Investigation of Perovskite Solar Cells Using Guanidinium Doped MAPbI3 Active Layer
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Manufacturing Process
3. Experimental Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diffenbaugh, N.S.; Burke, M. Global warming has increased global economic inequality. Proc. Natl. Acad. Sci. USA 2019, 116, 9808–9813. [Google Scholar] [CrossRef]
- Martinez-Anido, C.B.; Botor, B.; Florita, A.R.; Draxl, C.; Lu, S.; Hamann, H.F.; Hodge, B.M. The value of day-ahead solar power forecasting improvement. Sol. Energy 2016, 129, 192–203. [Google Scholar] [CrossRef]
- Wang, Z.F.; Li, X.; Yao, Z.H.; Zhang, M.M. Concentrating solar power development in China. J. Sol. Energy Eng. Trans.-ASME 2010, 132, 021203. [Google Scholar] [CrossRef]
- Yun, S.N.; Qin, Y.; Uhl, A.R.; Vlachopoulos, N.; Yin, M.; Li, D.D.; Han, X.G.; Hagfeldt, A. New-generation integrated devices based on dye-sensitized and perovskite solar cells. Energy Environ. Sci. 2018, 11, 476–526. [Google Scholar] [CrossRef]
- Lin, H.; Wang, W.L.; Liu, Y.Z.; Li, X.; Li, J.B. New trends for solar cell development and recent progress of dye sensitized solar cells. Front. Mater. Sci. 2009, 3, 345–352. [Google Scholar] [CrossRef]
- Assadi, M.K.; Bakhoda, S.; Saidur, R.; Hanaei, H. Recent progress in perovskite solar cells. Renew. Sust. Energ. Rev. 2018, 81, 2812–2822. [Google Scholar] [CrossRef]
- Xiong, S.B.; Hao, T.Y.; Sun, Y.Y.; Yang, J.M.; Ma, R.R.; Wang, J.L.; Gong, S.J.; Liu, X.J.; Ding, L.M.; Fahlman, M.; et al. Defect passivation by nontoxic biomaterial yields 21% efficiency perovskite solar cells. J. Energy Chem. 2021, 55, 265–271. [Google Scholar] [CrossRef]
- Valadi, K.; Gharibi, S.; Taheri-Ledari, R.; Akin, S.; Maleki, A.; Shalan, A.E. Metal oxide electron transport materials for perovskite solar cells: A review. Environ. Chem. Lett. 2021, 19, 2185–2207. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, X.W.; You, J.B. SnO2: A wonderful electron transport layer for perovskite solar cells. Small 2018, 14, 1801154. [Google Scholar] [CrossRef]
- Yang, J.Y.; Luo, X.R.; Zhou, Y.K.; Li, Y.Y.; Qiu, Q.Q.; Xie, T.F. Recent advances in inverted perovskite solar cells: Designing and fabrication. Int. J. Mol. Sci. 2022, 23, 11792. [Google Scholar] [CrossRef]
- Zuo, C.T.; Bolink, H.J.; Han, H.W.; Huang, J.S.; Cahen, D.; Ding, L.M. Advances in perovskite solar cells. Adv. Sci. 2016, 3, 1500324. [Google Scholar] [CrossRef]
- Park, N.G.; Segawa, H. Research direction toward theoretical efficiency in perovskite solar cells. ACS Photonics 2018, 5, 2970–2977. [Google Scholar] [CrossRef]
- Yang, H.Y.; Chuquer, A.; Han, S.H.; Gaudel, G.S.; Pham, X.H.; Kim, H.M.; Yun, W.J.; Jun, B.H.; Rho, W.Y. Optimizing the aspect ratio of nanopatterned mesoporous TiO2 thin-film layer to improve energy conversion efficiency of perovskite solar cells. Int. J. Mol. Sci. 2021, 22, 12235. [Google Scholar] [CrossRef] [PubMed]
- Green, M.A.; Dunlop, E.D.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Siefer, G.; Hao, X.J. Solar cell efficiency tables (version 62). Prog. Photovolt. 2023, 31, 651–663. [Google Scholar] [CrossRef]
