Boron/Difluoroamino (B/NF2) Composites Prepared Through an Energetic Fluorinated-Centerd Surface Modification Strategy to Enhance Their Ignition and Combustion Characteristics
Abstract
:1. Introduction
2. Experiment and Characterization
2.1. Materials
2.2. Pretreatment of B Powder
2.3. Preparation of B/PDB by Solvent/Non-Solvent Method
2.4. Characterisation and Methods
3. Result and Discussions
3.1. Characterization of Structure and Morphology
3.2. Characteristics of Surface Coating
3.3. NF2 Effect of Catalytic Behaviour on AP and B Particles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pang, W.; Li, Y.; DeLuca, L.T.; Liang, D.; Qin, Z.; Liu, X.; Xu, H.; Fan, X. Effect of Metal Nanopowders on the Performance of Solid Rocket Propellants: A Review. Nanomaterials 2021, 11, 2749. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.; Liu, H.; Cai, W. Combustion diagnostics of metal particles: A review. Meas. Sci. Technol. 2023, 34, 042002. [Google Scholar] [CrossRef]
- Glotov, O.G. Screening of metal fuels for use in composite propellants for ramjets. Prog. Aerosp. Sci. 2023, 143, 100954. [Google Scholar] [CrossRef]
- Cheng, L.; Yang, H.; Yang, Y.; Li, Y.; Meng, Y.; Li, Y.; Song, D.; Chen, H.; Artiaga, R. Preparation of B/Nitrocellulose/Fe particles and their effect on the performance of an ammonium perchlorate propellant. Combus. Flame 2020, 211, 456–464. [Google Scholar] [CrossRef]
- Liu, L.; He, G.; Wang, Y. Thermal reaction characteristics of the boron used in the fuel-rich propellant. J. Therm. Anal. Calorim. 2013, 114, 1057–1068. [Google Scholar] [CrossRef]
- Guo, Y.; Zhou, X.; Zhang, W.; Deng, L.; Du, Y.; Cheng, S. Combustion characteristics of magnesium borides and their agglomerated particles. Combus. Flame 2019, 203, 230–237. [Google Scholar] [CrossRef]
- Mondal, J.; Singh, S.K.; Shin, W.G. Enhanced ignition and combustion performance of boron-based energetic materials through surface modification and titanium dioxides coating. Ceram. Int. 2024, 50, 16598–16614. [Google Scholar] [CrossRef]
- Yang, D.; Liu, R.; Li, W.; Yan, Q.L. Recent advances on the preparation and combustion performances of boron-based alloy fuels. Fuel 2023, 342, 127855. [Google Scholar] [CrossRef]
- Hashim, S.A.; Karmakar, S.; Roy, A. Effects of Ti and Mg particles on combustion characteristics of boron-HTPB based solid fuels for hybrid gas generator in ducted rocket applications. Acta Astronaut. 2019, 160, 125–137. [Google Scholar] [CrossRef]
- Han, L.; Wang, R.; Chen, W.; Wang, Z.; Zhu, X.; Huang, T. Preparation and Combustion Mechanism of Boron-Based High-Energy Fuels. Catalysts 2023, 13, 378. [Google Scholar] [CrossRef]
- Chintersingh, K.L.; Schoenitz, M.; Dreizin, E.L. Effect of Purity, Surface Modification and Iron Coating on Ignition and Combustion of Boron in Air. Combust. Sci. Technol. 2021, 193, 1567–1586. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Q.; Tang, L.; Chen, F. Enhanced Reactivity and Compound Mechanism of Mg/B Composite Powders Prepared by Cryomilling. Materials 2022, 15, 4618. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Chen, X.; Xu, H.; Han, A.; Ye, M.; Pan, G. Preparation and Properties of Boron-Based Nano-B/NiO Thermite. Propellants Explos. Pyrotech. 2015, 40, 873–879. [Google Scholar] [CrossRef]
