.; Assim, Z.B.; Aquisman, A.E. Comparative evaluation of antibacterial efficacy of biological synthesis of ZnO nanoparticles using fresh leaf extract and fresh stem-bark of carica papaya. Nano Biomed. Eng. 2019, 11, 264–271. [Google Scholar] [CrossRef]
- Suhag, D.; Thakur, P.; Thakur, A. Introduction to Nanotechnology. In Integrated Nanomaterials and Their Applications; Suhag, D., Thakur, A., Thakur, P., Eds.; Springer Nature: Singapore, 2023; pp. 1–17. [Google Scholar]
- Dey, S.; Mohanty, D.l.; Divya, N.; Bakshi, V.; Mohanty, A.; Rath, D.; Das, S.; Mondal, A.; Roy, S.; Sabui, R. A critical review on zinc oxide nanoparticles: Synthesis, properties and biomedical applications. Intell. Pharm. 2024, 3, 53–70. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Li, M.; Sun, J.; Shang, X.; Ma, Y. Biological mechanism of ZnO nanomaterials. J. Appl. Toxicol. 2024, 44, 107–117. [Google Scholar] [CrossRef]
- Mandal, A.K.; Behera, A.K.; Parida, S.; Nayak, R.; Hembram, P.; Behera, C.; Lone, S.A.; Davoodbasha, M.; Jena, M. Microalgal nanofactory: Green synthesis of zinc oxide nanoparticles and their antibacterial and antioxidant potentials. BioNanoScience 2024, 15, 119. [Google Scholar] [CrossRef]
- Rosi, N.L.; Mirkin, C.A. Nanostructures in biodiagnostics. Chem. Rev. 2005, 105, 1547–1562. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.L.; Wu, J.; Chen, G.Q.; Cui, F.Z.; Kim, T.N.; Kim, J.O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 2000, 52, 662–668. [Google Scholar] [CrossRef]
- Mendes, C.R.; Dilarri, G.; Forsan, C.F.; Sapata, V.d.M.R.; Lopes, P.R.M.; de Moraes, P.B.; Montagnolli, R.N.; Ferreira, H.; Bidoia, E.D. Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Sci. Rep. 2022, 12, 2658. [Google Scholar] [CrossRef] [PubMed]
- Adams, L.K.; Lyon, D.Y.; McIntosh, A.; Alvarez, P.J.J. Comparative toxicity of nano-scale TiO2, SiO2 and ZnO water suspensions. Water Sci. Technol. 2006, 54, 327–334. [Google Scholar] [CrossRef]
- Lipovsky, A.; Nitzan, Y.; Gedanken, A.; Lubart, R. Antifungal activity of ZnO nanoparticles—The role of ROS mediated cell injury. Nanotechnology 2011, 22, 105101. [Google Scholar] [CrossRef]
- Sawai, J.; Shoji, S.; Igarashi, H.; Hashimoto, A.; Kokugan, T.; Shimizu, M.; Kojima, H. Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J. Ferment. Bioeng. 1998, 86, 521–522. [Google Scholar] [CrossRef]
- Li, M.; Zhu, L.; Lin, D. Toxicity of ZnO nanoparticles to Escherichia coli: Mechanism and the influence of medium components. Environ. Sci. Technol. 2011, 45, 1977–1983. [Google Scholar] [CrossRef] [PubMed]
- Amro, N.A.; Kotra, L.P.; Wadu-Mesthrige, K.; Bulychev, A.; Mobashery, S.; Liu, G.-y. High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability. Langmuir 2000, 16, 2789–2796. [Google Scholar] [CrossRef]
- Divya, M.; Chen, J.; Durán-Lara, E.F.; Kim, K.-s.; Vijayakumar, S. Revolutionizing healthcare: Harnessing nano biotechnology with zinc oxide nanoparticles to combat biofilm and bacterial infections-A short review. Microb. Pathogen. 2024, 191, 106679. [Google Scholar] [CrossRef]
- Lok, C.N.; Ho, C.M.; Chen, R.; He, Q.Y.; Yu, W.Y.; Sun, H.; Tam, P.K.; Chiu, J.F.; Che, C.M. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res. 2006, 5, 916–924. [Google Scholar] [CrossRef]
- Meruvu, H.; Vangalapati, M.; Chaitanya, S.; Bammidi, S.R. Synthesis and characterization of zinc oxide nanoparticles and its antimicrobial activity against bacillus subtilis and Escherichia coli. J. Rasayan. Chem. 2011, 4, 217–222. [Google Scholar]
- Nirmala, M.; Nair, M.G.; Rekha, K.; Anukaliani, A.; Samdarshi, S.; Nair, R.G. Photocatalytic activity of zno nanopowders synthesized by DC thermal plasma. Afr. J. Basic Appl. Sci. 2010, 2, 161–166. [Google Scholar]
- Zhang, H.; Chen, B.; Jiang, H.; Wang, C.; Wang, H.; Wang, X. A strategy for ZnO nanorod mediated multi-mode cancer treatment. Biomaterials 2011, 32, 1906–1914. [Google Scholar] [CrossRef]
- Gharpure, S.; Ankamwar, B. Synthesis and antimicrobial properties of zinc oxide nanoparticles. J. Nanosci. Nanotechnol. 2020, 20, 5977–5996. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017, 12, 1227–1249. [Google Scholar] [CrossRef]
- Agarwal, H.; Nakara, A.; Shanmugam, V.K. Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: A review. Biomed. Pharmacother. 2019, 109, 2561–2572. [Google Scholar] [CrossRef]
