Series-Biased Micro-LED Array for Lighting, Detection, and Optical Communication
Abstract
:1. Introduction
2. Design and Fabrication of Micro-LED Array
2.1. Micro-LED Array Design and Fabrication Process
2.2. Micro-LED Array Morphology Characterization
3. Optoelectronic Properties of Series-Biased Micro-LED Array
3.1. Electrical Characteristics
3.2. Optical Characteristics
4. Visible Light Communication Characteristics of Series-Biased Micro-LED Array
4.1. Visible Light Communication and Video Transmission as Transmitter
4.2. Visible Light Communication Testing as Transceiver
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miao, W.-C.; Hong, Y.-H.; Hsiao, F.-H.; Chen, J.-D.; Chiang, H.; Lin, C.-L.; Lin, C.-C.; Chen, S.-C.; Kuo, H.-C. Modified distributed Bragg reflectors for color stability in InGaN red micro-LEDs. Nanomaterials 2023, 13, 661. [Google Scholar] [CrossRef]
- Zhu, S.; Chen, X.; Xiaoyan, L.; Zhang, G.; Tian, P. Recent progress in and perspectives of underwater wireless optical communication. Prog. Quantum. Electron. 2020, 73, 100274. [Google Scholar] [CrossRef]
- Tian, P.; Shan, X.; Zhu, S.; Xie, E.; McKendry, J.J.; Gu, E.; Dawson, M.D. AlGaN Ultraviolet micro-LEDs. IEEE J. Quantum Electron. 2022, 58, 1–14. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Guo, L.; Chen, Y.; Li, Y.; Qi, Z.; Ben, J.; Sun, X.; Li, D. Calculating the effect of AlGaN dielectric layers in a polarization tunnel junction on the performance of AlGaN-Based deep-ultraviolet light-emitting diodes. Nanomaterials 2021, 11, 3328. [Google Scholar] [CrossRef]
- Meng, W.; Xu, F.; Yu, Z.; Tao, T.; Shao, L.; Liu, L.; Li, T.; Wen, K.; Wang, J.; He, L.; et al. Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix. Nat. Nanotechnol. 2021, 16, 1231–1236. [Google Scholar] [CrossRef]
- Qiu, P.; Zhu, S.; Jin, Z.; Zhou, X.; Cui, X.; Tian, P. Beyond 25 Gbps optical wireless communication using wavelength division multiplexed LEDs and micro-LEDs. Opt. Lett. 2022, 47, 317–320. [Google Scholar] [CrossRef]
- Zhu, S.; Qiu, P.; Shan, X.; Wang, Z.; Lin, R.; Cui, X.; Zhang, G.; Tian, P. Micro-LED based double-sided emission display and cross-medium communication. IEEE Photon. J. 2022, 14, 1–5. [Google Scholar] [CrossRef]
- Guo, Y.; Kong, M.; Sait, M.; Marie, S.; Alkhazragi, O.; Ng, T.K.; Ooi, B.S. Compact scintillating-fiber/450-nm-laser transceiver for full-duplex underwater wireless optical communication system under turbulence. Opt. Express 2022, 30, 53–69. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Gao, X.; Yuan, J.; Shi, Z.; Jiang, Y.; Liu, Y.; Wang, Y.; Amano, H. Transferrable monolithic multicomponent system for near-ultraviolet optoelectronics. Appl. Phys. Express. 2018, 11, 051201. [Google Scholar] [CrossRef]
- Li, K.H.; Fu, W.Y.; Cheung, Y.C.; Wong, K.K.; Wang, Y.; Lau, K.M.; Choi, H.W. Monolithically integrated InGaN/GaN light-emitting diodes, photodetectors, and waveguides on Si substrate. Optica 2018, 5, 564–569. [Google Scholar] [CrossRef]
- Ji, R.; Wang, S.; Liu, Q.; Lu, W. High-speed visible light communications: Enabling technologies and state of the art. Appl. Sci. 2018, 8, 589. [Google Scholar] [CrossRef]
- McKendry, J.J.; Green, R.P.; Kelly, A.E.; Gong, Z.; Guilhabert, B.J.; Massoubre, D.; Gu, E.; Dawson, M.D. High-speed visible light communications using individual pixels in a micro light-emitting diode array. IEEE Photon. Technol. Lett. 2010, 22, 1346–1348. [Google Scholar] [CrossRef]
- O’brien, D.; Parry, G.; Stavrinou, P.N. Optical hotspots speed up wireless communication. Nat. Photon. 2007, 1, 245–247. [Google Scholar] [CrossRef]
- Chen, X.B.; Mao, L.H.; Chi, N. Visible Light Communication Dedicated Integrated Circuit and Real-Time System; People’s Post and Telecommunications Publishing House: Beijing, China, 2018. [Google Scholar]
- Liu, A.Y.; Bowers, J.E. Photonic integration with epitaxial III–V on silicon. IEEE J. Sel. Top Quant. 2018, 24, 6000412. [Google Scholar] [CrossRef]
- Li, N.; Han, K.; Spratt, W.; Bedell, S.W.; Ott, J.A.; Hopstaken, M.; Libsch, F.R.; Li, Q.; Sadana, D. Ultra-low-power sub-photon-voltage high-efficiency light-emitting diodes. Nat. Photon. 2019, 13, 588–592. [Google Scholar] [CrossRef]
