High-Performance Memristive Synapse Composed of Ferroelectric ZnVO-Based Schottky Junction
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roy, K.; Jaiswal, A.; Panda, P. Towards spike-based machine intelligence with neuromorphic computing. Nature 2019, 575, 607–617. [Google Scholar] [CrossRef]
- Marković, D.; Mizrahi, A.; Querlioz, D.; Grollier, J. Physics for neuromorphic computing. Nat. Rev. Phys. 2020, 2, 499–510. [Google Scholar] [CrossRef]
- Upadhyay, N.K.; Jiang, H.; Wang, Z.; Asapu, S.; Xia, Q.; Joshua Yang, J. Emerging Memory Devices for Neuromorphic Computing. Adv. Mater. Technol. 2019, 4, 1800589. [Google Scholar] [CrossRef]
- Kwon, O.; Lee, Y.; Kang, M.; Kim, S. Synaptic plasticity features and neuromorphic system simulation in AlN-based memristor devices. J. Alloys Compd. 2022, 911, 164870. [Google Scholar] [CrossRef]
- Kumar, M.; Kim, H.-S.; Park, D.Y.; Jeong, M.S.; Kim, J. Compliance-Free Multileveled Resistive Switching in a Transparent 2D Perovskite for Neuromorphic Computing. ACS Appl. Mater. Interfaces 2018, 10, 12768–12772. [Google Scholar] [CrossRef] [PubMed]
- Skelton, J.M.; Loke, D.; Lee, T.; Elliott, S.R. Ab Initio Molecular-Dynamics Simulation of Neuromorphic Computing in Phase-Change Memory Materials. ACS Appl. Mater. Interfaces 2015, 7, 14223–14230. [Google Scholar] [CrossRef] [PubMed]
- Nandakumar, S.R.; Le Gallo, M.; Boybat, I.; Rajendran, B.; Sebastian, A.; Eleftheriou, E. A phase-change memory model for neuromorphic computing. J. Appl. Phys. 2018, 124, 152135. [Google Scholar] [CrossRef]
- Majumdar, S.; Tan, H.; Qin, Q.H.; van Dijken, S. Energy-Efficient Organic Ferroelectric Tunnel Junction Memristors for Neuromorphic Computing. Adv. Electron. Mater. 2019, 5, 1800795. [Google Scholar] [CrossRef]
- Song, S.; Ham, W.; Park, G.; Kho, W.; Kim, J.; Hwang, H.; Kim, H.-B.; Song, H.; Ahn, J.-H.; Ahn, S.-E. Highly Stable Artificial Synapses Based on Ferroelectric Tunnel Junctions for Neuromorphic Computing Applications. Adv. Mater. Technol. 2022, 7, 2101323. [Google Scholar] [CrossRef]
- Kim, M.-K.; Kim, I.-J.; Lee, J.-S. Oxide semiconductor-based ferroelectric thin-film transistors for advanced neuromorphic computing. Appl. Phys. Lett. 2021, 118, 032902. [Google Scholar] [CrossRef]
- Lederer, M.; Kämpfe, T.; Ali, T.; Müller, F.; Olivo, R.; Hoffmann, R.; Laleni, N.; Seidel, K. Ferroelectric Field Effect Transistors as a Synapse for Neuromorphic Application. IEEE Trans. Electron. Devices 2021, 68, 2295–2300. [Google Scholar] [CrossRef]
- Zhang, S.-R.; Zhou, L.; Mao, J.-Y.; Ren, Y.; Yang, J.-Q.; Yang, G.-H.; Zhu, X.; Han, S.-T.; Roy, V.A.L.; Zhou, Y. Artificial Synapse Emulated by Charge Trapping-Based Resistive Switching Device. Adv. Mater. Technol. 2019, 4, 1800342. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, Y.; Jin, L.; Li, Y.; Li, Q.; Li, T.; Zhang, Y.; Dai, H.; Yao, J. Artificial synapses with photoelectric plasticity and memory behaviors based on charge trapping memristive system. Mater. Des. 2020, 188, 108415. [Google Scholar] [CrossRef]