- Agarwal, H.; Shanmugam, V. A review on anti-inflammatory activity of green synthesized zinc oxide nanoparticle: Mechanism-based approach. Bioorg. Chem. 2020, 94, 103423. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.H.; Jeong, H.J. Zinc oxide nanoparticles suppress LPS-Induced NF-κB activation by inducing A20, a negative regulator of NF-κB, in RAW 264.7 macrophages. J. Nanosci. Nanotechnol. 2015, 15, 6509–6515. [Google Scholar] [CrossRef] [PubMed]
- Britt, R.D., Jr.; Locy, M.L.; Tipple, T.E.; Nelin, L.D.; Rogers, L.K. Lipopolysaccharide-induced cyclooxygenase-2 expression in mouse transformed clara cells. Cell. Physiol. Biochem. 2012, 29, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Suschek, C.V.; Schnorr, O.; Kolb-Bachofen, V. The role of iNOS in chronic inflammatory processes in vivo: Is it damage-promoting, protective, or active at all? Curr. Mol. Med. 2004, 4, 763–775. [Google Scholar] [CrossRef]
- Nagajyothi, P.C.; Cha, S.J.; Yang, I.J.; Sreekanth, T.V.M.; Kim, K.J.; Shin, H.M. Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract. J. Photochem. Photobiol. B Biol. 2015, 146, 10–17. [Google Scholar] [CrossRef]
- Das, D.; Nath, B.C.; Phukon, P.; Kalita, A.; Dolui, S.K. Synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity. Colloids Surf. B Biointerfaces 2013, 111, 556–560. [Google Scholar] [CrossRef]
- Loganathan, S.; Shivakumar, M.S.; Karthi, S.; Nathan, S.S.; Selvam, K. Metal oxide nanoparticle synthesis (ZnO-NPs) of Knoxia sumatrensis (Retz.) DC. Aqueous leaf extract and It’s evaluation of their antioxidant, anti-proliferative and larvicidal activities. Toxicol. Rep. 2021, 8, 64–72. [Google Scholar] [CrossRef]
- Moghaddam, A.B.; Moniri, M.; Azizi, S.; Rahim, R.A.; Ariff, A.B.; Saad, W.Z.; Namvar, F.; Navaderi, M. Biosynthesis of ZnO Nanoparticles by a New Pichia kudriavzevii Yeast Strain and Evaluation of Their Antimicrobial and Antioxidant Activities. Molecules 2017, 22, 872. [Google Scholar] [CrossRef]
- Sohail, M.F.; Rehman, M.; Hussain, S.Z.; Huma, Z.-E.; Shahnaz, G.; Qureshi, O.S.; Khalid, Q.; Mirza, S.; Hussain, I.; Webster, T.J. Green synthesis of zinc oxide nanoparticles by Neem extract as multi-facet therapeutic agents. J. Drug Deliv. Sci. Technol. 2020, 59, 101911. [Google Scholar] [CrossRef]
- Singh, T.A.; Sharma, A.; Tejwan, N.; Ghosh, N.; Das, J.; Sil, P.C. A state of the art review on the synthesis, antibacterial, antioxidant, antidiabetic and tissue regeneration activities of zinc oxide nanoparticles. Adv. Colloid Interface Sci. 2021, 295, 102495. [Google Scholar] [CrossRef]
- Rabiee, N.; Bagherzadeh, M.; Kiani, M.; Ghadiri, A.M.; Etessamifar, F.; Jaberizadeh, A.H.; Shakeri, A. Biosynthesis of copper oxide nanoparticles with potential biomedical applications. Int. J. Nanomed. 2020, 15, 3983–3999. [Google Scholar] [CrossRef]
- Kalaimurugan, D.; Lalitha, K.; Durairaj, K.; Sivasankar, P.; Park, S.; Nithya, K.; Shivakumar, M.S.; Liu, W.-C.; Balamuralikrishnan, B.; Venkatesan, S. Biogenic synthesis of ZnO nanoparticles mediated from Borassus flabellifer (Linn): Antioxidant, antimicrobial activity against clinical pathogens, and photocatalytic degradation activity with molecular modeling. Environ. Sci. Pollut. Res. 2022, 29, 86308–86319. [Google Scholar] [CrossRef] [PubMed]
- Jan, H.; Shah, M.; Andleeb, A.; Faisal, S.; Khattak, A.; Rizwan, M.; Drouet, S.; Hano, C.; Abbasi, B.H. Plant-based synthesis of zinc oxide nanoparticles (ZnO-NPs) using aqueous leaf extract of Aquilegia pubiflora their Antiproliferative activity against HepG2 cells inducing reactive oxygen species and other In Vitro properties. Oxid. Med. Cell Longev. 2021, 2021, 4786227. [Google Scholar] [CrossRef] [PubMed]
- Asif, N.; Fatima, S.; Aziz, M.N.; Shehzadi; Zaki, A.; Fatma, T. Biofabrication and characterization of cyanobacteria derived ZnO NPs for their bioactivity comparison with commercial chemically synthesized nanoparticles. Bioorg. Chem. 2021, 113, 104999. [Google Scholar] [CrossRef]
- Kiyani, M.M.; Butt, M.A.; Rehman, H.; Ali, H.; Hussain, S.A.; Obaid, S.; Arif Hussain, M.; Mahmood, T.; Bokhari, S.A.I. Antioxidant and anti-gout effects of orally administered zinc oxide nanoparticles in gouty mice. J. Trace Elem. Med. Biol. 2019, 56, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Hafez, A.; Nassef, E.; Fahmy, M.; Elsabagh, M.; Bakr, A.; Hegazi, E. Impact of dietary nano-zinc oxide on immune response and antioxidant defense of broiler chickens. Environ. Sci. Pollut. Res. Int. 2020, 27, 19108–19114. [Google Scholar] [CrossRef]
