Photocatalytic Degradation of Rhodamine-B and Water Densification via Eco-Friendly Synthesized Cr2O3 and Ag@Cr2O3 Using Garlic Peel Aqueous Extract
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Instruments
2.3. Preparation of Garlic Peels Aqueous Extract (GPE)
2.4. Green Synthesis of Nanoparticles, Cr2O3-Garlic, Ag-Garlic, and Ag@Cr2O3-Garlic
2.5. Antimicrobial Assay
2.5.1. Collection of Samples
2.5.2. Evaluation of Antimicrobial Activity
2.6. Photocatalytic Studies
3. Results and Discussion
3.1. Characterization
3.1.1. XRD
3.1.2. TGA
3.1.3. XPS Analysis
3.1.4. FT-IR
3.1.5. UV-Vis Spectra
3.1.6. SEM Studies
3.1.7. TEM Studies
3.2. Antimicrobial Assay
3.3. Photocatalytic Studies
3.3.1. Adsorption Experiment in Darkness
3.3.2. Effect of Catalyst Mass
3.3.3. Effect of pH
3.3.4. Effect of Contact Time
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alsohaimi, I.H.; Alotaibi, N.F.; Albarkani, A.M.; Chen, Q.; Moustafa, S.M.; Alshammari, M.S.; Nassar, A.M. Photocatalytic wastewater treatment and disinfection using green ZnO-NP synthesized via cera alba extract. Alex. Eng. J. 2023, 83, 113–121. [Google Scholar] [CrossRef]
- Alsohaimi, I.H.; Nassar, A.M.; Elnasr, T.A.S.; Cheba, B.A. A novel composite silver nanoparticles loaded calcium oxide stemming from egg shell recycling: A potent photocatalytic and antibacterial activities. J. Clean. Prod. 2019, 248, 119274. [Google Scholar] [CrossRef]
- Nassar, A.M.; Alotaibi, N.F. Eggshell recycling for fabrication of Pd@CaO, characterization and high-performance solar photocatalytic activity. Environ. Sci. Pollut. Res. 2020, 28, 3515–3523. [Google Scholar] [CrossRef]
- Wang, W.; Chen, X.; Liu, G.; Shen, Z.; Xia, D.; Wong, P.K.; Yu, J.C. Monoclinic dibismuth tetraoxide: A new visible-light-driven photocatalyst for environmental remediation. Appl. Catal. B Environ. 2015, 176–177, 444–453. [Google Scholar] [CrossRef]
- Alqarni, L.S.; Alghamdi, M.D.; Alshahrani, A.A.; Nassar, A.M. Green Nanotechnology: Recent Research on Bioresource-Based Nanoparticle Synthesis and Applications. J. Chem. 2022, 2022, 1–31. [Google Scholar] [CrossRef]
- El-Sheekh, M.M.; Morsi, H.H.; Hassan, L.H.; Ali, S.S. The efficient role of algae as green factories for nanotechnology and their vital applications. Microbiol. Res. 2022, 263, 127111. [Google Scholar] [CrossRef]
- Hussein, S.; Mahmoud, A.M.; Elgebaly, H.A.; Hendawy, O.M.; Hassanein, E.H.M.; Moustafa, S.M.N.; Alotaibi, N.F.; Nassar, A.M. Green Synthesis of Trimetallic Nanocomposite (Ru/Ag/Pd)-Np and Its In Vitro Antimicrobial and Anticancer Activities. J. Chem. 2022, 2022, 4593086. [Google Scholar] [CrossRef]
- Munir, R.; Ali, K.; Naqvi, S.A.Z.; Maqsood, M.A.; Bashir, M.Z.; Noreen, S. Biosynthesis of Leucaena Leucocephala leaf mediated ZnO, CuO, MnO2, and MgO based nano-adsorbents for Reactive Golden Yellow-145 (RY-145) and Direct Red-31 (DR-31) dye removal from textile wastewater to reuse in agricultural purpose. Sep. Purif. Technol. 2023, 306, 122527. [Google Scholar] [CrossRef]