- Fuller, E.J.; Keene, S.T.; Melianas, A.; Wang, Z.; Agarwal, S.; Li, Y.; Tuchman, Y.; James, C.D.; Marinella, M.J.; Yang, J.J.; et al. Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science 2019, 364, 570–574. [Google Scholar] [CrossRef]
- Kim, M.S.; Kim, J.K.; Yun, G.J.; Yu, J.M.; Han, J.K.; Lee, J.W.; Seo, S.; Choi, S.; Choi, Y.K. An Overturned Charge Injection Synaptic Transistor With a Floating-Gate for Neuromorphic Hardware Computing. IEEE Electron. Device Lett. 2022, 43, 1440–1443. [Google Scholar] [CrossRef]
- Mikolajick, T.; Park, M.H.; Begon-Lours, L.; Slesazeck, S. From Ferroelectric Material Optimization to Neuromorphic Devices. Adv. Mater. 2023, 35, 2206042. [Google Scholar] [CrossRef]
- Wen, Z.; Wu, D. Ferroelectric Tunnel Junctions: Modulations on the Potential Barrier. Adv. Mater. 2020, 32, 1904123. [Google Scholar] [CrossRef]
- Ma, C.; Luo, Z.; Huang, W.; Zhao, L.; Chen, Q.; Lin, Y.; Liu, X.; Chen, Z.; Liu, C.; Sun, H.; et al. Sub-nanosecond memristor based on ferroelectric tunnel junction. Nat. Commun. 2020, 11, 1439. [Google Scholar] [CrossRef]
- Yang, Y.; Xi, Z.; Dong, Y.; Zheng, C.; Hu, H.; Li, X.; Jiang, Z.; Lu, W.-C.; Wu, D.; Wen, Z. Spin-Filtering Ferroelectric Tunnel Junctions as Multiferroic Synapses for Neuromorphic Computing. ACS Appl. Mater. Interfaces 2020, 12, 56300–56309. [Google Scholar] [CrossRef]
- Liu, G.; Wang, W.; Guo, Z.; Jia, X.; Zhao, Z.; Zhou, Z.; Niu, J.; Duan, G.; Yan, X. Silicon based Bi0.9La0.1FeO3 ferroelectric tunnel junction memristor for convolutional neural network application. Nanoscale 2023, 15, 13009–13017. [Google Scholar] [CrossRef]
- Boyn, S.; Grollier, J.; Lecerf, G.; Xu, B.; Locatelli, N.; Fusil, S.; Girod, S.; Carrétéro, C.; Garcia, K.; Xavier, S.; et al. Learning through ferroelectric domain dynamics in solid-state synapses. Nat. Commun. 2017, 8, 14736. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, Z.; Guan, Z.; Ma, C.; Zhao, L.; Liu, C.; Sun, H.; Wang, H.; Lin, Y.; Jin, X.; et al. High-precision and linear weight updates by subnanosecond pulses in ferroelectric tunnel junction for neuro-inspired computing. Nat. Commun. 2022, 13, 699. [Google Scholar] [CrossRef]
- Yoon, C.; Lee, J.H.; Lee, S.; Jeon, J.H.; Jang, J.T.; Kim, D.H.; Kim, Y.H.; Park, B.H. Synaptic Plasticity Selectively Activated by Polarization-Dependent Energy-Efficient Ion Migration in an Ultrathin Ferroelectric Tunnel Junction. Nano Lett. 2017, 17, 1949–1955. [Google Scholar] [CrossRef]
- Chen, L.; Wang, T.-Y.; Dai, Y.-W.; Cha, M.-Y.; Zhu, H.; Sun, Q.-Q.; Ding, S.-J.; Zhou, P.; Chua, L.; Zhang, D.W. Ultra-low power Hf0.5Zr0.5O2 based ferroelectric tunnel junction synapses for hardware neural network applications. Nanoscale 2018, 10, 15826–15833. [Google Scholar] [CrossRef]
