Nanostructured Pr-Rich CexPr1-xO2-δ Mixed Oxides for Diesel Soot Combustion: Importance of Oxygen Lability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Catalyst Preparation
2.2. Catalyst Characterization
2.3. Catalytic Soot Combustion Tests
3. Results and Discussion
3.1. Catalyst Characterization
3.1.1. Structural and Textural Parameters
3.1.2. Comparison of the Oxygen Lability of the Catalysts under Different Environments
3.2. Catalytic Performances of Soot Combustion under 5% of the O2/He Atmosphere
3.2.1. Experiments in Tight Contact Mode
Sample | Temperature (°C) | |||||||
---|---|---|---|---|---|---|---|---|
10% a | 20% a | 50% a | 90% a | |||||
T.C. | L.C. | T.C. | L.C. | T.C. | L.C. | T.C. | L.C. | |
CeO2 | 340 (0.89) b | 439 (0.24) b | 355 (1.46) b | 483 (0.43) b | 382 (2.23) b | 556 (0.83) b | 415 (0.80) b | 630 (0.51) b |
Ce0.3Pr0.7O2 | 318 (0.36) b | 342 (0.30) b | 357 (0.71) b | 409 (0.32) b | 397 (1.78) b | 511 (0.78) b | 438 (1.07) b | 595 (0.69) b |
Ce0.2Pr0.8O2 | 334 (0.38) b | 359 (0.28) b | 373 (0.63) b | 431 (0.27) b | 415 (1.74) b | 538 (0.94) b | 454 (1.20) b | 618 (0.58) b |
PrO2 | 367 (0.24) b | 404 (0.31) b | 405 (0.72) b | 469 (0.15) b | 449 (1.54) b | 555 (0.72) b | 500 (0.63) b | 632 (0.58) b |
1Ag/YSZ c | 380 | 420 | - | - | 430 | 530 | - | - |
3.2.2. Experiments in Loose Contact Mode
3.3. Work Function Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nakagoshi, Y.; Mori, K.; Tanaka, K.; Furuta, Y.; Aoki, T.; Yoshioka, F.; Kato, K. New Generation Diesel Particulate Filter for Future Euro7 Regulation; SAE International: Warrendale, PA, USA, 2023. [Google Scholar]
- Commission Proposes New Euro 7 Standards. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_22_6495 (accessed on 15 November 2023).
- Lou, D.; Chen, Y.; Zhang, Y.; Wan, P.; Tan, P.; Hu, Z.; Fang, L.; Wang, T. Study on Soot Oxidation Characteristics of Ce and La Modified Pt-Pd CDPF Catalysts; SAE International: Warrendale, PA, USA, 2023. [Google Scholar]
- Yu, D.; Yu, X.; Zhang, C.; Wang, L.; Fan, X.; Zhao, Z.; Wei, Y.; Liu, J.; Gryboś, J.; Leszczyński, B.; et al. Layered Na2Mn3O7 Decorated by Cerium as the Robust Catalysts for Efficient Low Temperature Soot Combustion. Appl. Catal. B Environ. 2023, 338, 123022. [Google Scholar] [CrossRef]
- Euro 7: MEPs Back New Rules to Reduce Road Transport Emissions|Nyheter|Europaparlamentet. Available online: https://www.europarl.europa.eu/news/sv/press-room/20231009IPR06746/euro-7-meps-back-new-rules-to-reduce-road-transport-emissions (accessed on 31 October 2023).