- Chang, T.C.; Liao, C.Y.; Lee, C.T.; Lee, H.Y. Investigation of the performance of perovskite solar cells with ZnO-covered PC61BM electron transport layer. Materials 2023, 16, 5061. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.S.; Chen, Y.C.; Lee, C.T.; Lee, H.Y. Performance improvement of perovskite solar cells using electron and hole transport layers. Sol. Energy 2018, 174, 897–900. [Google Scholar] [CrossRef]
- Wang, D.; Wright, M.; Elumalai, N.K.; Uddin, A. Stability of perovskite solar cells. Sol. Energy Mater. Sol. Cells 2016, 147, 255–275. [Google Scholar] [CrossRef]
- Alkahtani, M.; Alenzi, S.M.; Alsolami, A.; Alsofyani, N.; Alfahd, A.; Alzahrani, Y.A.; Aljuwayr, A.; Abduljawad, M. High-performance and stable perovskite solar cells using carbon quantum dots and upconversion nanoparticles. Int. J. Mol. Sci. 2022, 23, 14441. [Google Scholar] [CrossRef] [PubMed]
- Jabeen, N.; Zaidi, A.; Hussain, A.; Ul Hassan, N.; Ali, J.; Ahmed, F.; Khan, M.U.; Iqbal, N.; Elnasr, T.A.S.; Helal, M.H. Single- and multilayered perovskite thin films for photovoltaic applications. Nanomaterials 2022, 12, 3208. [Google Scholar] [CrossRef]
- Chang, K.C.; Yeh, T.H.; Lee, H.Y.; Lee, C.T. High performance perovskite solar cells using multiple hole transport layer and modulated FAxMA1−xPbI3 active layer. J. Mater. Sci. Mater. Electron. 2020, 31, 4135–4141. [Google Scholar] [CrossRef]
- Wu, H.T.; Cheng, Y.T.; Leu, C.C.; Wu, S.H.; Shih, C.F. Improving two-step prepared CH3NH3PbI3 perovskite solar cells by Co-doping potassium halide and water in PbI2 layer. Nanomaterials 2019, 9, 666. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xu, Y.K.; Wang, Q.; Zhou, X.F.; Li, Z.H.; Wang, M.; Lei, Y.T.; Zhang, H.; Wang, H.X.; Jin, Z.W. Guanidium-assisted crystallization engineering for highly efficient CsPbI3 solar cells. J. Mater. Chem. C 2022, 10, 8234–8240. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Yang, X.Y.; Su, R.; Wu, P.; Gong, Q.H.; Zhu, R. High-performance CsPbIxBr3-x all-inorganic perovskite solar cells with efficiency over 18% via spontaneous interfacial manipulation. Adv. Funct. Mater. 2020, 30, 2000457. [Google Scholar] [CrossRef]
- Nam, J.E.; Jo, H.J.; Kang, J.K.; Woo, S.; Hwang, D.K. Optimization of electrolyte components on the performance of organic-dye-sensitized solar cells. J. Nanosci. Nanotechnol. 2017, 17, 8100–8104. [Google Scholar] [CrossRef]
- Jeanbourquin, X.A.; Li, X.E.; Law, C.; Barnes, P.R.F.; Humphry-Baker, R.; Lund, P.; Asghar, M.I.; O’Regan, B.C. Rediscovering a key interface in dye-sensitized solar cells: Guanidinium and iodine competition for binding sites at the dye/electrolyte surface. J. Am. Chem. Soc. 2014, 136, 7286–7294. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, T.; Oku, T.; Suzuki, A.; Ueoka, N. Additive effects of guanidinium iodide on CH3NH3PbI3 perovskite solar cells. Phys. Status Solidi A Appl. Mat. 2021, 218, 2100396. [Google Scholar] [CrossRef]
