Realization of High Current Gain for Van der Waals MoS2/WSe2/MoS2 Bipolar Junction Transistor
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Device Fabrication
2.3. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Chen, W.; Chen, Y.; Chen, Y.; Chen, Y.; Ding, F.; Fan, C.; Fan Hong, J.; Fan, Z.; Gong, C.; et al. Recent Progress on Two-Dimensional Materials. Acta Phys. Chim. Sin. 2021, 37, 2108017. [Google Scholar] [CrossRef]
- Tan, C.L.; Cao, X.H.; Wu, X.J.; He, Q.Y.; Yang, J.; Zhang, X.; Chen, J.Z.; Zhao, W.; Han, S.K.; Nam, G.H.; et al. Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chem. Rev. 2017, 117, 6225–6331. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tan, B.Y.; Zhang, X.; Gao, F.; Hu, Y.X.; Wang, L.F.; Duan, X.M.; Yang, Z.H.; Hu, P. Atomically Thin Hexagonal Boron Nitride and Its Heterostructures. Adv. Mater. 2021, 33, 2000769. [Google Scholar] [CrossRef] [PubMed]
- Bian, R.J.; Li, C.C.; Liu, Q.; Cao, G.M.; Fu, Q.D.; Meng, P.; Zhou, J.D.; Liu, F.C.; Liu, Z. Recent progress in the synthesis of novel two-dimensional van der Waals materials. Natl. Sci. Rev. 2022, 9, nwab164. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zeng, X.J.; Xing, Y.; Chen, J.; Deng, S.Z.; She, J.C.; Liu, F. High-Performance Planar Field-Emission Photodetector of Monolayer Tungsten Disulfide with Microtips. Small 2023, 19, 2304233. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Weiss, N.O.; Duan, X.D.; Cheng, H.C.; Huang, Y.; Duan, X.F. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042. [Google Scholar] [CrossRef]
- Castellanos-Gomez, A.; Duan, X.F.; Fei, Z.; Gutierrez, H.R.; Huang, Y.; Huang, X.Y.; Quereda, J.; Qian, Q.; Sutter, E.; Sutter, P. Van der Waals heterostructures. Nat. Rev. Methods Primers 2022, 2, 58. [Google Scholar] [CrossRef]
- Massicotte, M.; Schmidt, P.; Vialla, F.; Schädler, K.G.; Reserbat-Plantey, A.; Watanabe, K.; Taniguchi, T.; Tielrooij, K.J.; Koppens, F.H.L. Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 2016, 11, 42–46. [Google Scholar] [CrossRef]
- Tian, Y.; Guo, Z.; Liu, Z.; Lin, H.; Li, X.; Chen, J.; Deng, S.; Liu, F. Efficiently enhanced the visible-light absorption of monolayer WS2 by constructing an asymmetric Fabry-Perot cavity. Mater. Today Nano 2021, 14, 100112. [Google Scholar] [CrossRef]
- Dastgeer, G.; Nisar, S.; Rasheed, A.; Akbar, K.; Chavan, V.D.; Kim, D.K.; Wabaidur, S.M.; Zulfiqar, M.W.; Eom, J. Atomically engineered, high-speed non-volatile flash memory device exhibiting multibit data storage operations. Nano Energy 2024, 119, 109106. [Google Scholar] [CrossRef]
- Dastgeer, G.; Afzal, A.M.; Aziz, J.; Hussain, S.; Jaffery, S.H.A.; Kim, D.K.; Imran, M.; Assiri, M.A. Flexible Memory Device Composed of Metal-Oxide and Two-Dimensional Material (SnO2/WTe2) Exhibiting Stable Resistive Switching. Materials 2021, 14, 7535. [Google Scholar] [CrossRef] [PubMed]
- Nisar, S.; Basha, B.; Dastgeer, G.; Shahzad, Z.M.; Kim, H.; Rabani, I.; Rasheed, A.; Al-Buriahi, M.S.; Irfan, A.; Eom, J.; et al. A Novel Biosensing Approach: Improving SnS2 FET Sensitivity with a Tailored Supporter Molecule and Custom Substrate. Adv. Sci. 2023, 10, 2303654. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Lee, S.; Song, J.G.; Ko, K.Y.; Woo, W.J.; Lee, S.W.; Park, M.; Lee, H.; Lee, Z.; Choi, H.; et al. 2D Transition Metal Dichalcogenide Heterostructures for p- and n-Type Photovoltaic Self-Powered Gas Sensor. Adv. Funct. Mater. 2020, 30, 2003360. [Google Scholar] [CrossRef]
- He, C.L.; Tang, J.; Shang, D.S.; Tang, J.S.; Xi, Y.; Wang, S.P.; Li, N.; Zhang, Q.T.; Lu, J.K.; Wei, Z.; et al. Artificial Synapse Based on van der Waals Heterostructures with Tunable Synaptic Functions for Neuromorphic Computing. ACS Appl. Mater. Interfaces 2020, 12, 11945–11954. [Google Scholar] [CrossRef]