- Nain Singh, G.; Singh Bharj, R. Experimental Study of Filtration Behavior of Diesel Particulate Filter in a Diesel Engine to Meet BS-VI Emission Norms in INDIA. J. Phys. Conf. Ser. 2019, 1276, 012078. [Google Scholar] [CrossRef]
- Serve, A.; Boreave, A.; Cartoixa, B.; Pajot, K.; Vernoux, P. Synergy between Ag Nanoparticles and Yttria-Stabilized Zirconia for Soot Oxidation. Appl. Catal. B Environ. 2019, 242, 140–149. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, D.; Peng, C.; Wang, L.; Yu, X.; Wei, Y.; Liu, J.; Zhao, Z. Research Progress on Preparation of 3DOM-Based Oxide Catalysts and Their Catalytic Performances for the Combustion of Diesel Soot Particles. Appl. Catal. B Environ. 2022, 319, 121946. [Google Scholar] [CrossRef]
- Di Sarli, V.; Landi, G.; Lisi, L.; Saliva, A.; Di Benedetto, A. Catalytic Diesel Particulate Filters with Highly Dispersed Ceria: Effect of the Soot-Catalyst Contact on the Regeneration Performance. Appl. Catal. B Environ. 2016, 197, 116–124. [Google Scholar] [CrossRef]
- Lisi, L.; Landi, G.; Di Sarli, V. The Issue of Soot-Catalyst Contact in Regeneration of Catalytic Diesel Particulate Filters: A Critical Review. Catalysts 2020, 10, 1307. [Google Scholar] [CrossRef]
- Andana, T.; Piumetti, M.; Bensaid, S.; Russo, N.; Fino, D.; Pirone, R. Nanostructured Ceria-Praseodymia Catalysts for Diesel Soot Combustion. Appl. Catal. B Environ. 2016, 197, 125–137. [Google Scholar] [CrossRef]
- Guillén-Hurtado, N.; Giménez-Mañogil, J.; Martínez-Munuera, J.C.; Bueno-López, A.; García-García, A. Study of Ce/Pr Ratio in Ceria-Praseodymia Catalysts for Soot Combustion under Different Atmospheres. Appl. Catal. Gen. 2020, 590, 117339. [Google Scholar] [CrossRef]
- Martínez-Munuera, J.C.; Zoccoli, M.; Giménez-Mañogil, J.; García-García, A. Lattice Oxygen Activity in Ceria-Praseodymia Mixed Oxides for Soot Oxidation in Catalysed Gasoline Particle Filters. Appl. Catal. B Environ. 2019, 245, 706–720. [Google Scholar] [CrossRef]
- Laachir, A.; Perrichon, V.; Badri, A.; Lamotte, J.; Catherine, E.; Lavalley, J.C.; Fallah, J.E.; Hilaire, L.; Normand, F.L.; Quéméré, E.; et al. Reduction of CeO2 by Hydrogen. Magnetic Susceptibility and Fourier-Transform Infrared, Ultraviolet and X-Ray Photoelectron Spectroscopy Measurements. J. Chem. Soc. Faraday Trans. 1991, 87, 1601–1609. [Google Scholar] [CrossRef]
- Borchert, H.; Frolova, Y.V.; Kaichev, V.V.; Prosvirin, I.P.; Alikina, G.M.; Lukashevich, A.I.; Zaikovskii, V.I.; Moroz, E.M.; Trukhan, S.N.; Ivanov, V.P.; et al. Electronic and Chemical Properties of Nanostructured Cerium Dioxide Doped with Praseodymium. J. Phys. Chem. B 2005, 109, 5728–5738. [Google Scholar] [CrossRef]