- Li, J.; Wu, J.; Chen, L.; An, X.; Yin, J.; Wu, Y.; Zhu, L.; Yi, H.; Li, K.H. On-chip integration of III-Nitride flip-chip light-emitting diodes with photodetectors. J. Light. Technol. 2021, 39, 2603–2608. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, J.; Su, P.; Zhang, L.; Xia, B. Full-color realization of micro-LED displays. Nanomaterials 2020, 10, 2482. [Google Scholar] [CrossRef]
- Parbrook, P.J.; Corbett, B.; Han, J.; Seong, T.; Amano, H. Micro-light emitting diode: From chips to applications. Laser Photon. Rev. 2021, 15, 2000133. [Google Scholar] [CrossRef]
- Ma, T.; Chen, J.; Chen, Z.; Liang, L.; Hu, J.; Shen, W.; Li, Z.; Zeng, H. Progress in color conversion technology for micro-LED. Adv. Mater. Technol. 2023, 8, 2200632. [Google Scholar] [CrossRef]
- Meitl, M.; Radauscher, E.; Bonafede, S.; Gomez, D.; Moore, T.; Prevatte, C.; Raymond, B.; Fisher, B.; Ghosal, K.; Fecioru, A.; et al. 55-1: Invited paper: Passive matrix displays with transfer-printed microscale inorganic LEDs. SID Symp. Dig. Tech. Pap. 2016, 47, 743–746. [Google Scholar] [CrossRef]
- Zhu, G.; Liu, Y.; Ming, R.; Shi, F.; Cheng, M. Mass transfer, detection and repair technologies in micro-LED displays. Sci. China Mater. 2022, 65, 2128–2153. [Google Scholar] [CrossRef]
- Marinov, V.R. Laser-Enabled Extremely-high rate technology for µLED assembly. Dig. Tech. Pap.—SID Int. Symp. 2018, 49, 692–695. [Google Scholar] [CrossRef]
- Saeedi, E.; Kim, S.; Parviz, B.A. Self-assembled crystalline semiconductor optoelectronics on glass and plastic. J. Micromech. Microeng. 2008, 18, 075019. [Google Scholar] [CrossRef]
- Yin, Y.; Hu, Z.; Ali, M.U.; Duan, M.; Gao, L.; Liu, M.; Peng, W.; Geng, J.; Pan, S.; Wu, Y.; et al. Full-color micro-LED display with CsPbBr3 perovskite and CdSe quantum dots as color conversion layers. Adv. Mater. Technol. 2020, 5, 2000251. [Google Scholar] [CrossRef]
- Chen, S.-W.H.; Huang, Y.-M.; Singh, K.J.; Hsu, Y.-C.; Liou, F.-J.; Song, J.; Choi, J.; Lee, P.-T.; Lin, C.-C.; Chen, Z.; et al. Full-color micro-LED display with high color stability using semipolar (20–21) InGaN LEDs and quantum-dot photoresist. Photon. Res. 2020, 8, 630. [Google Scholar] [CrossRef]
- Xie, E.; Bian, R.; He, X.; Islim, M.S.; Chen, C.; Mckendry, J.J.D.; Gu, E.; Haas, H.; Dawson, M.D. Over 10 Gbps VLC for long-distance applications using a GaN-based series-biased micro-LED array. IEEE Photon. Technol. Lett. 2020, 32, 499–502. [Google Scholar] [CrossRef]
- Zhao, S.; Mo, Q.; Wang, B.; Cai, W.; Li, R.; Zang, Z. Inorganic halide perovskites for lighting and visible light communication. Photon. Res. 2022, 10, 1039. [Google Scholar] [CrossRef]
- Niu, W.; Xu, Z.; Xiao, W.; Liu, Y.; Hu, F.; Wang, G.; Zhang, J.; He, Z.; Yu, S.; Shi, J.; et al. Phosphor-free golden light LED array for 5.4-Gbps visible light communication using MIMO Tomlinson-Harashima precoding. J. Light. Technol. 2022, 40, 5031–5040. [Google Scholar] [CrossRef]
- Jia, B.L. Study on Optoelectronic Devices Based on GaN Multiple Quantum Well Materials. Master’s Thesis, Nanjing University of Posts and Telecommunications, Nanjing, China, 2022. [Google Scholar]
- Wang, Y.; Zhu, G.; Cai, W.; Gao, X.; Yang, Y.; Yuan, J.; Shi, Z.; Zhu, H. On-chip photonic system using suspended p-n junction InGaN/GaN multiple quantum wells device and multiple waveguides. Appl. Phys. Lett. 2016, 108, 162102. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Q.; Feng, X.; Yin, H.; Shi, Z.; Qin, F.; Wang, Y.; Li, X. Series-Biased Micro-LED Array for Lighting, Detection, and Optical Communication. Nanomaterials 2024, 14, 307. https://doi.org/10.3390/nano14030307
Fang Q, Feng X, Yin H, Shi Z, Qin F, Wang Y, Li X. Series-Biased Micro-LED Array for Lighting, Detection, and Optical Communication. Nanomaterials. 2024; 14(3):307. https://doi.org/10.3390/nano14030307
Chicago/Turabian StyleFang, Qian, Xiaoxiao Feng, Huiping Yin, Zheng Shi, Feifei Qin, Yongjin Wang, and Xin Li. 2024. "Series-Biased Micro-LED Array for Lighting, Detection, and Optical Communication" Nanomaterials 14, no. 3: 307. https://doi.org/10.3390/nano14030307
APA StyleFang, Q., Feng, X., Yin, H., Shi, Z., Qin, F., Wang, Y., & Li, X. (2024). Series-Biased Micro-LED Array for Lighting, Detection, and Optical Communication. Nanomaterials, 14(3), 307. https://doi.org/10.3390/nano14030307