- Pan, W.C.; Lin, J.M.; Wu, J.H.; Rong, B.; Zhang, X.P.; Chen, Q.; Zhang, M.; Wang, S.B.; Sun, W.H.; Wang, X.B.; et al. Interface modification by formamidine acetate for efficient perovskite solar cells. Sol. Energy 2022, 232, 304–311. [Google Scholar] [CrossRef]
- Jodlowski, A.D.; Roldán-Carmona, C.; Grancini, G.; Salado, M.; Ralaiarisoa, M.; Ahmad, S.; Koch, N.; Camacho, L.; De Miguel, G.; Nazeeruddin, M.K. Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells. Nat. Energy 2017, 2, 972–979. [Google Scholar] [CrossRef]
- Liu, C.; Liu, S.; Wang, Y.F.; Chu, Y.M.; Yang, K.; Wang, X.D.; Gao, C.X.; Wang, Q.F.; Du, J.K.; Li, S.; et al. Improving the performance of perovskite solar cells via a novel additive of N,1-fluoroformamidinium iodide with electron-withdrawing fluorine group. Adv. Funct. Mater. 2021, 31, 2010603. [Google Scholar] [CrossRef]
- Li, W.; Thirumurugan, A.; Barton, P.T.; Lin, Z.S.; Henke, S.; Yeung, H.H.M.; Wharmby, M.T.; Bithell, E.G.; Howard, C.J.; Cheetham, A.K. Mechanical tunability via hydrogen bonding in metal–organic frameworks with the perovskite architecture. J. Am. Chem. Soc. 2014, 136, 7801–7804. [Google Scholar] [CrossRef]
- De Marco, N.; Zhou, H.P.; Chen, Q.; Sun, P.Y.; Liu, Z.H.; Meng, L.; Yao, E.P.; Liu, Y.S.; Schiffer, A.; Yang, Y. Guanidinium: A route to enhanced carrier lifetime and open-circuit voltage in hybrid perovskite solar cells. Nano Lett. 2016, 16, 1009–1016. [Google Scholar] [CrossRef]
- Hoang, M.T.; Pannu, A.S.; Yang, Y.; Madani, S.; Shaw, P.; Sonar, P.; Tesfamichael, T.; Wang, H.X. Surface treatment of inorganic CsPbI3 nanocrystals with guanidinium iodide for efficient perovskite light-emitting diodes with high brightness. Nano-Micro Lett. 2022, 14, 69. [Google Scholar] [CrossRef]
- Sarkar, K.; Mukherjee, S.; Mukherjee, S.; Mitra, M.K. Synthesis, characterization and studies on optical, dielectric and magnetic properties of undoped and cobalt doped nanocrystalline bismuth ferrite. J. Inst. Eng. India Ser. D 2014, 95, 135–143. [Google Scholar] [CrossRef]
- He, K.; Chen, N.F.; Wang, C.J.; Wei, L.S.; Chen, J.K. Method for determining crystal grain size by X-ray diffraction. Cryst. Res. Technol. 2018, 53, 1700157. [Google Scholar] [CrossRef]
- Choi, H.; Choi, K.; Choi, Y.; Kim, T.; Lim, S.; Park, T. A review on reducing grain boundaries and morphological improvement of perovskite solar cells from methodology and material-based perspectives. Small Methods 2020, 4, 1900569. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, T.L.; Li, J.L.; Zhang, L.; Li, H.T.; Lu, Z.L.; Wang, G. All-inorganic perovskite solar cells with both high open-circuit voltage and stability. Front. Mater. 2020, 6, 330. [Google Scholar] [CrossRef]
- Kazemi, M.A.A.; Jamali, A.; Sauvage, F. A holistic study on the effect of annealing temperature and time on CH3NH3PbI3-based perovskite solar cell characteristics. Front. Energy Res. 2021, 9, 732886. [Google Scholar] [CrossRef]
- Xia, B.; Wu, Z.X.; Dong, H.; Xi, J.; Wu, W.; Lei, T.; Xi, K.; Yuan, F.; Jiao, B.; Xiao, L.X.; et al. Formation of ultrasmooth perovskite films toward highly efficient inverted planar heterojunction solar cells by micro-flowing anti-solvent deposition in air. J. Mater. Chem. A 2016, 4, 6295–6303. [Google Scholar] [CrossRef]