- Duch, J.; Kubisiak, P.; Adolfsson, K.H.; Hakkarainen, M.; Golda-Cepa, M.; Kotarba, A. Work Function Modifications of Graphite Surface via Oxygen Plasma Treatment. Appl. Surf. Sci. 2017, 419, 439–446. [Google Scholar] [CrossRef]
- Legutko, P.; Stelmachowski, P.; Yu, X.; Zhao, Z.; Sojka, Z.; Kotarba, A. Catalytic Soot Combustion—General Concepts and Alkali Promotion. ACS Catal. 2023, 13, 3395–3418. [Google Scholar] [CrossRef]
- Frizon, V.; Bassat, J.-M.; Pollet, M.; Durand, E.; Hernandez, J.; Pajot, K.; Vernoux, P.; Demourgues, A. Tuning the Pr Valence State To Design High Oxygen Mobility, Redox and Transport Properties in the CeO2–ZrO2–PrOx Phase Diagram. J. Phys. Chem. C 2019, 123, 6351–6362. [Google Scholar] [CrossRef]
- Fahed, S.; Pointecouteau, R.; Aouine, M.; Boréave, A.; Gil, S.; Meille, V.; Bazin, P.; Toulemonde, O.; Demourgues, A.; Daturi, M.; et al. Pr-Rich Cerium-Zirconium-Praseodymium Mixed Oxides for Automotive Exhaust Emission Control. Appl. Catal. Gen. 2022, 644, 118800. [Google Scholar] [CrossRef]
- McBride, J.R.; Hass, K.C.; Poindexter, B.D.; Weber, W.H. Raman and X-Ray Studies of Ce1−xRExO2−y, Where RE=La, Pr, Nd, Eu, Gd, and Tb. J. Appl. Phys. 1994, 76, 2435–2441. [Google Scholar] [CrossRef]
- Krishna, K.; Bueno-López, A.; Makkee, M.; Moulijn, J.A. Potential Rare Earth Modified CeO2 Catalysts for Soot Oxidation: I. Characterisation and Catalytic Activity with O2. Appl. Catal. B Environ. 2007, 75, 189–200. [Google Scholar] [CrossRef]
- Sutradhar, N.; Sinhamahapatra, A.; Pahari, S.; Jayachandran, M.; Subramanian, B.; Bajaj, H.C.; Panda, A.B. Facile Low-Temperature Synthesis of Ceria and Samarium-Doped Ceria Nanoparticles and Catalytic Allylic Oxidation of Cyclohexene. J. Phys. Chem. C 2011, 7628–7637. [Google Scholar] [CrossRef]
- Fan, L.; Xi, K.; Zhou, Y.; Zhu, Q.; Chen, Y.; Lu, H. Design Structure for CePr Mixed Oxide Catalysts in Soot Combustion. RSC Adv. 2017, 7, 20309–20319. [Google Scholar] [CrossRef]
- Ballauri, S.; Sartoretti, E.; Hu, M.; D’Agostino, C.; Ge, Z.; Wu, L.; Novara, C.; Giorgis, F.; Piumetti, M.; Fino, D.; et al. Praseodymium Doping in Ceria-Supported Palladium Nanocatalysts as an Effective Strategy to Minimize the Inhibiting Effects of Water during Methane Oxidation. Appl. Catal. B Environ. 2023, 320, 121898. [Google Scholar] [CrossRef]
- Luo, M.F.; Yan, Z.L.; Jin, L.Y.; He, M. Raman Spectroscopic Study on the Structure in the Surface and the Bulk Shell of CexPr1−xO2−δ Mixed Oxides. J. Phys. Chem. B 2006, 110, 13068–13071. [Google Scholar] [CrossRef] [PubMed]
- Huang, W. Hydrothermal Synthesis and Properties of Terbium- or Praseodymium-Doped Ce1−xSmxO2−x/2 Solid Solutions. Solid State Ion. 1998, 113–115, 305–310. [Google Scholar] [CrossRef]