- Su, B.W.; Zhang, X.L.; Yao, B.W.; Guo, H.W.; Li, D.K.; Chen, X.D.; Liu, Z.B.; Tian, J.G. Laser Writable Multifunctional van der Waals Heterostructures. Small 2020, 16, 2003593. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.W.; Xu, N.S.; Ke, Y.L.; Chen, H.J.; Zhang, Y.; Deng, S.Z. Sensing by Surface Work Function Modulation: High Performance Gas Sensing using van der Waals Stacked Bipolar Junction Transistor. Sens. Actuators B Chem. 2021, 345, 130340. [Google Scholar] [CrossRef]
- Lee, G.; Pearton, S.J.; Ren, F.; Kim, J. Two-Dimensionally Layered p-Black Phosphorus/n-MoS2/p-Black Phosphorus Heterojunctions. ACS Appl. Mater. Interfaces 2018, 10, 10347–10352. [Google Scholar] [CrossRef] [PubMed]
- Su, B.W.; Yao, B.W.; Zhang, X.L.; Huang, K.X.; Li, D.K.; Guo, H.W.; Li, X.K.; Chen, X.D.; Liu, Z.B.; Tian, J.G. A gate-tunable symmetric bipolar junction transistor fabricated via femtosecond laser processing. Nanoscale Adv. 2020, 2, 1733–1740. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ye, L.; Xu, J.B. High-Performance Broadband Floating-Base Bipolar Phototransistor Based on WSe2/BP/MoS2 Heterostructure. ACS Photonics 2017, 4, 823–829. [Google Scholar] [CrossRef]
- Luo, Z.T.; Yang, M.M.; Wu, D.S.; Huang, Z.H.; Gao, W.; Zhang, M.L.; Zhou, Y.C.; Zhao, Y.; Zheng, Z.Q.; Li, J.B. Rational Design of WSe2/WS2/WSe2 Dual Junction Phototransistor Incorporating High Responsivity and Detectivity. Small Methods 2022, 6, 2200583. [Google Scholar] [CrossRef] [PubMed]
- Dastgeer, G.; Shahzad, Z.M.; Chae, H.; Kim, Y.H.; Ko, B.M.; Eom, J. Bipolar Junction Transistor Exhibiting Excellent Output Characteristics with a Prompt Response against the Selective Protein. Adv. Funct. Mater. 2022, 32, 2204781. [Google Scholar] [CrossRef]
- Shahidul Hassan, M.M.; Domingos, H. Breakdown voltages of base-collector junctions of medium- and low-voltage graded collector transistors. Int. J. Electron. 1991, 70, 69–75. [Google Scholar] [CrossRef]
- Yuan, J.S. Collector-base junction capacitance of advanced bipolar transistors operating at avalanche breakdown. Phys. Status Solidi A 1992, 134, 575–581. [Google Scholar] [CrossRef]
- Maity, S.; Sarkar, K.; Kumar, P. Layered Heterostructures Based on MoS2/MoSe2 Nanosheets Deposited on GaN Substrates for Photodetector Applications. ACS Appl. Nano Mater. 2023, 6, 4224–4235. [Google Scholar] [CrossRef]
- Zhao, W.J.; Ghorannevis, Z.; Amara, K.K.; Pang, J.R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, P.H.; Eda, G. Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale 2013, 5, 9677–9683. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.W.; Zhang, Y.; Chen, H.J.; Xu, N.S.; Deng, S.Z. Enhanced Performance of a Monolayer MoS2/WSe2 Heterojunction as a Photoelectrochemical Cathode. Nano-Micro Lett. 2018, 10, 60. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Cho, K.; Pak, J.; Lee, W.; Seo, J.; Kim, J.K.; Shin, J.; Jang, J.; Baek, K.Y.; Lee, J.; et al. Channel-Length-Modulated Avalanche Multiplication in Ambipolar WSe2 Field-Effect Transistors. ACS Nano 2022, 16, 5376–5383. [Google Scholar] [CrossRef]
- Luo, P.; Wang, F.K.; Qu, J.Y.; Liu, K.L.; Hu, X.Z.; Liu, K.W.; Zhai, T.Y. Self-Driven WSe2/Bi2O2Se Van der Waals Heterostructure Photodetectors with High Light On/Off Ratio and Fast Response. Adv. Funct. Mater. 2021, 31, 2008351. [Google Scholar] [CrossRef]
- Zhu, J.Q.; Yue, X.F.; Chen, J.J.; Wang, J.; Wan, J.; Bao, W.Z.; Hu, L.G.; Liu, R.; Cong, C.X.; Qiu, Z.J. Ultrasensitive Phototransistor Based on Laser-Induced P-Type Doped WSe2/MoS2 Van der Waals Heterojunction. Appl. Sci. 2023, 13, 6024. [Google Scholar] [CrossRef]