- Max, B.; Hoffmann, M.; Mulaosmanovic, H.; Slesazeck, S.; Mikolajick, T. Hafnia-Based Double-Layer Ferroelectric Tunnel Junctions as Artificial Synapses for Neuromorphic Computing. ACS Appl. Electron. Mater. 2020, 2, 4023–4033. [Google Scholar] [CrossRef]
- Liao, J.; Zeng, B.; Sun, Q.; Chen, Q.; Liao, M.; Qiu, C.; Zhang, Z.; Zhou, Y. Grain Size Engineering of Ferroelectric Zr-doped HfO2 for the Highly Scaled Devices Applications. IEEE Electron. Device Lett. 2019, 40, 1868–1871. [Google Scholar] [CrossRef]
- Luo, Q.; Cheng, Y.; Yang, J.; Cao, R.; Ma, H.; Yang, Y.; Huang, R.; Wei, W.; Zheng, Y.; Gong, T.; et al. A highly CMOS compatible hafnia-based ferroelectric diode. Nat. Commun. 2020, 11, 1391. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, S.; Tan, H.; Pande, I.; van Dijken, S. Crossover from synaptic to neuronal functionalities through carrier concentration control in Nb-doped SrTiO3-based organic ferroelectric tunnel junctions. APL Mater. 2019, 7, 091114. [Google Scholar] [CrossRef]
- Majumdar, S. Ultrafast switching and linear conductance modulation in ferroelectric tunnel junctions via P(VDF-TrFE) morphology control. Nanoscale 2021, 13, 11270–11278. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-S.; Han, W.; Chung, H.-Y.; Rozenberg, M.; Kim, K.; Lee, Z.; Yeom, G.Y.; Park, H.-H. Ferroelectric Tunnel Junction for Dense Cross-Point Arrays. ACS Appl. Mater. Interfaces 2015, 7, 22348–22354. [Google Scholar] [CrossRef] [PubMed]
- Goh, Y.; Hwang, J.; Kim, M.; Lee, Y.; Jung, M.; Jeon, S. Selector-less Ferroelectric Tunnel Junctions by Stress Engineering and an Imprinting Effect for High-Density Cross-Point Synapse Arrays. ACS Appl. Mater. Interfaces 2021, 13, 59422–59430. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, S. Large Memory Window and Tenacious Data Retention in (0001) ZnO:Cr Ferroelectric Memristive Device Prepared on (111) Pt Layer. J. Alloys Compd. 2017, 727, 304–310. [Google Scholar] [CrossRef]
- Herng, T.S.; Wong, M.F.; Qi, D.; Yi, J.; Kumar, A.; Huang, A.; Kartawidjaja, F.C.; Smadici, S.; Abbamonte, P.; Sánchez-Hanke, C.; et al. Mutual Ferromagnetic–Ferroelectric Coupling in Multiferroic Copper-Doped ZnO. Adv. Mater. 2011, 23, 1635–1640. [Google Scholar] [CrossRef] [PubMed]
- Joseph, M.; Tabata, H.; Kawai, T. Ferroelectric Behavior of Li-doped ZnO Thin Films on Si (100) by Pulsed Laser Deposition. Appl. Phys. Lett. 1999, 74, 2534–2536. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Ying, M.; Li, M.; Wang, X.; Nan, C.-W. Room-Temperature Ferromagnetic and Ferroelectric Behavior in Polycrystalline ZnO-based Thin Films. Appl. Phys. Lett. 2007, 90, 222110. [Google Scholar] [CrossRef]
- Joshi, R.; Kumar, P.; Gaur, A.; Asokan, K. Structural, optical and ferroelectric properties of V doped ZnO. Appl. Nanosci. 2014, 4, 531–536. [Google Scholar] [CrossRef]
- Yang, Y.C.; Song, C.; Wang, X.H.; Zeng, F.; Pan, F. Giant Piezoelectric d33 Coefficient in Ferroelectric Vanadium doped ZnO Films. Appl. Phys. Lett. 2008, 92, 012907. [Google Scholar] [CrossRef]