- Elbahr, A. Kaff Al-‘AwÂm: Saat Kiai Hasyim Berbicara Sarekat Islam. Int. J. Pegon. Islam Nusantara Civ. 2020, 3, 1–79. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, L.; Ying, Z.; He, J.; Zhou, L.; Zhang, L.; Zhong, X.; Wang, T. Effects of dietary zinc oxide nanoparticles on growth, diarrhea, mineral deposition, intestinal morphology, and barrier of weaned piglets. Biol. Trace Elem. Res. 2018, 185, 364–374. [Google Scholar] [CrossRef]
- Ramiah, S.K.; Awad, E.A.; Mookiah, S.; Idrus, Z. Effects of zinc oxide nanoparticles on growth performance and concentrations of malondialdehyde, zinc in tissues, and corticosterone in broiler chickens under heat stress conditions. Poult. Sci. 2019, 98, 3828–3838. [Google Scholar] [CrossRef]
- Yaqub, A.; Nasir, M.; Kamran, M.; Majeed, I.; Arif, A. Immunomodulation, fish health and resistance to Staphylococcus aureus of nile tilapia (Oreochromis niloticus) fed diet supplemented with zinc oxide nanoparticles and zinc acetate. Biol. Trace Elem. Res. 2023, 201, 4912–4925. [Google Scholar] [CrossRef]
- Amin, Y.A.; Abdelaziz, S.G.; Said, A.H. Treatment of postpartum endometritis induced by multidrug-resistant bacterial infection in dairy cattle by green synthesized zinc oxide nanoparticles and in vivo evaluation of its broad spectrum antimicrobial activity in cow uteri. Res. Vet. Sci. 2023, 165, 105074. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, M.; Dastar, B.; Afzali, N.; Shargh, M.S.; Hashemi, S.R. The effects of nano and micro particle size of zinc oxide on performance, fertility, hatchability, and egg quality characteristics in laying Japanese quail. Biol. Trace Elem. Res. 2022, 200, 2338–2348. [Google Scholar] [CrossRef] [PubMed]
- Khafajah, Y.; Shaheen, M.; Natour, D.E.; Merheb, M.; Matar, R.; Borjac, J. Neuroprotective effects of zinc oxide nanoparticles in a rotenone-induced mouse model of parkinson’s disease. Nanotheranostics 2024, 8, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Attia, F.M.; Kassab, R.B.; Ahmed-Farid, O.A.; Abdel Moneim, A.E.; El-Yamany, N.A. Zinc oxide nanoparticles attenuated neurochemical and histopathological alterations associated with aluminium chloride intoxication in rats. Biol. Trace Elem. Res. 2025, 203, 2058–2071. [Google Scholar] [CrossRef]
- Petrič, D.; Mikulová, K.; Bombárová, A.; Batťányi, D.; Čobanová, K.; Kopel, P.; Łukomska, A.; Pawlak, P.; Sidoruk, P.; Kotwica, S.; et al. Efficacy of zinc nanoparticle supplementation on ruminal environment in lambs. BMC Vet. Res. 2024, 20, 425. [Google Scholar] [CrossRef]
- Ismail, H.; El-Araby, I.E. Effect of dietary zinc oxide nanoparticles supplementation on biochemical, hematological and genotoxicity parameters in rabbits. Int. J. Curr. Adv. Res. 2018, 6, 2108–2115. [Google Scholar]
- Hussain, Z.; Khan, J.A.; Anwar, H.; Andleeb, N.; Murtaza, S.; Ashar, A.; Arif, I. Synthesis, characterization, and pharmacological evaluation of zinc oxide nanoparticles formulation. Toxicol. Ind. Health 2018, 34, 753–763. [Google Scholar] [CrossRef]
- Safaei-Ghomi, J.; Ghasemzadeh, M.A.; Zahedi, S. ZnO nanoparticles: A highly effective and readily recyclable catalyst for the one-pot synthesis of 1,8-dioxo-decahydroacridine and 1,8-dioxooctahydro-xanthene derivatives. J. Mex. Chem. Soc. 2017, 57, 1–7. [Google Scholar] [CrossRef]
- Liu, Y.; He, L.; Mustapha, A.; Li, H.; Hu, Z.Q.; Lin, M. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J. Appl. Microbiol. 2009, 107, 1193–1201. [Google Scholar] [CrossRef]
- Raghupathi, K.R.; Koodali, R.T.; Manna, A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 2011, 27, 4020–4028. [Google Scholar] [CrossRef]
- Douglas, L.J. Candida biofilms and their role in infection. Trends Microbiol. 2003, 11, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, O.; Iida, Y. Antifungal Characteristics of Spherical Carbon Materials with Zinc Oxide. J. Ceramic. Soc. Jpn. 2003, 111, 614–616. [Google Scholar] [CrossRef]
- Fozouni, L.; Tahaei, M. Anticandidal effects of zinc oxide nanoparticles on fluconazole-resistant candida isolates causing diarrhea in calves, in vitro. Arch. Razi Inst. 2023, 78, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Awad, N.F.S.; Hashem, Y.M.; Elshater, N.S.; Khalifa, E.; Hamed, R.I.; Nossieur, H.H.; Abd-Allah, E.M.; Elazab, S.T.; Nassan, M.A.; El-Hamid, M.I.A. Therapeutic potentials of aivlosin and/or zinc oxide nanoparticles against Mycoplasma gallisepticum and/or Ornithobacterium rhinotracheale with a special reference to the effect of zinc oxide nanoparticles on aivlosin tissue residues: An in vivo approach. Poult. Sci. 2022, 101, 101884. [Google Scholar] [CrossRef]