- Madier, Y.; Descorme, C.; Le Govic, A.M.; Duprez, D. Oxygen Mobility in CeO2 and CexZr(1−x)O2 Compounds: Study by CO Transient Oxidation and 18O/16O Isotopic Exchange. J. Phys. Chem. B 1999, 103, 10999–11006. [Google Scholar] [CrossRef]
- Logan, A.D.; Shelef, M. Oxygen Availability in Mixed Cerium/Praseodymium Oxides and the Effect of Noble Metals. J. Mater. Res. 1994, 9, 468–475. [Google Scholar] [CrossRef]
- Rao, C.N.R.; Gopalakrishnan, J. New Directions in Solid State Chemistry; Cambridge University Press: Cambridge, UK, 1997; ISBN 978-0-521-49559-2. [Google Scholar]
- Aneggi, E.; de Leitenburg, C.; Dolcetti, G.; Trovarelli, A. Diesel Soot Combustion Activity of Ceria Promoted with Alkali Metals. Catal. Today 2008, 136, 3–10. [Google Scholar] [CrossRef]
- Chen, Y.; Shen, G.; Lang, Y.; Chen, R.; Jia, L.; Yue, J.; Shen, M.; Du, C.; Shan, B. Promoting Soot Combustion Efficiency by Strengthening the Adsorption of NOx on the 3DOM Mullite Catalyst. J. Catal. 2020, 384, 96–105. [Google Scholar] [CrossRef]
- Aneggi, E.; de Leitenburg, C.; Trovarelli, A. On the Role of Lattice/Surface Oxygen in Ceria–Zirconia Catalysts for Diesel Soot Combustion. Catal. Today 2012, 181, 108–115. [Google Scholar] [CrossRef]
- Serve, A.; Boreave, A.; Cartoixa, B.; Pajot, K.; Vernoux, P. Impact of the Support on the Catalytic Activity of Ag Nanoparticles for Soot Combustion. Catal. Today 2021, 363, 93–104. [Google Scholar] [CrossRef]
- Yamazaki, K.; Sakakibara, Y.; Dong, F.; Shinjoh, H. The Remote Oxidation of Soot Separated by Ash Deposits via Silver–Ceria Composite Catalysts. Appl. Catal. Gen. 2014, 476, 113–120. [Google Scholar] [CrossRef]
- Gamarra, D.; Munuera, G.; Hungrı, A.B.; Ferna, M.; Martı, A. Structure—Activity Relationship in Nanostructured Copper—Ceria-Based Preferential CO Oxidation Catalysts. J. Phys. Chem. C 2007, 111, 11026–11038. [Google Scholar] [CrossRef]
- Hardacre, C.; Roe, G.M.; Lambert, R.M. Structure, Composition and Thermal Properties of Cerium Oxide Films on Platinum {111}. Surf. Sci. 1995, 326, 1–10. [Google Scholar] [CrossRef]
- Bortamuly, R.; Konwar, G.; Boruah, P.K.; Das, M.R.; Mahanta, D.; Saikia, P. CeO2-PANI-HCl and CeO2-PANI-PTSA Composites: Synthesis, Characterization, and Utilization as Supercapacitor Electrode Materials. Ionics 2020, 26, 5747–5756. [Google Scholar] [CrossRef]
- de Rivas, B.; Guillén-Hurtado, N.; López-Fonseca, R.; Coloma-Pascual, F.; García-García, A.; Gutiérrez-Ortiz, J.I.; Bueno-López, A. Activity, Selectivity and Stability of Praseodymium-Doped CeO2 for Chlorinated VOCs Catalytic Combustion. Appl. Catal. B Environ. 2012, 121–122, 162–170. [Google Scholar] [CrossRef]
- Zhang, H.; Guan, D.; Gu, Y.; Xu, H.; Wang, C.; Shao, Z.; Guo, Y. Tuning Synergy between Nickel and Iron in Ruddlesden–Popper Perovskites through Controllable Crystal Dimensionalities towards Enhanced Oxygen-Evolving Activity and Stability. Carbon Energy 2024. [Google Scholar] [CrossRef]