- Chen, P.; Ma, X.; Yang, D. ZnO: Eu thin-films: Sol–gel derivation and strong photoluminescence from 5D0→7F0 transition of Eu3+ ions. J. Alloys Compd. 2007, 431, 317–320. [Google Scholar] [CrossRef]
- Abaira, R.; Buffagni, E.; Matoussi, A.; Khmakhem, H.; Ferrari, C. Synthesis and structural properties of vanadium doped zinc oxide. Superlattices Microstruct. 2015, 86, 438–445. [Google Scholar] [CrossRef]
- Laurenti, M.; Castellino, M.; Perrone, D.; Asvarov, A.; Canavese, G.; Chiolerio, A. Lead-free piezoelectrics: V3+ to V5+ ion conversion promoting the performances of V-doped Zinc Oxide. Sci. Rep. 2017, 7, 41957. [Google Scholar] [CrossRef]
- Kohiki, S.; Oki, K. Problems of adventitious carbon as an energy reference. J. Electron. Spectrosc. Relat. Phenom. 1984, 33, 375–380. [Google Scholar] [CrossRef]
- Subalakshmi, K.; Chung, W.; Lee, S. Synergistically improved photovoltaic performances of dye-sensitized solar cells with metal-free organic cosensitizer and hybrid rGO-TiO2 photoanode. Dyes Pigm. 2023, 209, 110892. [Google Scholar] [CrossRef]
- Lee, S.; Kim, D.Y.; Shon, Y.; Yoon, C.S. Structural, Optical, and Magnetic Properties of As-Doped (Zn0.93Mn0.07)O Thin Films. Appl. Phys. Lett. 2006, 89, 022120. [Google Scholar] [CrossRef]
- Lee, S.; Shon, Y.; Kang, T.W.; Yoon, C.S.; Kim, E.K.; Kim, D.Y. Dependence of Ferromagnetic Properties on Conductivity for As-doped p-Type (Zn0.93Mn0.07)O Layers. Appl. Phys. Lett. 2008, 93, 022113. [Google Scholar] [CrossRef]
- Lee, S.; Shon, Y.; Kim, D.Y.; Kang, T.W.; Yoon, C.S. Enhanced Ferromagnetism in H2O2-Treated p-(Zn0.93Mn0.07)O Layer. Appl. Phys. Lett. 2010, 96, 042115. [Google Scholar] [CrossRef]
- Parmar, N.S.; Choi, J.-W.; Boatner, L.A.; McCluskey, M.D.; Lynn, K.G. Formation of high concentrations of isolated Zn vacancies and evidence for their acceptor levels in ZnO. J. Alloys Compd. 2017, 729, 1031–1037. [Google Scholar] [CrossRef]
- Seol, W.; Anoop, G.; Park, H.; Shin, C.W.; Lee, J.Y.; Kim, T.Y.; Kim, W.S.; Joh, H.; Samanta, S.; Jo, J.Y. Ferroelectricity in solution-processed V-doped ZnO thin films. J. Alloys Compd. 2021, 853, 157369. [Google Scholar] [CrossRef]
- Nguyen, H.T.T.; Jung, D.; Park, C.-Y.; Kang, D.J. Synthesis of single-crystalline sodium vanadate nanowires based on chemical solution deposition method. Mater. Chem. Phys. 2015, 165, 19–24. [Google Scholar] [CrossRef]
- Gupta, M.K.; Sinha, N.; Kumar, B. Dielectric Studies and Band Gap Tuning of Ferroelectric Cr-Doped ZnO Nanorods. J. Appl. Phys. 2012, 112, 014303. [Google Scholar] [CrossRef]
- Nann, T.; Schneider, J. Origin of Permanent Electric Dipole Moments in Wurtzite Nanocrystals. Chem. Phys. Lett. 2004, 384, 150–152. [Google Scholar] [CrossRef]
- Tagantsev, A.K. Pseudoferroelectricity: A Possible Scenario for Doped ZnO. Appl. Phys. Lett. 2008, 93, 202905. [Google Scholar] [CrossRef]
- Bashir, M.I.; Ali, K.; Sarfraz, A.K.; Mirza, I.M. Room Temperature Synthesis and Multiferroic Response of Li co-doped (Zn, Co)O Nanocrystallites. J. Alloys Compd. 2016, 684, 151–161. [Google Scholar] [CrossRef]
