A Novel Method for Rapid and High-Performance SERS Substrate Fabrication by Combination of Cold Plasma and Laser Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Fabrication Processes of the SERS Substrate
2.3. Characterization Techniques for the AuNPs, Cold Plasma, Laser, and SERS Substrate
3. Results and Discussion
3.1. Effect of Cold Plasma Pre-Treatment on the Glass Surface
3.2. Effect of Laser Treatment on the Distribution of the AuNPs on the Surface
3.3. Effect of the Combination of Cold Plasma and Laser Treatment
3.3.1. Enhancement of the Raman Intensity and Consistency over a Large Area
3.3.2. Improved Reusability of the SERS Substrate
3.3.3. SERS Enhancement Factor (EF) and Sensitivity with R6G
3.4. Application of the Fabricated SERS Substrate to Detect Amoxicillin
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Raman, C.V.; Krishnan, K.S. A New Type of Secondary Radiation. Nature 1928, 121, 501–502. [Google Scholar] [CrossRef]
- Dodo, K.; Fujita, K.; Sodeoka, M. Raman Spectroscopy for Chemical Biology Research. J. Am. Chem. Soc. 2022, 144, 19651–19667. [Google Scholar] [CrossRef] [PubMed]
- Ge, K.; Hu, Y.; Li, G. Recent Progress on Solid Substrates for Surface-Enhanced Raman Spectroscopy Analysis. Biosensors 2022, 12, 941. [Google Scholar] [CrossRef] [PubMed]
- Beeram, R.; Vepa, K.R.; Soma, V.R. Recent Trends in SERS-Based Plasmonic Sensors for Disease Diagnostics, Biomolecules Detection, and Machine Learning Techniques. Biosensors 2023, 13, 328. [Google Scholar] [CrossRef] [PubMed]
- Kant, K.; Beeram, R.; González Cabaleiro, L.; Cao, Y.; Quesada-González, D.; Guo, H.; Gomez-Grana, S.; Joung, Y.; Kothadiya, S.; García-Lojo, D.; et al. Roadmap for Plasmonic Nanoparticle Sensors: Current Progress, Challenges and Future Prospects. Nanoscale Horiz. 2024; epub ahead of print. [Google Scholar] [CrossRef]
- Schlücker, S. Surface-Enhanced Raman Spectroscopy: Concepts and Chemical Applications. Angew. Chem. Int. Ed. 2014, 53, 4756–4795. [Google Scholar] [CrossRef]
- Kneipp, J.; Kneipp, H.; Kneipp, K. SERS—A single-molecule and nanoscale tool for bioanalytics. Chem. Soc. Rev. 2008, 37, 1052–1060. [Google Scholar] [CrossRef]
- Fan, M.; Andrade, G.F.S.; Brolo, A.G. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Anal. Chim. Acta 2020, 1097, 1–29. [Google Scholar] [CrossRef]
- Jiang, L.; Hassan, M.M.; Ali, S.; Li, H.; Sheng, R.; Chen, Q. Evolving trends in SERS-based techniques for food quality and safety: A review. Trends Food Sci. Technol. 2021, 112, 225–240. [Google Scholar] [CrossRef]
- Ong, T.T.X.; Blanch, E.W.; Jones, O.A.H. Surface Enhanced Raman Spectroscopy in environmental analysis, monitoring and assessment. Sci. Total Environ. 2020, 720, 137601. [Google Scholar] [CrossRef]
- Spedalieri, C.; Kneipp, J. Surface enhanced Raman scattering for probing cellular biochemistry. Nanoscale 2022, 14, 5314–5328. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Li, W.; Zhang, H.; Akhtar, M.N.; Yi, Z.; Zeng, Q.; Ma, C.; Sun, T.; Wu, P.; Ahmad, S. High sensitivity five band tunable metamaterial absorption device based on block like Dirac semimetals. Opt. Commun. 2024, 569, 130816. [Google Scholar] [CrossRef]