- Xu, P.; Liu, J.; Chen, X.; Zhang, W.; Zhou, J.; Wei, X. Ignition and combustion of boron particles coated by modified materials with various action mechanisms. Combus. Flame 2022, 242, 112208. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Mao, Y.; Peng, R.; Nie, F. The surface activation of boron to improve ignition and combustion characteristic. Def. Technol. 2022, 18, 1679–1687. [Google Scholar] [CrossRef]
- Liang, D.; Liu, J.; Zhou, Y.; Zhou, J. Ignition and combustion characteristics of amorphous boron and coated boron particles in oxygen jet. Combus. Flame 2017, 185, 292–300. [Google Scholar] [CrossRef]
- Deng, P.; Chen, P.; Fang, H.; Liu, R.; Guo, X. The combustion behavior of boron particles by using molecular perovskite energetic materials as high-energy oxidants. Combus. Flame 2022, 241, 112118. [Google Scholar] [CrossRef]
- Liang, D.; Liu, J.; Chen, B.; Zhou, J.; Chen, F. Improvement in Energy Release Properties of Boron-Based Propellant by Oxidant Coating. Thermochim. Acta 2016, 638, 58–68. [Google Scholar] [CrossRef]
- Shao, J.; Zhu, B.; Yu, H.; Zhu, L.; Yun, L.; Sun, Y. Polydopamine as interfacial layer regulating micron-sized boron/polytetrafluoroethylene composite to improve the combustion performance. Combus. Flame 2023, 256, 112945. [Google Scholar] [CrossRef]
- Young, G.; Stoltz, C.A.; Mayo, D.H.; Roberts, C.W.; Milby, C.L. Combustion Behavior of Solid Fuels Based on PTFE/Boron Mixtures. Combust. Sci. Technol. 2013, 185, 1261–1280. [Google Scholar] [CrossRef]
- Chen, L.; Huang, C.; Yang, Y.; Li, Y.; Meng, Y.; Li, Y.; Chen, H.; Song, D.; Artiaga, R. Preparation and Combustion Performance of B/PVDF/Al Composite Microspheres. Propellants Explos. Pyrotech. 2020, 45, 657–664. [Google Scholar] [CrossRef]
- Yan, L.; Zhu, B.; Chen, J.; Sun, Y. Study on nano-boron particles modified by PVDF to enhance the combustion characteristics. Combus. Flame 2023, 248, 112556. [Google Scholar] [CrossRef]
- Fan, Z.; Qin, Z.; Deng, T.; Guo, J.; Li, M.; Yang, X.; Yin, B.; Li, L.K.B.; Ao, W. Assessing the ignition and combustion of a kerosene droplet containing boron nanoparticles coated with polydopamine and polyvinylidene fluoride. Combus. Flame 2024, 263, 113411. [Google Scholar] [CrossRef]
- Zhu, L.; Zhu, B.; Zhao, X.; Wang, Y.; Li, M.; Chen, J.; Sun, Y. Using polyvinylidene fluoride to improve ignition and combustion of micron-sized boron powder by fluorination reaction. Chin. J. Aeronaut. 2023, 36, 64–76. [Google Scholar] [CrossRef]
- Lebedeva, E.A.; Astaf’eva, S.A.; Istomina, T.S.; Badica, P. Combustion products agglomeration of propellant containing boron with fluorinated coatings. Combus. Flame 2022, 238, 111749. [Google Scholar] [CrossRef]
- Kumar, S.; Schoenitz, M.; Dreizin, E. Bismuth fluoride-coated boron powders as enhanced fuels. Combus. Flame 2020, 221, 1–10. [Google Scholar]
- Liu, Y.; Wang, W.; Zhao, B.; Chen, B.; Wang, Y.; Yan, Q. Synergistic Enhancement on Ignition and Combustion Properties of Boron via Viton Core-Shell Coating. Langmuir 2024, 40, 12239–12249. [Google Scholar] [CrossRef]
- Baek, J.; Jiang, Y.; Demko, A.R.; Jimenez-Thomas, A.R.; Vallez, L.; Ka, D.; Xia, Y.; Zheng, X. Effect of Fluoroalkylsilane Surface Functionalization on Boron Combustion. ACS Appl. Mater. Interfaces 2022, 14, 20190–20196. [Google Scholar] [CrossRef]