- Wu, C.; Jia, Y.; Shin, Y.J.; Noh, T.W.; Chae, S.C.; Liu, C. Effect of Internal Field on the High Resistance State Retention of Unipolar Resistance Switching in Ferroelectric Vanadium Doped ZnO. Appl. Phys. Lett. 2017, 110, 143502. [Google Scholar] [CrossRef]
- Yang, Y.C.; Song, C.; Wang, X.H.; Zeng, F.; Pan, F. Cr-Substitution-Induced Ferroelectric and Improved Piezoelectric Properties of Zn1−xCrxO Films. J. Appl. Phys. 2008, 103, 074107. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, D.Y.; Lee, S.; Fu, D. Polarization-Dependent Asymmetric Hysteresis Behavior in ZnCrO Layers. J. Korean Phys. Soc. 2012, 60, 1891–1896. [Google Scholar] [CrossRef]
- Lee, S.; Lee, Y.; Kim, D.Y.; Kang, T.W. Effects of Ti Additives on Structural and Electric Properties of Cr- and Ti-Codoped ZnO Layers. J. Appl. Phys. 2013, 114, 064102. [Google Scholar] [CrossRef]
- Mahmoud, A.E.-r.; Parashar, S. Effect of Domain Switching Contribution on Polarization Current, Leakage Current and Switching Charge Density Studied by PUND Method in (Ba1−x, Cax)TiO3 Ceramics. Mat. Sci. Eng. B 2019, 246, 13–20. [Google Scholar] [CrossRef]
- Yan, H.; Inam, F.; Viola, G.; Ning, H.; Zhang, H.; Jiang, Q.; Zeng, T.; Gao, Z.; Reece, M.J. The Contribution of Electrical Conductivity, Dielectric Permittivity and Domain Switching in Ferroelectric Hysteresis Loops. J. Adv. Dielectr. 2011, 1, 107–118. [Google Scholar] [CrossRef]
- Sun, Y.; Yan, X.; Zheng, X.; Liu, Y.; Zhao, Y.; Shen, Y.; Liao, Q.; Zhang, Y. High On–Off Ratio Improvement of ZnO-Based Forming-Free Memristor by Surface Hydrogen Annealing. ACS Appl. Mater. Interfaces 2015, 7, 7382–7388. [Google Scholar] [CrossRef]
- Paul, S.; Harris, P.G.; Pal, C.; Sharma, A.K.; Ray, A.K. Low Cost Zinc Oxide for Memristors with High On–Off Ratios. Mater. Lett. 2014, 130, 40–42. [Google Scholar] [CrossRef]
- Yang, J.J.; Zhang, M.-X.; Strachan, J.P.; Miao, F.; Pickett, M.D.; Kelley, R.D.; Medeiros-Ribeiro, G.; Williams, R.S. High Switching Endurance in TaOx Memristive Devices. Appl. Phys. Lett. 2010, 97, 232102. [Google Scholar] [CrossRef]
- Lee, D.J.; Lee, Y.; Hong, C.-W.; Lee, S. Liquid-to-solid exfoliated Ag/2D-SnO/Au flexible memristor with electric field direction-dependent asymmetric hysteresis characteristics. J. Mater. Res. Technol. 2021, 15, 3538–3546. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, B.; Cheng, C.; Huang, B.; Zhang, H.; Chen, R.; Xu, J.; Huang, Y.; Chen, H.; Pei, W.; et al. A Self-Rectifying Synaptic Memristor Array with Ultrahigh Weight Potentiation Linearity for a Self-Organizing-Map Neural Network. Nano Lett. 2023, 23, 3107–3115. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-F.; Fowler, B.; Chen, Y.-C.; Chen, Y.-T.; Wang, Y.; Xue, F.; Zhou, F.; Lee, J.C. Intrinsic SiOx-based unipolar resistive switching memory. II. Thermal effects on charge transport and characterization of multilevel programing. J. Appl. Phys. 2014, 116, 043709. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, D.Y.; Lee, S. Low-Power Graphene/ZnO Schottky UV Photodiodes with Enhanced Lateral Schottky Barrier Homogeneity. Nanomaterials 2019, 9, 799. [Google Scholar] [CrossRef] [PubMed]