- Nukunudompanich, M.; Budiutama, G.; Suzuki, K.; Hasegawa, K.; Ihara, M. Dominant effect of the grain size of the MAPbI3 perovskite controlled by the surface roughness of TiO2 on the performance of perovskite solar cells. Crystengcomm 2020, 22, 2718–2727. [Google Scholar] [CrossRef]
- Liu, D.Y.; Gangishetty, M.K.; Kelly, T.L. Effect of CH3NH3PbI3 thickness on device efficiency in planar heterojunction perovskite solar cells. J. Mater. Chem. A 2014, 2, 19873–19881. [Google Scholar] [CrossRef]
- Momblona, C.; Malinkiewicz, O.; Roldan-Carmona, C.; Soriano, A.; Gil-Escrig, L.; Bandiello, E.; Scheepers, M.; Edri, E.; Bolink, H.J. Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm. APL Mater. 2014, 2, 081504. [Google Scholar] [CrossRef]
- Xiao, M.D.; Huang, F.Z.; Huang, W.C.; Dkhissi, Y.; Zhu, Y.; Etheridge, J.; Gray-Weale, A.; Bach, U.; Cheng, Y.B.; Spiccia, L. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem.-Int. Edit. 2014, 53, 9898–9903. [Google Scholar] [CrossRef] [PubMed]
- Rai, M.; Wong, L.H.; Etgar, L. Effect of perovskite thickness on electroluminescence and solar cell conversion efficiency. J. Phys. Chem. Lett. 2020, 11, 8189–8194. [Google Scholar] [CrossRef] [PubMed]
- Cerdán-Pasarán, A.; López-Luke, T.; Esparza, D.; Zarazúa, I.; De la Rosa, E.; Fuentes-Ramírez, R.; Alatorre-Ordaz, A.; Sánchez-Solís, A.; Torres-Castrod, A.; Zhang, J.Z. Photovoltaic properties of multilayered quantum dot/quantum rod-sensitized TiO2 solar cells fabricated by SILAR and electrophoresis. Phys. Chem. Chem. Phys. 2015, 17, 18590–18599. [Google Scholar] [CrossRef] [PubMed]
Perovskite Thickness (nm) | Voc (V) | Jsc (mA/cm2) | FF (%) | PCE (%) | Integrated Jsc (mA/cm2) |
---|---|---|---|---|---|
300 | 0.879 | 23.88 | 73.1 | 15.36 | 20.69 |
400 | 0.891 | 24.21 | 73.1 | 15.78 | 21.55 |
500 | 0.894 | 24.75 | 66.6 | 14.73 | 22.21 |
Perovskite Active Layer | Voc (V) | Jsc (mA/cm2) | FF (%) | PCE (%) | Integrated Jsc (mA/cm2) |
---|---|---|---|---|---|
MAPbI3 | 0.783 | 19.71 | 65.0 | 10.03 | 17.05 |
(GA)0.05(MA)0.95PbI3 | 0.891 | 24.21 | 73.1 | 15.78 | 21.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, T.-C.; Lee, C.-T.; Lee, H.-Y. Investigation of Perovskite Solar Cells Using Guanidinium Doped MAPbI3 Active Layer. Nanomaterials 2024, 14, 657. https://doi.org/10.3390/nano14080657
Chang T-C, Lee C-T, Lee H-Y. Investigation of Perovskite Solar Cells Using Guanidinium Doped MAPbI3 Active Layer. Nanomaterials. 2024; 14(8):657. https://doi.org/10.3390/nano14080657
Chicago/Turabian StyleChang, Ting-Chun, Ching-Ting Lee, and Hsin-Ying Lee. 2024. "Investigation of Perovskite Solar Cells Using Guanidinium Doped MAPbI3 Active Layer" Nanomaterials 14, no. 8: 657. https://doi.org/10.3390/nano14080657
APA StyleChang, T.-C., Lee, C.-T., & Lee, H.-Y. (2024). Investigation of Perovskite Solar Cells Using Guanidinium Doped MAPbI3 Active Layer. Nanomaterials, 14(8), 657. https://doi.org/10.3390/nano14080657