- Liu, R.; Yang, D.; Xiong, K.; Wang, Y.L.; Yan, Q.L. Fabrication and characterization of multi-scale coated boron powders with improved combustion performance: A brief review. Def. Technol. 2024, 31, 27–40. [Google Scholar] [CrossRef]
- Pang, W.Q.; Yetter, R.A.; DeLuca, L.T.; Zarko, V.; Gany, A.; Zhang, X.H. Boron-based composite energetic materials (B-CEMs): Preparation, combustion and applications. Prog. Energy Combust. 2022, 93, 101038. [Google Scholar] [CrossRef]
- Valluri, S.K.; Schoenitz, M.; Schoenitz, E. Fluorine-containing oxidizers for metal fuels in energetic formulations. Def. Technol. 2019, 15, 1–22. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Liu, Y.; Zhao, B.; Liu, W.; Yan, Q.; Fu, X. High Calorific Values Boron Powder: Ignition and Combustion Mechanism, Surface Modification Strategies and Properties. Molecules 2023, 28, 3209. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yu, Y.; Li, Y.; Pang, S. Reagents leading to difluoramino (NF2) products. J. Fluor. Chem. 2018, 205, 35–42. [Google Scholar] [CrossRef]
- Kuo, K.K.; Young, G. Characterization of combustion behavior of newly formulated NF2-based solid propellants. Proc. Combust. Inst. 2002, 29, 2947–2954. [Google Scholar] [CrossRef]
- Li, H.; Pan, R.; Wang, W.; Zhang, L. Thermal decomposition and kinetics studies on poly(BDFAO/THF), poly(DFAMO/THF), and poly(BDFAO/DFAMO/THF). J. Therm. Anal. Calorim. 2014, 118, 189–196. [Google Scholar] [CrossRef]
- Li, H.; Pan, R.; Wang, W.; Zhang, L. Thermal Decomposition, Kinetics and Compatibility Studies of Poly(3-difluoroaminomethyl-3-methyloxetane) (PDFAMO). Propellants Explos. Pyrot. 2014, 39, 819–829. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Y.; Hao, H.; Xu, S.; Li, H.; Liu, H.; Zheng, W.; Pan, R. DFAMO/BAMO copolymer as a potential energetic binder: Thermal decomposition study. Thermochim. Acta 2018, 661, 1–6. [Google Scholar] [CrossRef]
- Zeng, C.; Wang, J.; He, G.; Huang, C.; Yang, Z.; Liu, S.; Gong, F. Enhanced water resistance and energy performance of core-shell aluminum nanoparticles via in situ grafting of energetic glycidyl azide polymer. J. Mater. Sci. 2018, 53, 12091–12102. [Google Scholar] [CrossRef]
- Xiao, F.; Liu, Z.; Liang, T.; Yang, R.; Li, J.; Luo, P. Establishing the interface layer on the aluminum surface through the self-assembly of tannic acid (TA): Improving the ignition and combustion properties of aluminum. Chem. Eng. J. 2021, 420, 130523. [Google Scholar] [CrossRef]
- Tanga, D.; Chena, S.; Liub, X.; Hea, W.; Yangc, G.; Liua, P.J.; Gozind, M.; Yana, Q.L. Controlled reactivity of metastable n-Al@Bi(IO3)3 by employment of tea polyphenols as an interfacial layer. Chem. Eng. J. 2019, 381, 122747. [Google Scholar] [CrossRef]
- Liang, L.; Guo, X.; Liao, X.; Chang, Z. Improve the interfacial adhesion, corrosion resistance and combustion properties of aluminum powder by modification of nickel and dopamine. Appl. Surf. Sci. 2020, 508, 144790. [Google Scholar] [CrossRef]
- Solomun, T.; Schimanski, A.; Sturm, H.; Illenberger, E. Efficient formation of difluoramino functionalities by direct fluorination of polyamides. Macromolecules 2005, 38, 4231–4236. [Google Scholar] [CrossRef]