- Sadiq, H.; Sher, F.; Sehar, S.; Lima, E.C.; Zhang, S.; Iqbal, H.M.; Zafar, F.; Nuhanović, M. Green synthesis of ZnO nanoparticles from Syzygium Cumini leaves extract with robust photocatalysis applications. J. Mol. Liq. 2021, 335, 116567. [Google Scholar] [CrossRef]
- Alqarni, L.S. Green creation of CoFe2O4 nanosorbent for superior toxic Cd ions elimination. Z NATURFORSCH A. 2024, 79, 1–16. [Google Scholar] [CrossRef]
- Liu, M.; Lin, M.; Owens, G.; Chen, Z. Fenton-like oxidation mechanism for simultaneous removal of estriol and ethinyl estradiol by green synthesized Mn3O4 NPs. Sep. Purif. Technol. 2022, 301, 121978. [Google Scholar] [CrossRef]
- Gunalan, S.; Sivaraj, R.; Rajendran, V. Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog. Nat. Sci. 2012, 22, 693–700. [Google Scholar] [CrossRef]
- Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011, 13, 2638–2650. [Google Scholar] [CrossRef]
- Almaev, A.V.; Kushnarev, B.O.; Chernikov, E.V.; Novikov, V.A.; Korusenko, P.M.; Nesov, S.N. electrical and gas-sensitive properties of Cr2O3 thin films. Superlattices Microstruct. 2021, 151, 106835. [Google Scholar] [CrossRef]
- Mohamed, R.M.; Ismail, A.A.; Alhaddad, M. A novel design of porous Cr2O3@ZnO nanocomposites as highly efficient photocatalyst toward degradation of antibiotics: A case study of ciprofloxacin. Sep. Purif. Technol. 2021, 266, 118588. [Google Scholar] [CrossRef]
- Makushko, P.; Kosub, T.; Pylypovskyi, O.V.; Hedrich, N.; Li, J.; Pashkin, A.; Avdoshenko, S.; Hübner, R.; Ganss, F.; Wolf, D.; et al. Flexomagnetism and vertically graded Néel temperature of antiferromagnetic Cr2O3 thin films. Nat. Commun. 2022, 13, 1–13. [Google Scholar] [CrossRef]
- Gyawali, N.; Kandel, R.; Lee, I.; Shrestha, S.; Pandey, A.; Akter, J.; Hahn, J.R. Silver decoration of Cr2O3 nanoparticles: Facile preparation of Cr2O3 nanoparticles and Ag–Cr2O3 nanocomposites and characterization of their antibacterial activity and ability to photocatalytically degrade organic wastes under visible light. J. Photochem. Photobiol. A Chem. 2024, 447, 115251. [Google Scholar] [CrossRef]
- Tsegay, M.; Gebretinsae, H.; Welegergs, G.G.; Maaza, M.; Nuru, Z. Novel green synthesized Cr2O3 for selective solar absorber: Investigation of structural, morphological, chemical, and optical properties. Sol. Energy 2022, 236, 308–319. [Google Scholar] [CrossRef]
- Kafi-Ahmadi, L.; Khademinia, S.; Marjani, A.P.; Nozad, E. Microwave-assisted preparation of polysubstituted imidazoles using Zingiber extract synthesized green Cr2O3 nanoparticles. Sci. Rep. 2022, 12, 1–13. [Google Scholar] [CrossRef]
- Ahmad, Z.; Shamim, A.; Mahmood, S.; Mahmood, T.; Khan, F.U. Biological synthesis and characterization of chromium (iii) oxide nanoparticles. Eng. Appl. Sci. Lett. 2018, 1, 23–29. [Google Scholar] [CrossRef]