- El-Kady, A.M.; Hassan, A.S.; Mohamed, K.; Alfaifi, M.S.; Elshazly, H.; Alamri, Z.Z.; Wakid, M.H.; Gattan, H.S.; Altwaim, S.A.; Al-Megrin, W.A.I.; et al. Zinc oxide nanoparticles produced by Zingiber officinale ameliorates acute toxoplasmosis-induced pathological and biochemical alterations and reduced parasite burden in mice model. PLoS Neglected Trop. Dis. 2023, 17, e0011447. [Google Scholar] [CrossRef]
- Lail, N.U.; Sattar, A.; Omer, M.O.; Hafeez, M.A.; Khalid, A.R.; Mahmood, S.; Shabbir, M.A.; Ahmed, W.; Aleem, M.T.; Alouffi, A.; et al. Biosynthesis and characterization of zinc oxide nanoparticles using Nigella sativa against coccidiosis in commercial poultry. Sci. Rep. 2023, 13, 6568. [Google Scholar] [CrossRef]
- Gammoh, N.Z.; Rink, L. Zinc in Infection and Inflammation. Nutrients 2017, 9, 624. [Google Scholar] [CrossRef]
- Fraker, P.J.; DePasquale-Jardieu, P.; Zwickl, C.M.; Luecke, R.W. Regeneration of T-cell helper function in zinc-deficient adult mice. Proc. Natl. Acad. Sci. USA 1978, 75, 5660–5664. [Google Scholar] [CrossRef] [PubMed]
- Kong, T.; Zhang, S.H.; Zhang, C.; Zhang, J.L.; Yang, F.; Wang, G.Y.; Yang, Z.J.; Bai, D.Y.; Shi, Y.Y.; Liu, T.Q.; et al. The Effects of 50 nm unmodified Nano-ZnO on lipid metabolism and semen quality in male mice. Biol. Trace Elem. Res. 2019, 194, 432–442. [Google Scholar] [CrossRef]
- Liu, H.; Bai, M.; Xu, K.; Zhou, J.; Zhang, X.; Yu, R.; Huang, R.; Yin, Y. Effects of different concentrations of coated nano zinc oxide material on fecal bacterial composition and intestinal barrier in weaned piglets. J. Sci. Food Agric. 2021, 101, 735–745. [Google Scholar] [CrossRef]
- Trckova, M.; Lorencova, A.; Hazova, K.; Zajacova, Z. Prophylaxis of post-weaning diarrhoea in piglets by zinc oxide and sodium humate. Vet. Med. 2015, 60, 351–360. [Google Scholar] [CrossRef]
- Ahmadi, F.; Ebrahimnezhad, Y.; Sis, N.M.; Ghalehkandi, J.G. The effects of zinc oxide nanoparticles on performance, digestive organs and serum lipid concentrations in broiler chickens during starter period. Int. J. Biosci. 2013, 3, 23–29. [Google Scholar] [CrossRef]
- Jin, T.; Sun, D.; Su, J.Y.; Zhang, H.; Sue, H.J. Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7. J. Food Sci. 2009, 74, M46–M52. [Google Scholar] [CrossRef] [PubMed]
- Milani, N.C.; Sbardella, M.; Ikeda, N.Y.; Arno, A.; Mascarenhas, B.C.; Miyada, V.S. Dietary zinc oxide nanoparticles as growth promoter for weanling pigs. Anim. Feed. Sci. Technol. 2017, 227, 13–23. [Google Scholar] [CrossRef]
- Sagar, P.; Mandal, A.B.; Akbar, N.; Dinani, O.P. Effect of different levels and sources of zinc on growth performance and immunity of broiler chicken during summer. Int. J. Curr. Microbiol. App. Sci. 2018, 7, 459–471. [Google Scholar] [CrossRef]
- Qu, J.; Zuo, X.; Xu, Q.; Li, M.; Zou, L.; Tao, R.; Liu, X.; Wang, X.; Wang, J.; Wen, L.; et al. Effect of two particle sizes of nano zinc oxide on growth performance, immune function, digestive tract morphology, and intestinal microbiota composition in broilers. Animals 2023, 13, 1454. [Google Scholar] [CrossRef] [PubMed]
- Ramiah, S.K.; Atta Awad, E.; Hemly, N.I.M.; Ebrahimi, M.; Joshua, O.; Jamshed, M.; Saminathan, M.; Soleimani, A.F.; Idrus, Z. Effects of zinc oxide nanoparticles on regulatory appetite and heat stress protein genes in broiler chickens subjected to heat stress. J. Anim. Sci. 2020, 98, skaa300. [Google Scholar] [CrossRef]
- Abdel-Latif, H.M.R.; Abdel-Tawwab, M.; Khafaga, A.F.; Dawood, M.A.O. Dietary oregano essential oil improved antioxidative status, immune-related genes, and resistance of common carp (Cyprinus carpio L.) to Aeromonas hydrophila infection. Fish Shellfish Immunol. 2020, 104, 1–7. [Google Scholar] [CrossRef]
- Sallam, A.E.; Mansour, A.T.; Alsaqufi, A.S.; El-Sayed Salem, M.; El-Feky, M.M. Growth performance, anti-oxidative status, innate immunity, and ammonia stress resistance of Siganus rivulatus fed diet supplemented with zinc and zinc nanoparticles. Aquac. Rep. 2020, 18, 100410. [Google Scholar] [CrossRef]
