Construction and Application of Au NRs/4-MBA/PAM Ratiometric Surface-Enhanced Raman Scattering Substrate for Fish Veterinary Drug Residue Detection
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Instruments
2.3. Preparation of Au NRs
2.4. Synthesis Method Study of Au NRs/4-MBA/PAM
2.5. Characterization of Materials
2.6. Fish Sample Preparation
2.7. SERS Detection with Au NRs/4-MBA/PAM
3. Results and Discussions
3.1. Characterization of Au NRs
3.2. Characterization of Au NRs/4-MBA/PAM
3.3. Optimization of Synthesis Conditions
3.4. Performance Evaluation of Au NRs/4-MBA/PAM Film
3.5. Influence of Fish Matrix on the SERS Detection of MG
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kneipp, J.; Seifert, S.; Gärber, F. SERS Microscopy as a Tool for Comprehensive Biochemical Characterization in Complex Samples. Chem. Soc. Rev. 2024, 53, 7641–7656. [Google Scholar] [CrossRef] [PubMed]
- Le Ru, E.C.; Auguié, B. Enhancement Factors: A Central Concept during 50 Years of Surface-Enhanced Raman Spectroscopy. ACS Nano 2024, 18, 9773–9783. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Chen, L.; Lee, S.; Noda, I.; Zhao, B.; Jung, Y.M. Investigation of Selective SERS Enhancement Mechanism of Au Nanospheres and Au Nanorods Based on 2T2D-SERS Correlation Spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 310, 123947. [Google Scholar] [CrossRef]
- Laing, S.; Gracie, K.; Faulds, K. Multiplex In Vitro Detection Using SERS. Chem. Soc. Rev. 2016, 45, 1901–1918. [Google Scholar] [CrossRef]
- Kalashgrani, M.Y.; Mousavi, S.M.; Akmal, M.H.; Gholami, A.; Omidifar, N.; Chiang, W.; Althomali, R.H.; Lai, C.W.; Rahman, M.M. Gold Fluorescence Nanoparticles for Enhanced SERS Detection in Biomedical Sensor Applications: Current Trends and Future Directions. Chem. Rec. 2024, e202300303. [Google Scholar] [CrossRef]
- Visaveliya, N.R.; Mazetyte-Stasinskiene, R.; Köhler, J.M. Stationary, Continuous, and Sequential Surface-Enhanced Raman Scattering Sensing Based on the Nanoscale and Microscale Polymer-Metal Composite Sensor Particles through Microfluidics: A Review. Adv. Opt. Mater. 2022, 10, 2102757. [Google Scholar] [CrossRef]
- Abalde-Cela, S.; Carregal-Romero, S.; Coelho, J.P.; Guerrero-Martínez, A. Recent Progress on Colloidal Metal Nanoparticles as Signal Enhancers in Nanosensing. Adv. Colloid Interface Sci. 2016, 233, 255–270. [Google Scholar] [CrossRef]
- Jiang, L.; Hassan, M.M.; Ali, S.; Li, H.; Sheng, R.; Chen, Q. Evolving Trends in SERS-Based Techniques for Food Quality and Safety: A Review. Trends Food Sci. Technol. 2021, 112, 225–240. [Google Scholar] [CrossRef]
- Cailletaud, J.; De Bleye, C.; Dumont, E.; Sacré, P.-Y.; Netchacovitch, L.; Gut, Y.; Boiret, M.; Ginot, Y.-M.; Hubert, P.; Ziemons, E. Critical Review of Surface-Enhanced Raman Spectroscopy Applications in the Pharmaceutical Field. J. Pharm. Biomed. Anal. 2018, 147, 458–472. [Google Scholar] [CrossRef]
- Gillibert, R.; Huang, J.Q.; Zhang, Y.; Fu, W.L.; Lamy De La Chapelle, M. Explosive Detection by Surface Enhanced Raman Scattering. TrAC Trends Anal. Chem. 2018, 105, 166–172. [Google Scholar] [CrossRef]
- Xu, Y.; Dong, Q.; Cong, S.; Zhao, Z. SERS Materials with Small-Molecule Sensitivity for Biological Diagnosis. Anal. Sens. 2024, 4, e202300067. [Google Scholar] [CrossRef]