- Nourbakhsh, A.; Zubair, A.; Dresselhaus, M.S.; Palacios, T. Transport Properties of a MoS2/WSe2 Heterojunction Transistor and Its Potential for Application. Nano Lett. 2016, 16, 1359–1366. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Zhang, D.W.; Liu, C.S.; Bao, W.Z.; Wang, S.Y.; Ding, S.J.; Zheng, G.F.; Zhou, P. High Performance Amplifier Element Realization via MoS2/GaTe Heterostructures. Adv. Sci. 2018, 5, 1700830. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Zhu, X.D.; Tsai, S.H.; Tsai, S.P.; Lei, S.D.; Shi, Y.M.; Li, L.J.; Huang, S.J.; Wu, W.F.; Yeh, W.K.; et al. Atomic-Monolayer Two-Dimensional Lateral Quasi-Heterojunction Bipolar Transistors with Resonant Tunneling Phenomenon. ACS Nano 2017, 11, 11015–11023. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.W.; Xu, N.S.; Zhang, Y.; Zhao, P.; Chen, H.J.; Deng, S.Z. Van der Waals Bipolar Junction Transistor Using Vertically Stacked Two-Dimensional Atomic Crystals. Adv. Funct. Mater. 2019, 29, 1807893. [Google Scholar] [CrossRef]
- Afzal, A.M.; Iqbal, M.Z.; Dastgeer, G.; Nazir, G.; Mumtaz, S.; Usman, M.; Eom, J. WS2/GeSe/WS2 Bipolar Transistor-Based Chemical Sensor with Fast Response and Recovery Times. ACS Appl. Mater. Interfaces 2020, 12, 39524–39532. [Google Scholar] [CrossRef] [PubMed]
- Son, B.; Wang, Y.D.; Luo, M.L.; Lu, K.Z.; Kim, Y.; Joo, H.J.; Yi, Y.; Wang, C.W.; Wang, Q.J.; Chae, S.H.; et al. Efficient Avalanche Photodiodes with a WSe2/MoS2 Heterostructure via Two-Photon Absorption. Nano Lett. 2022, 22, 9516–9522. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, T.H.; Wang, X.M.; Liu, S.J.; Chen, H.J.; Deng, S.Z. A Complete Two-Dimensional Avalanche Photodiode Based on MoTe2-WS2-MoTe2 Heterojunctions with Ultralow Dark Current. Front. Mater. 2021, 8, 736180. [Google Scholar] [CrossRef]
- Pak, J.; Jang, Y.; Byun, J.; Cho, K.; Kim, T.Y.; Kim, J.K.; Choi, B.Y.; Shin, J.; Hong, Y.; Chung, S.; et al. Two-Dimensional Thickness-Dependent Avalanche Breakdown Phenomena in MoS2 Field-Effect Transistors under High Electric Fields. ACS Nano 2018, 12, 7109–7116. [Google Scholar] [CrossRef] [PubMed]
- Lan, C.Y.; Li, C.; Wang, S.; He, T.Y.; Jiao, T.P.; Wei, D.P.; Jing, W.K.; Li, L.Y.; Liu, Y. Zener Tunneling and Photoresponse of a WS2/Si van der Waals Heterojunction. ACS Appl. Mater. Interfaces 2016, 8, 18375–18382. [Google Scholar] [CrossRef] [PubMed]
- Dastgeer, G.; Khan, M.F.; Nazir, G.; Afzal, A.M.; Aftab, S.; Naqvi, B.A.; Cha, J.; Min, K.A.; Jami, Y.; Jung, J.; et al. Temperature-Dependent and Gate-Tunable Rectification in a Black Phosphorus/WS2 van der Waals Heterojunction Diode. ACS Appl. Mater. Interfaces 2018, 10, 13150–13157. [Google Scholar] [CrossRef] [PubMed]
Material | Structure | Type | α | β | Ref. |
---|---|---|---|---|---|
n+-MoS2/WSe2/MoS2 | Vertical | npn | 0.98 | 225 | This work |
MoTe2/GeSe/MoTe2 | Vertical | npn | 0.95 | 29.3 | [22] |
MoS2/WSe2/MoS2 | Vertical | npn | 0.97 | 12 | [34] |
WS2/GeSe/WS2 | Vertical | npn | 1.11 | 20.7 | [35] |
MoS2/WSe2/MoS2 | Lateral | npn | / | 3 | [33] |
MoS2/BP/MoS2 | Lateral | npn | 0.98 | 41 | [16] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Z.; Xu, N.; Deng, S. Realization of High Current Gain for Van der Waals MoS2/WSe2/MoS2 Bipolar Junction Transistor. Nanomaterials 2024, 14, 718. https://doi.org/10.3390/nano14080718
Yan Z, Xu N, Deng S. Realization of High Current Gain for Van der Waals MoS2/WSe2/MoS2 Bipolar Junction Transistor. Nanomaterials. 2024; 14(8):718. https://doi.org/10.3390/nano14080718
Chicago/Turabian StyleYan, Zezhang, Ningsheng Xu, and Shaozhi Deng. 2024. "Realization of High Current Gain for Van der Waals MoS2/WSe2/MoS2 Bipolar Junction Transistor" Nanomaterials 14, no. 8: 718. https://doi.org/10.3390/nano14080718
APA StyleYan, Z., Xu, N., & Deng, S. (2024). Realization of High Current Gain for Van der Waals MoS2/WSe2/MoS2 Bipolar Junction Transistor. Nanomaterials, 14(8), 718. https://doi.org/10.3390/nano14080718