- Swain, P.S.; Rao, S.B.N.; Rajendran, D.; Dominic, G.; Selvaraju, S. Nano zinc, an alternative to conventional zinc as animal feed supplement: A review. Anim. Nutr. 2016, 2, 134–141. [Google Scholar] [CrossRef]
- Awad, A.; Zaglool, A.W.; Ahmed, S.A.A.; Khalil, S.R. Transcriptomic profile change, immunological response and disease resistance of Oreochromis niloticus fed with conventional and Nano-Zinc oxide dietary supplements. Fish Shellfish Immunol. 2019, 93, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, H.K.; Al-Sagheer, A.A.; Reda, F.M.; Mahgoub, S.A.; Ayyat, M.S. Dietary curcumin supplement influence on growth, immunity, antioxidant status, and resistance to Aeromonas hydrophila in Oreochromis niloticus. Aquaculture 2017, 475, 16–23. [Google Scholar] [CrossRef]
- Sherif, A.H.; Abdelsalam, M.; Ali, N.G.; Mahrous, K.F. Zinc oxide nanoparticles boost the immune responses in oreochromis niloticus and improve disease resistance to aeromonas hydrophila infection. Biol. Trace Elem. Res. 2023, 201, 927–936. [Google Scholar] [CrossRef] [PubMed]
- Tawfik, M.; Moustafa, M.; Abumourad, I.; El-Meliegy, E.; Refai, M. Evaluation of Nano Zinc Oxide feed additive on tilapia Growth and Immunity. In Proceedings of the 15th International Conference on Environmental Science and Technology, Rhodes, Greece, 31 August–2 September 2017; pp. 1–9. [Google Scholar]
- Mishra, A.; Swain, R.; Mishra, S.; Panda, N.; Sethy, K. Growth performance and serum biochemical parameters as affected by nano zinc supplementation in layer chicks. Indian J. Anim. Nutr. 2014, 31, 384–388. [Google Scholar]
- Yang, Z.P.; Sun, L.P. Effects of nanometre ZnO on growth performance of early weaned piglets. J. Shanxi Agric. Sci. 2006, 3, 577–588. [Google Scholar] [CrossRef]
- Rajendran, D.; Kumar, G.; Ramakrishnan, S.; Shibi, T. Enhancing the milk production and immunity in Holstein Friesian crossbred cow by supplementing novel nano zinc oxide. Res. J. Biotechnol. 2013, 8, 11–17. [Google Scholar]
- Chen, J.; Wang, W.; Wang, Z. Effect of nano-zinc oxide supplementation on rumen fermentation in vitro. Chin. J. Anim. Nutr. 2011, 23, 1415–1421. [Google Scholar]
- Lönnerdal, B. Dietary factors influencing zinc absorption. J. Nutr. 2000, 130, 1378S–1383S. [Google Scholar] [CrossRef]
- Khajeh Bami, M.; Afsharmanesh, M.; Salarmoini, M.; Tavakoli, H. Effect of zinc oxide nanoparticles and Bacillus coagulans as probiotic on growth, histomorphology of intestine, and immune parameters in broiler chickens. Comp. Clin. Pathol. 2018, 27, 399–406. [Google Scholar] [CrossRef]
- Radi, A.M.; Abdel Azeem, N.M.; El-Nahass, E.S. Comparative effects of zinc oxide and zinc oxide nanoparticle as feed additives on growth, feed choice test, tissue residues, and histopathological changes in broiler chickens. Environ. Sci. Pollut. Res. Int. 2021, 28, 5158–5167. [Google Scholar] [CrossRef]
- Fawaz, M.A.; Südekum, K.H.; Hassan, H.A.; Abdel-Wareth, A.A.A. Productive, physiological and nutritional responses of laying hens fed different dietary levels of turmeric powder. J. Anim. Physiol. Anim. Nutr. 2023, 107, 214–221. [Google Scholar] [CrossRef]
- Abdel-Wareth, A.A.A.; Hussein, K.R.A.; Ismail, Z.S.H.; Lohakare, J. Effects of zinc oxide nanoparticles on the performance of broiler chickens under hot climatic conditions. Biol. Trace Elem. Res. 2022, 200, 5218–5225. [Google Scholar] [CrossRef]
- Karimi, A.; Hosseini, S.K.; Nemati, Z.; Sheikhlou, M.R. Effects of different zinc sources on productive performance and egg quality, blood parameters and immune response in Japanese layer quail. Res. Anim. Prod. 2018, 9, 27–35. [Google Scholar] [CrossRef]
- Abedini, M.; Shariatmadari, F.; Karimi Torshizi, M.A.; Ahmadi, H. Effects of zinc oxide nanoparticles on the egg quality, immune response, zinc retention, and blood parameters of laying hens in the late phase of production. J. Anim. Physiol. Anim. Nutr. 2018, 102, 736–745. [Google Scholar] [CrossRef] [PubMed]
- Mao, S.-Y.; Lien, T.-F. Effects of nanosized zinc oxide and γ-polyglutamic acid on eggshell quality and serum parameters of aged laying hens. Arch. Anim. Nutr. 2017, 71, 373–383. [Google Scholar] [CrossRef]
- Alkhtib, A.; Scholey, D.; Carter, N.; Cave, G.W.V.; Hanafy, B.I.; Kempster, S.R.J.; Mekapothula, S.; Roxborough, E.T.; Burton, E.J. Bioavailability of methionine-coated zinc nanoparticles as a dietary supplement leads to improved performance and bone strength in broiler chicken production. Animals 2020, 10, 1482. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.H.; Lu, L.; Wang, R.L.; Lei, H.L.; Li, S.F.; Zhang, L.Y.; Luo, X.G. Effects of supplemental zinc source and level on antioxidant ability and fat metabolism-related enzymes of broilers. Poult. Sci. 2015, 94, 2686–2694. [Google Scholar] [CrossRef]