- Jing, J.; Liu, K.; Jiang, J.; Xu, T.; Wang, S.; Liu, T. Highly sensitive and stable probe refractometer based on configurable plasmonic resonance with nano-modified fiber core. Opto-Electron. Adv. 2023, 6, 220072. [Google Scholar] [CrossRef]
- Minin, I.V.; Minin, O.V.; Cao, Y.; Yan, B.; Wang, Z.; Luk’yanchuk, B. Photonic lenses with whispering gallery waves at Janus particles. Opto-Electron. Sci. 2022, 1, 210008. [Google Scholar] [CrossRef]
- Aldosari, F.M.M. Characterization of Labeled Gold Nanoparticles for Surface-Enhanced Raman Scattering. Molecules 2022, 27, 892. [Google Scholar] [CrossRef]
- Gunnarsson, S.B.; Bernfur, K.; Englund-Johansson, U.; Johansson, F.; Cedervall, T. Analysis of complexes formed by small gold nanoparticles in low concentration in cell culture media. PLoS ONE 2019, 14, e0218211. [Google Scholar] [CrossRef]
- Xuan, L.T.Q.; Nguyen, L.N.; Dao, N.T. Synthesis of stabilizer-free, homogeneous gold nanoparticles by cold atmospheric-pressure plasma jet and their optical sensing property. Nanotechnology 2021, 33, 105603. [Google Scholar] [CrossRef]
- Bárdos, L.; Baránková, H. Cold atmospheric plasma: Sources, processes, and applications. Thin Solid Film. 2010, 518, 6705–6713. [Google Scholar] [CrossRef]
- Turkoglu Sasmazel, H.; Alazzawi, M.; Kadim Abid Alsahib, N. Atmospheric Pressure Plasma Surface Treatment of Polymers and Influence on Cell Cultivation. Molecules 2021, 26, 1665. [Google Scholar] [CrossRef]
- Bajpai, A.; Sharma, R. Atmospheric pressure plasma jet: A complete tool for surface enhanced Raman spectroscopy substrates preparation. Vacuum 2020, 172, 109033. [Google Scholar] [CrossRef]
- Lada, Z.G.; Voyiatzis, G.A.; Aggelopoulos, C.A. A novel, green, low-cost regeneration method for surface enhanced raman scattering (SERS) solid substrates based on nanosecond pulsed cold plasma technology. Surf. Interfaces 2022, 34, 102330. [Google Scholar] [CrossRef]
- Lee, S.J.; Lee, H.; Begildayeva, T.; Yu, Y.; Theerthagiri, J.; Kim, Y.; Lee, Y.W.; Han, S.W.; Choi, M.Y. Nanogap-tailored Au nanoparticles fabricated by pulsed laser ablation for surface-enhanced Raman scattering. Biosens. Bioelectron. 2022, 197, 113766. [Google Scholar] [CrossRef] [PubMed]
- Aleknavičienė, I.; Pabrėža, E.; Talaikis, M.; Jankunec, M.; Račiukaitis, G. Low-cost SERS substrate featuring laser-ablated amorphous nanostructure. Appl. Surf. Sci. 2022, 571, 151248. [Google Scholar] [CrossRef]
- Nguyen, T.B.; Nguyen, N.A.; Ngo, G.L. A Simple and Rapid Method to Produce SERS Substrates Using Au Nanoparticles Prepared by Laser Ablation and DVD Template. J. Electron. Mater. 2020, 49, 311–317. [Google Scholar] [CrossRef]
- Paul, T.C.; Hagen, G.M.; Pinchuk, A.O.; McNear, K.L. Optimization of laser deposited silver nanoparticle substrates for surface-enhanced raman spectroscopy. Nanotechnology 2022, 33, 315703. [Google Scholar] [CrossRef] [PubMed]