- Ghotekar, S.; Pansambal, S.; Bilal, M.; Pingale, S.S.; Oza, R. Environmentally friendly synthesis of Cr2O3 nanoparticles: Characterization, applications and future perspective—A review. Case Stud. Chem. Environ. Eng. 2021, 3, 100089. [Google Scholar] [CrossRef]
- Zaheer, Z.; Bawazir, W.A.; Basaleh, A.S.; Alhogbi, B.G.; Albukhari, S.M. Effects of anionic and cationic surfactants on the surface Plasmon resonance intensity of biogenic silver nanoparticles: Stability, and position of optical band. J. Mol. Liq. 2023, 385, 122363. [Google Scholar] [CrossRef]
- Demirbas, A.; Yilmaz, V.; Ildiz, N.; Baldemir, A.; Ocsoy, I. Anthocyanins-rich berry extracts directed formation of Ag NPs with the investigation of their antioxidant and antimicrobial activities. J. Mol. Liq. 2017, 248, 1044–1049. [Google Scholar] [CrossRef]
- Parmar, S.; Kaur, H.; Singh, J.; Matharu, A.S.; Ramakrishna, S.; Bechelany, M. Recent advances in green synthesis of Ag NPs for extenuating antimicrobial resistance. Nanomaterials 2022, 12, 1115. [Google Scholar] [CrossRef]
- Hashemian, M.; Jafarmadar, S.; Khalilarya, S.; Faraji, M. Energy harvesting feasibility from photovoltaic/thermal (PV/T) hybrid system with Ag/Cr2O3-glycerol nanofluid optical filter. Renew. Energy 2022, 198, 426–439. [Google Scholar] [CrossRef]
- Sadri, E.; Ashrafizadeh, F. Self-lubrication mechanism of plasma-sprayed Cr2O3-Ag nanocomposite coatings at room to moderate temperatures. J. Therm. Spray Technol. 2021, 30, 1595–1614. [Google Scholar] [CrossRef]
- Acharyya, S.S.; Ghosh, S.; Khatun, R.; Bal, R. Unravelling the role of Ag Cr interfacial synergistic effect in Ag/Cr2O3 nanostructured catalyst for the ammoxidation of toluene via low temperature activation of Csp3-H bond. Catal. Commun. 2021, 152, 106290. [Google Scholar] [CrossRef]
- Mansourirad, N.; Ardestani, M.; Afshar, R.M. Synthesis and characterization of Ag-8%wt Cr2O3 composites prepared by different densification processes. Sci. Sinter. 2018, 50, 323–335. [Google Scholar] [CrossRef]
- Cao, J.; Xu, Y.; Sui, L.; Zhang, X.; Gao, S.; Cheng, X.; Zhao, H.; Huo, L. Highly selective low-temperature triethylamine sensor based on Ag/Cr2O3 mesoporous microspheres. Sensors Actuators B Chem. 2015, 220, 910–918. [Google Scholar] [CrossRef]
- Ishtiaq, M.; Ali, D.; Ahmad, R.; Muneer, I.; Bashir, F.; Hanif, M.; Khan, T.M.; Abbasi, S.A. A Comparison of Antibacterial Activity in Dark-UV Light in Perspective of Surface and Structural Properties of Spray Pyrolysis Grown Cu Doped Cr2O3 Thin Films. Surf. Interfaces 2023, 37, 102741. [Google Scholar] [CrossRef]
- Ahmed, M.; Afridi, S.; Khalil, A.T.; Zohra, T.; Ali, M.; Alam, M.M.; Maaza, M. Phyto-fabricated Cr2O3 nanoparticle for multifunctional biomedical applications. Nanomedicine 2020, 15, 1653–1669. [Google Scholar] [CrossRef]
- Hassan, D.; Khalil, A.T.; Solangi, A.R.; El-Mallul, A.; Shinwari, Z.K.; Maaza, M. Physiochemical properties and novel biological applications of Callistemon viminalis-mediated α-Cr2O3 nanoparticles. Appl. Organomet. Chem. 2019, 33, e5041. [Google Scholar] [CrossRef]