- Mozhiarasi, V.; Karunakaran, R.; Raja, P.; Radhakrishnan, L. Effects of zinc oxide nanoparticles supplementation on growth performance, meat quality and serum biochemical parameters in broiler chicks. Biol. Trace Elem. Res. 2024, 202, 1683–1698. [Google Scholar] [CrossRef]
- Hassan, S.; Sharif, M.; Mirza, M.A.; Rehman, M.S.U. Effect of dietary supplementation of zinc nanoparticles prepared by different green methods on egg production, egg quality, bone mineralization, and antioxidant capacity in caged layers. Biol. Trace Elem. Res. 2023, 201, 5794–5804. [Google Scholar] [CrossRef]
- Mahmoud, U.T.; Abdel-Mohsein, H.S.; Mahmoud, M.A.M.; Amen, O.A.; Hassan, R.I.M.; Abd-El-Malek, A.M.; Rageb, S.M.M.; Waly, H.S.A.; Othman, A.A.; Osman, M.A. Effect of zinc oxide nanoparticles on broilers’ performance and health status. Trop. Anim. Health Prod. 2020, 52, 2043–2054. [Google Scholar] [CrossRef]
- El-Katcha, M.I.Y.; Soltan, M.A.; Elbadry, M. Effect of dietary replacement of inorganic zinc by organic or nanoparticles sources on growth performance, immune response and intestinal histopathology of broiler chicken. Alex. J. Vet. Sci. 2017, 55, 129–145. [Google Scholar] [CrossRef]
- Khah, M.M.; Ahmadi, F.; Amanlou, H. Influence of dietary different levels of zinc oxide nano particles on the yield and quality carcass of broiler chickens during starter stage. Indian J. Anim. Sci. 2015, 85, 287–290. [Google Scholar] [CrossRef]
- Lina, T.; Fenghua, Z.; Hui-ying, R.; Jian-yang, J.; Wenli, L. Effects of nano-zinc oxide on antioxidant function in broilers. Chin. J. Anim. Nutr. 2009, 21, 534–539. [Google Scholar]
- Zhou, X.-Q.; Hayat, Z.; Zhang, D.-D.; Li, M.-Y.; Hu, S.; Wu, Q.; Cao, Y.-F.; Yuan, Y. Zinc oxide nanoparticles: Synthesis, characterization, modification, and applications in food and agriculture. Processes 2023, 11, 1193. [Google Scholar] [CrossRef]
- Emmanuela de Andrade Vieira, J.; de Oliveira Ferreira, R.; Marcel Dos Reis Sampaio, D.; Pereira da Costa Araújo, A.; Malafaia, G. An insight on the mutagenicity and cytotoxicity of zinc oxide nanoparticles in Gallus gallus domesticus (Phasianidae). Chemosphere 2019, 231, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Cufadar, Y.; Göçmen, R.; Kanbur, G.; Yıldırım, B. Effects of dietary different levels of nano, organic and inorganic zinc sources on performance, eggshell quality, bone mechanical parameters and mineral contents of the tibia, liver, serum and excreta in laying hens. Biol. Trace Elem. Res. 2020, 193, 241–251. [Google Scholar] [CrossRef]
- Abedin, S.N.; Baruah, A.; Baruah, K.K.; Bora, A.; Dutta, D.J.; Kadirvel, G.; Katiyar, R.; Doley, S.; Das, S.; Khargharia, G.; et al. Zinc oxide and selenium nanoparticles can improve semen quality and heat shock protein expression in cryopreserved goat (Capra hircus) spermatozoa. J. Trace Elem. Med. Biol. 2023, 80, 127296. [Google Scholar] [CrossRef]
- Soltani, L.; Samereh, S.; Mohammadi, T. Effects of different concentrations of zinc oxide nanoparticles on the quality of ram cauda epididymal spermatozoa during storage at 4 °C. Reprod. Domest. Anim. 2022, 57, 864–875. [Google Scholar] [CrossRef]
- Khodaei-Motlagh, M.; Masoudi, R.; Karimi-Sabet, M.J.; Hatefi, A. Supplementation of sperm cooling medium with Zinc and Zinc oxide nanoparticles preserves rooster sperm quality and fertility potential. Theriogenology 2022, 183, 36–40. [Google Scholar] [CrossRef]
- Youn, S.-M.; Choi, S.-J. Food additive zinc oxide nanoparticles: Dissolution, interaction, fate, cytotoxicity, and oral toxicity. Int. J. Mol. Sci. 2022, 23, 6074. [Google Scholar] [CrossRef]
- Bae, S.-H.; Yu, J.; Lee, T.G.; Choi, S.-J. Protein food matrix–ZnO nanoparticle interactions affect protein conformation, but may not be biological responses. Int. J. Mol. Sci. 2018, 19, 3926. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.G.; King, J.C. The molecular basis for zinc bioavailability. Int. J. Mol. Sci. 2023, 24, 6561. [Google Scholar] [CrossRef]
- Li, Y.; Vulpe, C.; Lammers, T.; Pallares, R.M. Assessing inorganic nanoparticle toxicity through omics approaches. Nanoscale 2024, 16, 15928–15945. [Google Scholar] [CrossRef] [PubMed]