- Khan, T.M.; Aslam, N.; Iqbal, A.; Abbasi, S.A.; Ali, D. Cold Plasma Jet Coupled Nanosecond Laser Ablation Scheme For Plasmonic Nanostructured Surfaces. Adv. Mater. Interfaces 2023, 10, 2300280. [Google Scholar] [CrossRef]
- Pham, T.B.; Hoang, T.H.C.; Nguyen, V.C.; Vu, D.C.; Bui, H.; Pham, V.H. Improved versatile SERS spheroid end-facet optical fiber substrate based on silver nano-dendrites directly planted with gold nanoparticles using dual-laser assisted for pesticides detection. Opt. Mater. 2022, 126, 112196. [Google Scholar] [CrossRef]
- Ujihara, M.; Dang, N.M.; Imae, T. Surface-Enhanced Resonance Raman Scattering of Rhodamine 6G in Dispersions and on Films of Confeito-Like Au Nanoparticles. Sensors 2017, 17, 2563. [Google Scholar] [CrossRef]
- Zhu, G.; Cheng, L.; Liu, G.; Zhu, L. Synthesis of Gold Nanoparticle Stabilized on Silicon Nanocrystal Containing Polymer Microspheres as Effective Surface-Enhanced Raman Scattering (SERS) Substrates. Nanomaterials 2020, 10, 1501. [Google Scholar] [CrossRef]
- Nguyen, M.C.; Ngan Luong, T.Q.; Vu, T.T.; Anh, C.T.; Dao, T.C. Synthesis of wool roll-like silver nanoflowers in an ethanol/water mixture and their application to detect traces of the fungicide carbendazim by SERS technique. RSC Adv. 2022, 12, 11583–11590. [Google Scholar] [CrossRef]
- Peng, J.; Liu, P.; Chen, Y.; Guo, Z.-H.; Liu, Y.; Yue, K. Templated synthesis of patterned gold nanoparticle assemblies for highly sensitive and reliable SERS substrates. Nano Res. 2023, 16, 5056–5064. [Google Scholar] [CrossRef]
- Le, T.Q.X.; Nguyen, L.N.; Nguyen, T.T.; Choi, E.H.; Nguyen, Q.L.; Kaushik, N.K.; Dao, N.T. Effects of cold plasma treatment on physical modification and endogenous hormone regulation in enhancing seed germination and radicle growth of mung bean. Appl. Sci. 2022, 12, 10308. [Google Scholar] [CrossRef]
- Gupta, T.T.; Ayan, H. Application of Non-Thermal Plasma on Biofilm: A Review. Appl. Sci. 2019, 9, 3548. [Google Scholar] [CrossRef]
- Learn, G.D.; Lai, E.J.; Wilson, E.J.; von Recum, H.A. Nonthermal plasma treatment of polymers modulates biological fouling but can cause material embrittlement. J. Mech. Behav. Biomed. Mater. 2021, 113, 104126. [Google Scholar] [CrossRef]
- Moritz, S.; Schmidt, A.; Sann, J.; Thoma, M.H. Surface modifications caused by cold atmospheric plasma sterilization treatment. J. Phys. D Appl. Phys. 2020, 53, 325203. [Google Scholar] [CrossRef]
- Merdalimova, A.A.; Rudakovskaya, P.G.; Ermatov, T.I.; Smirnov, A.S.; Kosolobov, S.S.; Skibina, J.S.; Demina, P.A.; Khlebtsov, B.N.; Yashchenok, A.M.; Gorin, D.A. SERS Platform Based on Hollow-Core Microstructured Optical Fiber: Technology of UV-Mediated Gold Nanoparticle Growth. Biosensors 2022, 12, 19. [Google Scholar] [CrossRef]
- Chiang, C.-Y.; Liu, T.-Y.; Su, Y.-A.; Wu, C.-H.; Cheng, Y.-W.; Cheng, H.-W.; Jeng, R.-J. Au Nanoparticles Immobilized on Honeycomb-Like Polymeric Films for Surface-Enhanced Raman Scattering (SERS) Detection. Polymers 2017, 9, 93. [Google Scholar] [CrossRef]