- Shahid, H.; Arooj, I.; Zafar, S. Saba Honey-mediated synthesis of Cr2O3 nanoparticles and their potent anti-bacterial, anti-oxidant and anti-inflammatory activities. Arab. J. Chem. 2023, 16, 104544. [Google Scholar] [CrossRef]
- Moustafa, S.M.; Taha, R.H. Mycogenic Nano-Complex for Plant Growth Promotion and Bio-Control of Pythium aphanidermatum. Plants 2021, 10, 1858. [Google Scholar] [CrossRef]
- AL-Shammri, K.N.; Elkanz, N.A.A.; Arafa, W.A.A.; Althobaiti, I.O.; Moustafa, B.R.S.M. Novel indan-1,3-dione derivatives: Design, green synthesis, effect against tomato damping-off disease caused by Fusarium oxysporum and in silico molecular docking study. Arab. J. Chem. 2022, 15, 103731. [Google Scholar] [CrossRef]
- Nassar, A.M.; Alrowaili, Z.A.; Ahmed, A.A.M.; Cheba, B.A.; Akhtar, S. Facile synthesis of new composite, Ag-Nps-loaded core/shell CdO/Co3O4 NPs, characterization and excellent performance in antibacterial activity. Appl. Nanosci. 2020, 11, 419–428. [Google Scholar] [CrossRef]
- Ansari, A.R.; Ansari, S.A.; Parveen, N.; Ansari, M.O.; Osman, Z. Silver nanoparticle decorated on reduced graphene oxide-wrapped manganese oxide nanorods as electrode materials for high-performance electrochemical devices. Crystals 2022, 12, 389. [Google Scholar] [CrossRef]
- Khan, S.A.; Shahid, S.; Hanif, S.; Almoallim, H.S.; Alharbi, S.A.; Sellami, H. Green synthesis of chromium oxide nanoparticles for antibacterial, antioxidant anticancer, and biocompatibility activities. Int. J. Mol. Sci. 2021, 22, 502. [Google Scholar] [CrossRef]
- Dou, P.; Tan, F.; Wang, W.; Sarreshteh, A.; Qiao, X.; Qiu, X.; Chen, J. One-step microwave-assisted synthesis of Ag/ZnO/graphene nanocomposites with enhanced photocatalytic activity. J. Photochem. Photobiol. A Chem. 2015, 302, 17–22. [Google Scholar] [CrossRef]
- Wei, F.; Zhao, X.; Li, C.; Han, X. A novel strategy for water disinfection with a AgNPs/gelatin sponge filter. Environ. Sci. Pollut. Res. 2018, 25, 19480–19487. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.; Zhao, C.; Liao, W.; Yang, J.; Zheng, Y. Eco-Friendly Green Synthesis of Rubropunctatin Functionalized Silver Nanoparticles and Evaluation of Antibacterial Activity. Nanomaterials 2022, 12, 4052. [Google Scholar] [CrossRef]
- Henderson, M.A.; Chambers, S.A. HREELS, TPD and XPS study of the interaction of water with the α-Cr2O3 (001) surface. Surf. Sci. 2000, 449, 135–150. [Google Scholar] [CrossRef]
- Raaj, E.P.; Bhuvaneshwari, K.; Lakshmipathy, R.; Devi, V.V.; Rico, I.L.R.; Barik, D. Garlic peel surface modification and fixed-bed column investigations towards crystal violet dye. Adsorp Sci Technol. 2022, 2022, 1–9. [Google Scholar] [CrossRef]
- Magryś, A.; Olender, A.; Tchórzewska, D. Antibacterial properties of Allium sativum L. against the most emerging multidrug-resistant bacteria and its synergy with antibiotics. Arch. Microbiol. 2021, 203, 2257–2268. [Google Scholar] [CrossRef] [PubMed]