- Zeng, P.; Zhou, Y.; Shu, Z.; Liang, H.; Zhang, X.; Chen, Y.; Duan, H.; Zheng, M. Suspended 3D Metallic Dimers with Sub-10 Nm Gap for High-Sensitive SERS Detection. Nanotechnology 2023, 34, 095301. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Liu, X.; Luo, J.; Lee, C.; Zhang, J.; Fan, X.; Zhang, W. Physiochemical Coupled Dynamic Nanosphere Lithography Enabling Multiple Metastructures from Single Mask. Adv. Mater. 2024, 36, 2310469. [Google Scholar] [CrossRef]
- Milenko, K.; Dullo, F.T.; Thrane, P.C.V.; Skokic, Z.; Dirdal, C.A. UV-Nanoimprint Lithography for Predefined SERS Nanopatterns Which Are Reproducible at Low Cost and High Throughput. Nanomaterials 2023, 13, 1598. [Google Scholar] [CrossRef]
- Li, M.; Yan, M.; Xu, B.; Zhao, C.; Wang, D.; Wang, Y.; Chen, H. A dual-mode optical fiber sensor for SERS and fluorescence detection in liquid. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 290, 122267. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, B.; Abdullah, A.; Muhsin, S.A.; Huang, J.; Almasri, M. A fiber optics based surface enhanced raman spectroscopy sensor for chemical and biological sensing. Sens. Bio-Sens. Res. 2024, 46, 100686. [Google Scholar] [CrossRef]
- Kim, J.A.; Wales, D.J.; Thompson, A.J.; Yang, G. Fiber-optic SERS probes fabricated using two-photon polymerization for rapid detection of bacteria. Adv. Opt. Mater. 2020, 8, 1901934. [Google Scholar] [CrossRef]
- Shen, W.; Lin, X.; Jiang, C.; Li, C.; Lin, H.; Huang, J.; Wang, S.; Liu, G.; Yan, X.; Zhong, Q.; et al. Reliable Quantitative SERS Analysis Facilitated by Core–Shell Nanoparticles with Embedded Internal Standards. Angew. Chem. Int. Ed. 2015, 54, 7308–7312. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, J.; Xu, R.; Li, J.; Fu, C.; Shi, W.; Chen, J. Recent Advances in Ratiometric Surface-Enhanced Raman Spectroscopy Sensing Strategies. Microchem. J. 2024, 199, 110127. [Google Scholar] [CrossRef]
- Jiang, Y.; Cao, J.; Hu, S.; Cheng, T.; Wang, H.; Guo, X.; Ying, Y.; Liu, X.; Wang, F.; Wen, Y.; et al. Internal Standard Optimization Advances Sensitivity and Robustness of Ratiometric Detection Method. Analyst 2024, 149, 2806–2811. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, S.; Hu, Y.; Fu, C.; Chen, W. Ultrasensitive Detection of Thiram Based on Surface-Enhanced Raman Scattering via Au@Ag@Ag Core/Shell/Shell Bimetallic Nanorods. Analyst 2023, 148, 5435–5444. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, C.; Pei, Y.; Song, W.; Zhang, S. Preparation of a Novel Raman Probe and Its Application in the Detection of Circulating Tumor Cells and Exosomes. ACS Appl. Mater. Interfaces 2019, 11, 28671–28680. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Qiu, Y.; Li, Z.; Yang, D.; Ding, S.; Cheng, G.; Hao, Z.; Wang, Q. Fabrication of Silver Dendrite Fractal Structures for Enhanced Second Harmonic Generation and Surface-Enhanced Raman Scattering. Opt. Mater. Express 2019, 9, 860. [Google Scholar] [CrossRef]
- Gu, X.; Camden, J.P. Surface-Enhanced Raman Spectroscopy-Based Approach for Ultrasensitive and Selective Detection of Hydrazine. Anal. Chem. 2015, 87, 6460–6464. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, S. Highly sensitive, reproducible, and stable core–shell MoN SERS substrate synthesized via sacrificial template method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 327, 125322. [Google Scholar] [CrossRef]