- Abdelnour, S.A.; Alagawany, M.; Hashem, N.M.; Farag, M.R.; Alghamdi, E.S.; Hassan, F.U.; Bilal, R.M.; Elnesr, S.S.; Dawood, M.A.O.; Nagadi, S.A.; et al. Nanominerals: Fabrication methods, benefits and hazards, and their applications in ruminants with special reference to selenium and zinc nanoparticles. Animals 2021, 11, 1916. [Google Scholar] [CrossRef]
- Fernández-Bertólez, N.; Alba-González, A.; Touzani, A.; Ramos-Pan, L.; Méndez, J.; Reis, A.T.; Quelle-Regaldie, A.; Sánchez, L.; Folgueira, M.; Laffon, B.; et al. Toxicity of zinc oxide nanoparticles: Cellular and behavioural effects. Chemosphere 2024, 363, 142993. [Google Scholar] [CrossRef] [PubMed]
- Fujihara, J.; Nishimoto, N. Review of zinc oxide nanoparticles: Toxicokinetics, tissue distribution for various exposure routes, toxicological effects, toxicity mechanism in mammals, and an approach for toxicity reduction. Biol. Trace Elem. Res. 2024, 202, 9–23. [Google Scholar] [CrossRef]
- Qin, X.; Zhang, J.; Wang, B.; Xu, G.; Yang, X.; Zou, Z.; Yu, C. Ferritinophagy is involved in the zinc oxide nanoparticles-induced ferroptosis of vascular endothelial cells. Autophagy 2021, 17, 4266–4285. [Google Scholar] [CrossRef]
- Yung, M.; Mouneyrac, C.; Leung, K. Ecotoxicity of zinc oxide nanoparticles in the marine environment. In Encyclopedia of Nanotechnology; Springer: Dordrecht, The Netherlands, 2015; pp. 1–17. [Google Scholar] [CrossRef]
- Amin, N.; Erfan, M.A. Environmental fate and toxicity of zinc oxide nanoparticles in aquatic ecosystems: A comprehensive review. J. Nat. Sci. Rev. 2025, 3, 104–125. [Google Scholar] [CrossRef]
- Voss, L.; Saloga, P.E.J.; Stock, V.; Böhmert, L.; Braeuning, A.; Thünemann, A.F.; Lampen, A.; Sieg, H. Environmental impact of ZnO nanoparticles evaluated by in vitro simulated digestion. ACS Appl. Nano Mater. 2020, 3, 724–733. [Google Scholar] [CrossRef]
Function | Mechanism | Description |
---|---|---|
Antibacterial | ROS Generation | ZnO NPs produce reactive oxygen species, damaging bacterial cell membranes and inhibiting bacterial growth. |
Zn2+ Ion Release | Zn2+ ions penetrate bacterial cells, disrupting metabolic functions and inhibiting protein and nucleic acid synthesis, ultimately causing cell death. | |
Particle Size Effect | The nanoscale size of ZnO NPs increases surface area, enhancing interaction with bacteria and boosting antibacterial activity. | |
Bacterial Membrane Disruption | ZnO NPs disrupt bacterial membrane integrity, leading to the leakage of cell contents and cell death. | |
Anti-inflammatory | Inhibition of Pro-Inflammatory Factors | ZnO NPs inhibit the generation of pro-inflammatory factors (e.g., TNF-α and IL-6), reducing the inflammatory response. |
Reduction of Tissue Damage | By reducing free radical production, ZnO NPs mitigate tissue damage caused by inflammation, protecting cells. | |
Blocking of Cytokine Signaling | ZnO NPs block pathways such as NF-κB, reducing the production of inflammatory cytokines and alleviating inflammation. | |
Reduction in Inflammatory Enzyme Activity | ZnO NPs decrease the expression of enzymes such as COX-2 and iNOS, which are associated with the amplification of inflammation. | |
Antioxidant | Free Radical Scavenging | ZnO NPs eliminate free radicals, reducing damage to cellular membranes and structures caused by oxidative stress. |
Enhancement of Antioxidant Enzyme Activity | ZnO NPs activate antioxidant enzymes (e.g., SOD, CAT, and GSH-Px), neutralizing free radicals and increasing cellular antioxidant capacity. | |
Reduction in Malondialdehyde (MDA) Levels | ZnO NPs reduce oxidative stress, leading to lower MDA levels, mitigating lipid peroxidation, and cellular damage. | |
Strengthening Cellular Antioxidant Defense | ZnO NPs enhance intracellular antioxidant defense mechanisms, protecting cells from protein, DNA, and lipid damage. |
Animal Species | Sample Size | Trial Duration | Route of Administration | ZnO Nanoparticle Dosage | Observed Effects | References |
---|---|---|---|---|---|---|
Pigs | n = 4 | 14 days | Dietary supplementation | 800 mg/kg | Improved growth performance, reduced diarrhea incidence, enhanced intestinal barrier function, modulated immune responses, decreased zinc excretion, promoted intestinal morphology | [49] |