- Barreto, L.S.; Tokumoto, M.S.; Guedes, I.C.; De Melo, H.G.; Amado, F.D.R.; Capelossi, V.R. Evaluation of the anticorrosion performance of peel garlic extract as corrosion inhibitor for ASTM 1020 carbon steel in acidic solution. Matéria (Rio J.) 2017, 22. [Google Scholar] [CrossRef]
- Botteon, C.E.A.; Silva, L.B.; Ccana-Ccapatinta, G.V.; Silva, T.S.; Ambrosio, S.R.; Veneziani, R.C.S.; Bastos, J.K.; Marcato, P.D. Biosynthesis and characterization of gold nanoparticles using Brazilian red propolis and evaluation of its antimicrobial and anticancer activities. Sci. Rep. 2021, 11, 1974. [Google Scholar] [CrossRef] [PubMed]
- Sone, B.T.; Manikandan, E.; Gurib-Fakim, A.; Maaza, M. Single-phase α-Cr2O3 nanoparticles’ green synthesis using Callistemon viminalis’ red flower extract. Green Chem. Lett. Rev. 2016, 9, 85–90. [Google Scholar] [CrossRef]
- El-Refai, A.A.; Ghoniem, G.A.; El-Khateeb, A.Y.; Hassaan, M.M. Eco-friendly synthesis of metal nanoparticles using ginger and garlic extracts as biocompatible novel antioxidant and antimicrobial agents. J. Nanostruct. Chem. 2018, 8, 71–81. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Sajadi, S.M.; Maham, M. Green synthesis of palladium nanoparticles using Hippophae rhamnoides Linn leaf extract and their catalytic activity for the Suzuki–Miyaura coupling in water. J. Mol. Catal. A Chem. 2015, 396, 297–303. [Google Scholar] [CrossRef]
- Vaseghi, Z.; Tavakoli, O.; Nematollahzadeh, A. Rapid biosynthesis of novel Cu/Cr/Ni trimetallic oxide nanoparticles with antimicrobial activity. J. Environ. Chem. Eng. 2018, 6, 1898–1911. [Google Scholar] [CrossRef]
- Devaraj, P.; Kumari, P.; Aarti, C.; Renganathan, A. Synthesis and characterization of silver nanoparticles using cannonball leaves and their cytotoxic activity against MCF-7 cell line. J. Nanotechnol. 2013, 2013, 598328. [Google Scholar] [CrossRef]
- Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017, 12, 1227. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Rauwel, P.; Rauwel, E. Antimicrobial nanoparticles: Synthesis, mechanism of actions. In Antimicrobial Activity of Nanoparticles; Elsevier: Amsterdam, The Netherlands, 2023; pp. 155–202. [Google Scholar]
- Sangwan, P.; Kumar, H. Synthesis, Characterization and Antibacterial Activities of Chromium Oxides Nanoparticles Againts Klebsiellapneumoniae. Asian J. Pharm. Clin. Res. 2017, 10, 207–209. [Google Scholar] [CrossRef]
- Gabriel, T.; Vestine, A.; Kim, K.D.; Kwon, S.J.; Sivanesan, I.; Chun, S.C. Antibacterial activity of nanoparticles of garlic (Allium sativum) extract against different bacteria such as Streptococcus mutans and Poryphormonas gingivalis. Appl. Sci. 2022, 12, 3491. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Malaikozhundan, B.; Saravanakumar, K.; Durán-Lara, E.F.; Wang, M.H.; Vaseeharan, B. Garlic clove extract assisted silver nanoparticle—Antibacterial, antibiofilm, antihelminthic, anti-inflammatory, anticancer and ecotoxicity assessment. J. Photochem. Photobiol. B Biol. 2019, 198, 111558. [Google Scholar] [CrossRef] [PubMed]