- Yang, D.; Huang, S.; Ruan, M.; Li, S.; Yang, J.; Wu, Y.; Guo, W.; Zhang, L. Mussel inspired modification for aluminum oxide/silicone elastomer composites with largely improved thermal conductivity and low dielectric constant. Ind. Eng. Chem. Res. 2018, 57, 3255–3262. [Google Scholar] [CrossRef]
- He, W.; Liu, P.J.; Gong, F.; Tao, B.; Gu, J.; Yang, Z.; Yan, Q.L. Tuning the Reactivity of Metastable Intermixed Composite n-Al/PTFE by Polydopamine Interfacial Control. ACS. Appl. Mater. Interfaces 2018, 10, 32849–32858. [Google Scholar] [CrossRef] [PubMed]
- Gouget-Laemmel, C.; Yang, J.; Lodhi, M.A.; Siriwardena, A.; Aureau, D.; Boukherroub, R.; Chazalviel, J.N.; Ozanam, F.; Szunerits, S. Functionalization of Azide-Terminated Silicon Surfaces with Glycans Using Click Chemistry: XPS and FTIR Study. J. Phys. Chem. C 2013, 117, 368–375. [Google Scholar] [CrossRef]
- Yang, L.; Wang, B.; Lai, S.; Jiang, C.; Zhong, H. Enhancing Photocatalytic Degradation of Phenol through Nitrogen- and Nitrogen/Fluorine-Codoped Ti-SBA-15. RSC Adv. 2015, 5, 53299–53305. [Google Scholar] [CrossRef]
- Reshmi, S.; Ganesan, M.; Soumyamol, P.B.; Thomas, D.; Athmaja, D.V. Silicone bridged iron metallocene butadiene composite solid propellant binder: Aspects of thermal decomposition kinetics, pyrolysis and propellant burning rate. J. Energy Mater. 2019, 37, 12–28. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, Z.; Chen, L.; Liu, P.; Jia, L.; Dong, B.; Li, H.; Xu, S. A study on the decomposition pathways of HTPB and HTPE pyrolysis by mass spectrometric analysis. J. Anal. Appl. Pyrol. 2023, 170, 105929. [Google Scholar] [CrossRef]
- Xu, P.; Liu, J.; Zhang, L.; Yuan, J.; Song, M.; Liu, H. Composition of solid and gaseous primary combustion products of boron-based fuel-rich propellant. Acta Astronaut. 2021, 188, 36–48. [Google Scholar] [CrossRef]
- Pang, W.Q.; DeLuca, L.; Fan, X.Z.; Glotov, O.; Wang, K.; Qin, Z.; Zhao, F.Q. Combustion behavior of AP/HTPB/Al composite propellant containing hydroborate iron compound. Combust. Flame 2020, 220, 157–167. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Lv, J.; Li, Y.; Zheng, W.; Pan, R. Boron/Difluoroamino (B/NF2) Composites Prepared Through an Energetic Fluorinated-Centerd Surface Modification Strategy to Enhance Their Ignition and Combustion Characteristics. Nanomaterials 2024, 14, 1772. https://doi.org/10.3390/nano14221772
He J, Lv J, Li Y, Zheng W, Pan R. Boron/Difluoroamino (B/NF2) Composites Prepared Through an Energetic Fluorinated-Centerd Surface Modification Strategy to Enhance Their Ignition and Combustion Characteristics. Nanomaterials. 2024; 14(22):1772. https://doi.org/10.3390/nano14221772
Chicago/Turabian StyleHe, Junqi, Jing Lv, Yanan Li, Wenfang Zheng, and Renming Pan. 2024. "Boron/Difluoroamino (B/NF2) Composites Prepared Through an Energetic Fluorinated-Centerd Surface Modification Strategy to Enhance Their Ignition and Combustion Characteristics" Nanomaterials 14, no. 22: 1772. https://doi.org/10.3390/nano14221772
APA StyleHe, J., Lv, J., Li, Y., Zheng, W., & Pan, R. (2024). Boron/Difluoroamino (B/NF2) Composites Prepared Through an Energetic Fluorinated-Centerd Surface Modification Strategy to Enhance Their Ignition and Combustion Characteristics. Nanomaterials, 14(22), 1772. https://doi.org/10.3390/nano14221772