- Sze, S.M. Physics of Semiconductor Devices, 3rd ed.; Wiley: New York, NY, USA, 2006. [Google Scholar]
- Lee, H.; An, N.; Jeong, S.; Kang, S.; Kwon, S.; Lee, J.; Lee, Y.; Kim, D.Y.; Lee, S. Strong Dependence of Photocurrent on Illumination-Light Colors for ZnO/Graphene Schottky Diode. Curr. Appl. Phys. 2017, 17, 552–556. [Google Scholar] [CrossRef]
- Lee, S.; Lee, Y.; Kim, D.Y.; Song, E.B.; Kim, S.M. Back-Gate Tuning of Schottky Barrier Height in Graphene/Zinc-Oxide Photodiodes. Appl. Phys. Lett. 2013, 102, 242114. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, J.; Cao, J.; Lu, C.; Yang, G.; Shi, X.; Chuai, X.; Gong, Y.; Su, Y.; Zhao, Y.; et al. Photoelectric Plasticity in Oxide Thin Film Transistors with Tunable Synaptic Functions. Adv. Electron. Mater. 2018, 4, 1800556. [Google Scholar] [CrossRef]
- Han, C.; Han, X.; Han, J.; He, M.; Peng, S.; Zhang, C.; Liu, X.; Gou, J.; Wang, J. Light-Stimulated Synaptic Transistor with High PPF Feature for Artificial Visual Perception System Application. Adv. Funct. Mater. 2022, 32, 2113053. [Google Scholar] [CrossRef]
- He, H.-K.; Yang, R.; Zhou, W.; Huang, H.-M.; Xiong, J.; Gan, L.; Zhai, T.-Y.; Guo, X. Photonic Potentiation and Electric Habituation in Ultrathin Memristive Synapses Based on Monolayer MoS2. Small 2018, 14, 1800079. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.-H.; Kim, B.; Hussain, F.; Mahata, C.; Ismail, M.; Kim, Y.; Kim, S. Bio-inspired synaptic functions from a transparent zinc-tin-oxide-based memristor for neuromorphic engineering. Appl. Surf. Sci. 2021, 544, 148796. [Google Scholar] [CrossRef]
- He, C.; Tang, J.; Shang, D.-S.; Tang, J.; Xi, Y.; Wang, S.; Li, N.; Zhang, Q.; Lu, J.-K.; Wei, Z.; et al. Artificial Synapse Based on van der Waals Heterostructures with Tunable Synaptic Functions for Neuromorphic Computing. ACS Appl. Mater. Interfaces 2020, 12, 11945–11954. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-T.; Li, X.-Y.; Yu, T.-L.; Wang, J.; Fang, H.; Nie, F.; He, B.; Zhao, L.; Lü, W.-M.; Yan, S.-S.; et al. High-Performance Neuromorphic Computing Based on Ferroelectric Synapses with Excellent Conductance Linearity and Symmetry. Adv. Funct. Mater. 2022, 32, 2202366. [Google Scholar] [CrossRef]
- Wang, I.T.; Chang, C.-C.; Chiu, L.-W.; Chou, T.; Hou, T.-H. 3D Ta/TaOx/TiO2/Ti synaptic array and linearity tuning of weight update for hardware neural network applications. Nanotechnology 2016, 27, 365204. [Google Scholar] [CrossRef] [PubMed]