Broilers | n = 6 | 42 days | Dietary supplementation | 40/60/100 mg/kg | Modulated appetite-related genes (ghrelin and CCK), regulated heat stress protein genes (HSP70 and HSP90) | [50] |
Oreochromis niloticus | n = 15 | 8 weeks | Dietary supplementation | 20/40/60 mg/kg | Enhanced antioxidant capacity, improved blood health, boosted immune function, optimized metabolic profiles, reduced liver damage, enhanced resistance to Staphylococcus aureus at 40 mg/kg dietary supplementation | [51] |
Dairy Cattle | Total = 500 | 5 days treatment + 45–60 days observation | Intrauterine infusion | 20 μg/mL (150 mL daily, total 3 mg/day per cow) | Effective clinical cure of multidrug-resistant uterine infections, induction of estrus and pregnancy, broad-spectrum antibacterial activity | [52] |
Quails | n = 4 | 28 days | Dietary supplementation | 0–130 mg/kg | Improved eggshell thickness, enhanced fertility, increased egg weight and eggshell surface, optimized egg production with reduced zinc requirement | [53] |
Mice | n = 6 | 28 days | Intraperitoneal injection | 5.6 mg/kg | Significantly increased dopamine levels in the brains of Parkinson’s disease mice, activated the expression of the dopa decarboxylase gene while maintaining tyrosine hydroxylase activity. It had no significant effect on norepinephrine or epinephrine levels, effectively improving motor dysfunction and reversing weight loss symptoms induced by rotenone | [54] |
Rats | n = 7 | 42 days | Intraperitoneal injection | 4 mg/kg | Attenuated oxidative damage, suppressed neuroinflammatory response, inhibited neuronal apoptosis, restored neurotransmitter balance, mitigated histopathological alterations | [55] |
Lambs | STE: n = 9/group LTE: n = 7/group | 42 days | Dietary supplementation | STE: 80 mg Zn/kg diet (ZnO-NPs, ZnP-NPs) LTE: 40 mg/kg (ZnO-NP40), 80 mg/kg (ZnO-NP80, ZnO-80) | In vitro: enhanced dry matter digestibility; short-term: reduced total bacterial population with ZnP-NPs; long-term: decreased ammonia-N concentration (ZnO-NP80), increased carboxymethyl cellulase and xylanase activities; histopathology: inflammatory changes in ruminal papillae and epithelium regardless of Zn form/dose/duration, improved feed-use efficiency via altered fermentation patterns enhancing SCFA transport capacity | [56] |
Rabbits | n = 15 | 45 days | Dietary supplementation | Gp.3: 60 mg/kg ZnO NPs Gp.4: 30 mg/kg ZnO + 30 mg/kg ZnO NPs | Gp.3 (ZnO NPs): elevated liver enzymes (ALT/AST), hypoproteinemia/hypoalbuminemia, reduced lipid profile (TG/TC/HDL-C), increased renal markers (creatinine/urea), hepatic/renal oxidative stress (↑ MDA, ↓ CAT), leukocytosis/lymphocytosis, hepatic/renal DNA damage, severe hepatic hydropic degeneration and renal interstitial nephritis; Gp.4 (combined): mitigated adverse effects (less severe biochemical/oxidative/genotoxic changes and histopathology) while retaining zinc benefits | [57] |
Regulatory Body | Standard | NP-Specific Clause |
---|---|---|
EFSA (EU) | ≤150 mg/kg total Zn in feed | Yes: Requires nano-specific bioavailability assessment (since 2021) |
FDA (US) | GRAS status (21 CFR §573.920) | No: Applies to ZnO compounds generically |
GB Standard (China) | 120–250 mg/kg total Zn | Partial: Recommends NP accumulation monitoring |
OECD | TG 305: Bioaccumulation test | Under revision: 2023 draft adds agreement on nanomaterials |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Xiong, D.; Long, M. Zinc Oxide Nanoparticles as Next-Generation Feed Additives: Bridging Antimicrobial Efficacy, Growth Promotion, and Sustainable Strategies in Animal Nutrition. Nanomaterials 2025, 15, 1030. https://doi.org/10.3390/nano15131030
Yang J, Xiong D, Long M. Zinc Oxide Nanoparticles as Next-Generation Feed Additives: Bridging Antimicrobial Efficacy, Growth Promotion, and Sustainable Strategies in Animal Nutrition. Nanomaterials. 2025; 15(13):1030. https://doi.org/10.3390/nano15131030
Chicago/Turabian StyleYang, Jiayi, Dongwei Xiong, and Miao Long. 2025. "Zinc Oxide Nanoparticles as Next-Generation Feed Additives: Bridging Antimicrobial Efficacy, Growth Promotion, and Sustainable Strategies in Animal Nutrition" Nanomaterials 15, no. 13: 1030. https://doi.org/10.3390/nano15131030
APA StyleYang, J., Xiong, D., & Long, M. (2025). Zinc Oxide Nanoparticles as Next-Generation Feed Additives: Bridging Antimicrobial Efficacy, Growth Promotion, and Sustainable Strategies in Animal Nutrition. Nanomaterials, 15(13), 1030. https://doi.org/10.3390/nano15131030