- Atribak, I. CeO2 y Óxidos Mixtos CeO2-ZrO2 como Catalizadores de la Combustión de Carbonilla en Corrientes Gaseosas con NOx y O2. Ph.D. Thesis, Universidad de Alicante, San Vicente del Raspeig, Spain, 2009. [Google Scholar]
Sample | Lattice Parameter a (nm) | Average Crystal Size (nm) | SBET (m2/g) | Pore Volume (Vp) (cm3/g) | F2g Band Position (cm−1) | Vacancies Band/F2g Band (Intensity Ratio) |
---|---|---|---|---|---|---|
CeO2 | 0.5415 | 11.1 | 81 | 0.221 | 463.1 | - |
Ce0.3Pr0.7O2 | 0.5418 | 12.2 | 42 | 0.059 | 438.6 | 1.09 |
Ce0.2Pr0.8O2 | 0.542 | 12 | 31 | 0.03 | 431.8 | 1.15 |
PrO2 | 0.5467 | 11.5 | 6 | 0.012 | 428.3 | 1.2 |
Sample | Ce (%) | Pr (%) | O (%) | C * (%) |
---|---|---|---|---|
CeO2 | 25.03 | - | 55.45 | 19.5 |
Ce0.3Pr0.7O2 | 4.94 | 14.77 | 50.02 | 30.25 |
Ce0.2Pr0.8O2 | 3.52 | 14.98 | 47.38 | 34.1 |
PrO2 | - | 13.66 | 43.01 | 43.31 |
Sample | Pr+3 (%) | Ce+3 (%) | Ce/Prsurface | Ce/Prnominal | O/(Ce + Pr) |
---|---|---|---|---|---|
CeO2 | 0 | 36.3 | - | - | 2.21 |
Ce0.3Pr0.7O2 | 48.3 | 31.1 | 0.26 | 0.43 | 2.53 |
Ce0.2Pr0.8O2 | 44.9 | 34.1 | 0.23 | 0.25 | 2.56 |
PrO2 | 44.7 | 0 | - | - | 2.67 |
Sample | O2 Emitted (μmol/gcat) | δ1 | 1 Formula after Reduction | H2 Consumption (µmol/gcat) | δ2 | 2 Formula after Reduction |
---|---|---|---|---|---|---|
CeO2 | 88 | 0.03 | CeO1.97 | 779 | 0.13 | CeO1.87 |
Ce0.3Pr0.7O2 | 671/(322) * | 0.23 | Ce0.3Pr0.7O1.77 | 1530 | 0.26 | Ce0.3Pr0.7O1.74 |
Ce0.2Pr0.8O2 | 745/(305) * | 0.25 | Ce0.2Pr0.8O1.75 | 1797 | 0.31 | Ce0.2Pr0.8O1.69 |
PrO2 | 1045/(287) * | 0.36 | PrO1.64 | 2155.6 | 0.37 | PrO1.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mekki, I.; Grzybek, G.; Kotarba, A.; García-García, A. Nanostructured Pr-Rich CexPr1-xO2-δ Mixed Oxides for Diesel Soot Combustion: Importance of Oxygen Lability. Nanomaterials 2024, 14, 483. https://doi.org/10.3390/nano14060483
Mekki I, Grzybek G, Kotarba A, García-García A. Nanostructured Pr-Rich CexPr1-xO2-δ Mixed Oxides for Diesel Soot Combustion: Importance of Oxygen Lability. Nanomaterials. 2024; 14(6):483. https://doi.org/10.3390/nano14060483
Chicago/Turabian StyleMekki, Imene, Gabriela Grzybek, Andrzej Kotarba, and Avelina García-García. 2024. "Nanostructured Pr-Rich CexPr1-xO2-δ Mixed Oxides for Diesel Soot Combustion: Importance of Oxygen Lability" Nanomaterials 14, no. 6: 483. https://doi.org/10.3390/nano14060483
APA StyleMekki, I., Grzybek, G., Kotarba, A., & García-García, A. (2024). Nanostructured Pr-Rich CexPr1-xO2-δ Mixed Oxides for Diesel Soot Combustion: Importance of Oxygen Lability. Nanomaterials, 14(6), 483. https://doi.org/10.3390/nano14060483