- Aabrar, K.A.; Kirtania, S.G.; Liang, F.X.; Gomez, J.; Jose, M.S.; Luo, Y.; Ye, H.; Dutta, S.; Ravikumar, P.G.; Ravindran, P.V.; et al. BEOL-Compatible Superlattice FEFET Analog Synapse With Improved Linearity and Symmetry of Weight Update. IEEE Trans. Electron. Devices 2022, 69, 2094–2100. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Simanjuntak, F.M.; Panda, D.; Tseng, T.Y. Enhanced Synaptic Linearity in ZnO-Based Invisible Memristive Synapse by Introducing Double Pulsing Scheme. IEEE Trans. Electron. Devices 2019, 66, 4722–4726. [Google Scholar] [CrossRef]
- Shen, G.; Zhuge, C.; Jiang, J.; Fu, Y.; Zheng, Y.; Qin, Z.; Wang, Q.; He, D. Defective Engineering Tuning the Analog Switching Linearity and Symmetry of Two-Terminal Artificial Synapse for Neuromorphic Systems. Adv. Funct. Mater. 2023, 34, 2309054. [Google Scholar] [CrossRef]
- Sudheer; Mandal, R.; Hasina, D.; Dutta, A.; Alam Mollick, S.; Mandal, A.; Som, T. Linearly potentiated synaptic weight modulation at nanoscale in a highly stable two-terminal memristor. Appl. Surf. Sci. 2023, 610, 155411. [Google Scholar] [CrossRef]
- Norimoto, H.; Makino, K.; Gao, M.; Shikano, Y.; Okamoto, K.; Ishikawa, T.; Sasaki, T.; Hioki, H.; Fujisawa, S.; Ikegaya, Y. Hippocampal ripples down-regulate synapses. Science 2018, 359, 1524–1527. [Google Scholar] [CrossRef]
- Mishra, R.K.; Kim, S.; Guzman, S.J.; Jonas, P. Symmetric spike timing-dependent plasticity at CA3–CA3 synapses optimizes storage and recall in autoassociative networks. Nat. Commun. 2016, 7, 11552. [Google Scholar] [CrossRef]
- Giacomo, K.; Viviana, P.; Francesco Di, L.; Carlo, C.; Domenica, V. Hebbian and Anti-Hebbian Spike-Timing-Dependent Plasticity of Human Cortico-Cortical Connections. J. Neurosci. 2013, 33, 9725. [Google Scholar]
- Zhong, Y.; Li, Y.; Xu, L.; Miao, X. Simple square pulses for implementing spike-timing-dependent plasticity in phase-change memory. Phys. Status Solidi—Rapid Res. Lett. 2015, 9, 414–419. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, Y.; Tian, B.; Luo, C.; Zhong, N.; Wang, J.; Meng, X.; Peng, H.; Duan, C.-G.; Chu, J. Efficient two-terminal artificial synapse based on a network of functionalized conducting polymer nanowires. J. Mater. Chem. C 2019, 7, 9933–9938. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.; Hong, C.; Sekar, S.; Lee, S. High-Performance Memristive Synapse Composed of Ferroelectric ZnVO-Based Schottky Junction. Nanomaterials 2024, 14, 506. https://doi.org/10.3390/nano14060506
Lee Y, Hong C, Sekar S, Lee S. High-Performance Memristive Synapse Composed of Ferroelectric ZnVO-Based Schottky Junction. Nanomaterials. 2024; 14(6):506. https://doi.org/10.3390/nano14060506
Chicago/Turabian StyleLee, Youngmin, Chulwoong Hong, Sankar Sekar, and Sejoon Lee. 2024. "High-Performance Memristive Synapse Composed of Ferroelectric ZnVO-Based Schottky Junction" Nanomaterials 14, no. 6: 506. https://doi.org/10.3390/nano14060506
APA StyleLee, Y., Hong, C., Sekar, S., & Lee, S. (2024). High-Performance Memristive Synapse Composed of Ferroelectric ZnVO-Based Schottky Junction. Nanomaterials, 14(6), 506. https://doi.org/10.3390/nano14060506