- Nallal, V.U.M.; Razia, M.; Duru, O.A.; Ramalingam, G.; Chinnappan, S.; Chandrasekaran, M.; Gengan, R.M.; Chung, W.J.; Chang, S.W.; Ravindran, B. Eco-Friendly Synthesis of Multishaped Crystalline Silver Nanoparticles Using Hill Garlic Extract and Their Potential Application as an Antifungal Agent. J. Nanomater. 2022, 2022, 7613210. [Google Scholar] [CrossRef]
- Saha, M.; Bandyopadhyay, P.K. Green Biosynthesis of Silver Nanoparticle Using Garlic, Allium sativum with Reference to Its Antimicrobial Activity Against the Pathogenic Strain of Bacillus sp. and Pseudomonas sp. Infecting Goldfish, Carassius auratus. Proc. Zool. Soc. 2017, 72, 180–186. [Google Scholar] [CrossRef]
- Wozniak, A.B.; Wiercińska, A.N.; Yilmaz, S.; Pietrzak, R. Low-rank coals as precursors of effective carbonaceous adsorbents for the removal of Rhodamine B. J. Mol. Liq. 2023, 389, 122949. [Google Scholar] [CrossRef]
- Wang, X.-L.; Sun, Y.-Y.; Xiao, Y.; Chen, X.-X.; Huang, X.-C.; Zhou, H.-L. Facile solution-refluxing synthesis and photocatalytic dye degradation of a dynamic covalent organic framework. Molecules 2022, 27, 8002. [Google Scholar] [CrossRef]
- Rajesh, C.; Rajashekara, R.; Nagaraju, P. Response Surface Methodology (RSM) modelling for the photocatalytic optimization study of benzophenone removal using CuWO4/NiO nanocomposite. J. Environ. Health Sci. Eng. 2023, 21, 187–199. [Google Scholar] [CrossRef]
- Sadati, H.; Ayati, B. Using a promising biomass-based biochar in photocatalytic degradation: Highly impressive performance of RHB/SnO2/Fe3O4 for elimination of AO7. Photochem. Photobiol. Sci. 2023, 22, 1445–1462. [Google Scholar] [CrossRef]
- Chiu, Y.-H.; Chang, T.-F.M.; Chen, C.-Y.; Sone, M.; Hsu, Y.-J. Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catalysts 2019, 9, 430. [Google Scholar] [CrossRef]
- Jakimińska, A.; Pawlicki, M.; Macyk, W. Photocatalytic transformation of Rhodamine B to Rhodamine-110—The mechanism revisited. J. Photochem. Photobiol. A Chem. 2022, 433, 114176. [Google Scholar] [CrossRef]
Diameter of Inhibition Zone (mm) | |||||
---|---|---|---|---|---|
A. porri | A. flavus | A. niger | F. oxysporum | T. longibrachiatum | |
Control Negative | 0 | 0 | 0 | 0 | 0 |
Control Positive (miconizol) | 21.7 ± 0.1 | 24.7 ± 0.05 | 23.4 ± 0.23 | 38.7 ± 0.08 | 25.4 ± 0.10 |
GPE | 13.3 ± 0.21 | 11.3 ± 0.32 | 18.9 ± 0.13 | 12.3 ± 0.15 | 9 ± 0.5 |
Ag-garlic | 31.7 ± 0.3 | 31.7 ± 0.16 | 28.2 ± 0.21 | 19.6 ± 0.17 | 47.6 ± 0.25 |
Cr2O3-garlic | 14.5 ± 0.24 | 12.3 ± 0.22 | 25.7 ± 0.09 | 12.9 ± 0.21 | 23.2 ± 0.22 |
Ag@Cr2O3-garlic | 75.3 ± 0.12 | 77.6 ± 0.54 | 77.6 ± 0.13 | 64.7 ± 0.24 | 77.6 ± 0.13 |
Diameter of Inhibition Zone (mm) | ||||||
---|---|---|---|---|---|---|
Control Negative | Control Positive (Amoxicillin) | Garlic Peels | Ag-Garlic | Cr2O3-Garlic | Ag@Cr2O3-Garlic | |
B. subtilis | 0 | 24 ± 0.23 | 06 ± 0.12 | 29 ± 0.26 | 19 ± 0.23 | 38 ± 0.31 |