- Wang, J.; Qiu, C.; Mu, X.; Pang, H.; Chen, X.; Liu, D. Ultrasensitive SERS detection of rhodamine 6G and p-nitrophenol based on electrochemically roughened nano-Au film. Talanta 2020, 210, 120631. [Google Scholar] [CrossRef]
- Chen, S.; Xu, P.; Li, Y.; Xue, J.; Han, S.; Ou, W.; Li, L.; Ni, W. Rapid Seedless Synthesis of Gold Nanoplates with Microscaled Edge Length in a High Yield and Their Application in SERS. Nano-Micro Lett. 2016, 8, 328–335. [Google Scholar] [CrossRef]
- Dikmen, G. Ultrasensitive detection of amoxicillin using the plasmonic silver nanocube as SERS active substrate. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 278, 121308. [Google Scholar] [CrossRef]
- Ji, W.; Wang, L.; Qian, H.; Yao, W. Quantitative Analysis of Amoxicillin Residues in Foods by Surface-Enhanced Raman Spectroscopy. Spectrosc. Lett. 2014, 47, 451–457. [Google Scholar] [CrossRef]
Substrate Materials | Fabrication Method | Enhancement Factor (EF) Probe Molecule | Ref. |
---|---|---|---|
AuNPs/glass (Our work) | Cold plasma treatment + laser deposition | (R6G) | |
confeito-like Au NPs (100 nm)/Si | Dropping of AuNPs mixture on silicon substrate | 105 (R6G) | [28] |
AuNPs/silicon nanocrystal/Polystyrene microspheres | Reducing HAuCl4 with silicon nanocrystal containing polymer microspheres | 5.4 × 107 (4-MPy) | [29] |
Nano Au films/Si | Electrochemically roughened nano-Au film | 2.45 × 108 (R6G) | [38] |
wool roll-like Ag nanoflowers/glass | Mixed ethanol–water reaction | 2.7 × 106–5.4 × 109 (R6G) | [30] |
AuNPs absorbed on Au nanoplates/Si | Reducing HAuCl4 with ascorbic acid and cetyltrimethylammonium bromide (CTAB) | 1.7 × 107 (MPH) | [39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, T.Q.X.; Pham, T.B.; Nguyen, V.C.; Nguyen, M.T.; Nguyen, T.L.; Dao, N.T. A Novel Method for Rapid and High-Performance SERS Substrate Fabrication by Combination of Cold Plasma and Laser Treatment. Nanomaterials 2024, 14, 1689. https://doi.org/10.3390/nano14211689
Le TQX, Pham TB, Nguyen VC, Nguyen MT, Nguyen TL, Dao NT. A Novel Method for Rapid and High-Performance SERS Substrate Fabrication by Combination of Cold Plasma and Laser Treatment. Nanomaterials. 2024; 14(21):1689. https://doi.org/10.3390/nano14211689
Chicago/Turabian StyleLe, Thi Quynh Xuan, Thanh Binh Pham, Van Chuc Nguyen, Minh Thu Nguyen, Thu Loan Nguyen, and Nguyen Thuan Dao. 2024. "A Novel Method for Rapid and High-Performance SERS Substrate Fabrication by Combination of Cold Plasma and Laser Treatment" Nanomaterials 14, no. 21: 1689. https://doi.org/10.3390/nano14211689
APA StyleLe, T. Q. X., Pham, T. B., Nguyen, V. C., Nguyen, M. T., Nguyen, T. L., & Dao, N. T. (2024). A Novel Method for Rapid and High-Performance SERS Substrate Fabrication by Combination of Cold Plasma and Laser Treatment. Nanomaterials, 14(21), 1689. https://doi.org/10.3390/nano14211689