- Zhang, H.; Duan, S.; Radjenovic, P.M.; Tian, Z.-Q.; Li, J.-F. Core–shell nanostructure-enhanced raman spectroscopy for surface catalysis. Acc. Chem. Res. 2020, 53, 729–739. [Google Scholar] [CrossRef]
- Wu, Y.; Li, P.; Yang, B.; Tang, X. Designing and fabricating composites of PNIPAM@au nanorods with tunable plasmon coupling for highly sensitive SERS detection. Mater. Res. Bull. 2016, 76, 155–160. [Google Scholar] [CrossRef]
- Nehra, K.; Pandian, S.K.; Bharati, M.S.S.; Soma, V.R. Enhanced Catalytic and SERS Performance of Shape/Size Controlled Anisotropic Gold Nanostructures. New J. Chem. 2019, 43, 3835–3847. [Google Scholar] [CrossRef]
- Lu, Y.; Mo, X.; Zhu, G.; Huang, Y.; Wang, Y.; Yang, Z.; Gao, L.; Shen, G.; Wang, Y.; Zhao, X. Ratiometric SERS Quantification of SO2 Vapor Based on Au@Ag-Au with Raman Reporter as Internal Standard. J. Hazard. Mater. 2024, 467, 133763. [Google Scholar] [CrossRef]
- Kurumi, S.; Sugawa, K.; Takase, K.; Darma, Y.; Sagara, T.; Matsuda, K.; Suzuki, K.; Ong, B.L.; Rusydi, A. Growth of Highly Oriented Crystalline Gold Nanoislands on MgO(001) Substrates for Surface-Enhanced Raman Scattering Chips by Pulsed Laser Deposition. Appl. Phys. Lett. 2023, 123, 053502. [Google Scholar] [CrossRef]
- V, P.P.; R, P.; Sathe, V.; Mahalingam, U. Graphene Boosted Silver Nanoparticles as Surface Enhanced Raman Spectroscopic Sensors and Photocatalysts for Removal of Standard and Industrial Dye Contaminants. Sens. Actuators B Chem. 2019, 281, 679–688. [Google Scholar] [CrossRef]
- Kumar, P.; Khosla, R.; Soni, M.; Deva, D.; Sharma, S.K. A highly sensitive, flexible SERS sensor for malachite green detection based on ag decorated microstructured PDMS substrate fabricated from taro leaf as template. Sens. Actuators B Chem. 2017, 246, 477–486. [Google Scholar] [CrossRef]
- Mi, S.; Du, Y.; Gao, F.; Yuan, S.; Yu, H.; Guo, Y.; Cheng, Y.; Li, G.; Yao, W. Probing the effect of protein corona on SERS signals: Insights from melamine detection in milk matrix. Food Chem. 2024, 459, 140416. [Google Scholar] [CrossRef] [PubMed]
Materials | RSD (1) % | RSD (2) % | RSD (3) % |
---|---|---|---|
Au NRs/4-MBA | 11.8% | 10.5% | 4.3% |
Au NRs/4-MBA/PAM | 7.6% | 5.8% | 1.9% |
Sample | Added MG μg/L | Detected MG μg/L | Recovery % |
---|---|---|---|
Fish matrix | 2.50 | 1.89 | 75.60 |
30.00 | 24.70 | 82.33 | |
50.00 | 41.62 | 83.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Fu, H.; Gu, Q. Construction and Application of Au NRs/4-MBA/PAM Ratiometric Surface-Enhanced Raman Scattering Substrate for Fish Veterinary Drug Residue Detection. Nanomaterials 2024, 14, 1774. https://doi.org/10.3390/nano14221774
Yu J, Fu H, Gu Q. Construction and Application of Au NRs/4-MBA/PAM Ratiometric Surface-Enhanced Raman Scattering Substrate for Fish Veterinary Drug Residue Detection. Nanomaterials. 2024; 14(22):1774. https://doi.org/10.3390/nano14221774
Chicago/Turabian StyleYu, Jianxing, Huiping Fu, and Qing Gu. 2024. "Construction and Application of Au NRs/4-MBA/PAM Ratiometric Surface-Enhanced Raman Scattering Substrate for Fish Veterinary Drug Residue Detection" Nanomaterials 14, no. 22: 1774. https://doi.org/10.3390/nano14221774
APA StyleYu, J., Fu, H., & Gu, Q. (2024). Construction and Application of Au NRs/4-MBA/PAM Ratiometric Surface-Enhanced Raman Scattering Substrate for Fish Veterinary Drug Residue Detection. Nanomaterials, 14(22), 1774. https://doi.org/10.3390/nano14221774