Enterococcus faecium | 0 | 21 ± 0.15 | 08 ± 0.42 | 27 ± 0.31 | 17 ± 0.33 | 36 ± 0.5 |
E. coli | 0 | 25 ± 0.09 | 08 ± 0.25 | 28 ± 0.12 | 18 ± 0.05 | 39 ± 0.10 |
P. aerogenosa | 0 | 24 ± 0.53 | 07 ± 0.17 | 26 ± 0.27 | 21 ± 0.12 | 33 ± 0.21 |
Nanomaterial | Fabrication Method | Bioactivity | Effect | Reference |
---|---|---|---|---|
Cr2O3 | Green method using Abutilon indicum extract | Antibacterial | Superior antibacterial activity against E. coli, S. aureus, B. bronchiseptica, and B. subtilis | [39] |
Cr2O3 | Sol–gel technique | Antibacterial | Antibacterial effectiveness against K. pneumoniae. | [54] |
Garlic extract | Ultrasonication | Antibacterial | Potent antibacterial activity against E. coli, S. aureus, S. mutans, and P. gingivalis | [55] |
Ag-NPs | Green method using garlic clove extract | Antibacterial, antibiofilm, antiparasitic and anti-breast cancer activity | Great antibacterial activity against S. aureus and P. aerigunosa | [56] |
Ag-NPs | Green method using garlic extract | Antifungal | Strong potential inhibition of five strains of Candida. | [57] |
Biosynthesis of Silver Nanoparticle | .Green method using Allium sativum | Antibacterial | Significant antibacterial efficacy against B. licheniformis, P. aeruginosa, and C. auratus | [58] |
Ag@Cr2O3 | Green method using garlic peel extract | Antimicrobial | Significant antimicrobial activity against B. subtilis, E. faecium, E. coli, P. aeruginosa, A. porri, A. flavus, A. niger, F. oxysporum, and T. longibrachiatum. | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqarni, L.S.; Alghamdi, M.D.; Alshahrani, A.A.; Alotaibi, N.F.; Moustafa, S.M.N.; Ashammari, K.; Alruwaili, I.A.; Nassar, A.M. Photocatalytic Degradation of Rhodamine-B and Water Densification via Eco-Friendly Synthesized Cr2O3 and Ag@Cr2O3 Using Garlic Peel Aqueous Extract. Nanomaterials 2024, 14, 289. https://doi.org/10.3390/nano14030289
Alqarni LS, Alghamdi MD, Alshahrani AA, Alotaibi NF, Moustafa SMN, Ashammari K, Alruwaili IA, Nassar AM. Photocatalytic Degradation of Rhodamine-B and Water Densification via Eco-Friendly Synthesized Cr2O3 and Ag@Cr2O3 Using Garlic Peel Aqueous Extract. Nanomaterials. 2024; 14(3):289. https://doi.org/10.3390/nano14030289
Chicago/Turabian StyleAlqarni, Laila S., Maha D. Alghamdi, Aisha A. Alshahrani, Nasser F. Alotaibi, Shaima M. N. Moustafa, Khulaif Ashammari, Ibtihal A. Alruwaili, and Amr Mohammad Nassar. 2024. "Photocatalytic Degradation of Rhodamine-B and Water Densification via Eco-Friendly Synthesized Cr2O3 and Ag@Cr2O3 Using Garlic Peel Aqueous Extract" Nanomaterials 14, no. 3: 289. https://doi.org/10.3390/nano14030289
APA StyleAlqarni, L. S., Alghamdi, M. D., Alshahrani, A. A., Alotaibi, N. F., Moustafa, S. M. N., Ashammari, K., Alruwaili, I. A., & Nassar, A. M. (2024). Photocatalytic Degradation of Rhodamine-B and Water Densification via Eco-Friendly Synthesized Cr2O3 and Ag@Cr2O3 Using Garlic Peel Aqueous Extract. Nanomaterials, 14(3), 289. https://doi.org/10.3390/nano14030289