Advanced Porous Nanomaterials: Synthesis, Properties, and Applications
- Silica NanoparticlesEnhancing Slurry Stability and Surface Flatness of Silicon Wafers through Organic Amine-Catalyzed Synthesis Silica Sol (Contribution 1) [1]
- Protocrystallinity of Monodispersed Ultra-Small Templated Mesoporous Silica Nanoparticles (Contribution 2) [11]
- Upscale Synthesis of Magnetic Mesoporous Silica Nanoparticles and Application to Metal Ion Separation: Nanosafety Evaluation (Contribution 3) [22]
- Metal–Organic Frameworks (MOFs)Sodium Alginate/UiO-66-NH2 Nanocomposite for Phosphate Removal (Contribution 4) [30]
- The Complexity of Comparative Adsorption of C6 Hydrocarbons (Benzene, Cyclohexane, n-Hexane) at Metal–Organic Frameworks (Contribution 5) [48]
- Computational Screening of Metal–Organic Frameworks for Ethylene Purification from Ethane/Ethylene/Acetylene Mixture (Contribution 6) [59]
- ZeolitesEffect of Nanoporous Molecular Sieves TS-1 on Electrical Properties of Crosslinked Polyethylene Nanocomposites (Contribution 7) [72]
- Evaluation of the Hydrophilic/Hydrophobic Balance of 13X Zeolite by Adsorption of Water, Methanol, and Cyclohexane as Pure Vapors or as Mixtures (Contribution 8) [81]
- Carbon-Based NanomaterialsThe Influences of Pore Blockage by Natural Organic Matter and Pore Dimension Tuning on Pharmaceutical Adsorption onto GO-Fe3O4 (Contribution 9) [87]
- A Facile Fabrication of Ordered Mesoporous Carbons Derived from Phenolic Resin and Mesophase Pitch via a Self-Assembly Method (Contribution 10) [98]
Contribution Number | Porous Nanomaterial | Scientific Focus | Application |
---|---|---|---|
1 [1] | Silica nanoparticles | Stability of silica sol slurries for chemical mechanical polishing | Silicon wafer polishing in integrated circuit fabrication |
2 [11] | Mesoporous silica nanoparticles (MSNs) | Synthesis and crystallization behavior of ultra-small templated mesoporous silica nanoparticles | Catalysis and separation support |
3 [22] | Magnetic mesoporous silica nanoparticles | Gram-scale synthesis, functionalization, and nanosafety evaluation | Metal ion separation |
4 [30] | Metal–Organic Framework (UiO-66-NH2) | Synthesis and characterization of UiO-66-NH2 composite for phosphate adsorption | Phosphate removal from wastewater |
5 [48] | Metal–Organic Frameworks (MOFs) | Comparative adsorption of hydrocarbons (benzene, cyclohexane, n-hexane) on various MOFs | Hydrocarbon separation and adsorption |
6 [59] | Metal–Organic Frameworks (MOFs) | Computational screening of MOFs for ethylene purification from complex mixtures | Ethylene purification |
7 [2] | Zeolite (TS-1) | Influence of TS-1 on the electrical and thermal properties of crosslinked polyethylene composites | High-voltage direct current transmission systems |
8 [81] | Zeolite (13X, FAU topology) | Study of the adsorption behavior of water, methanol, and cyclohexane on 13X zeolite | Selective adsorption in vapor-phase mixtures |
9 [87] | Graphene oxide coated with magnetite (GO-Fe3O4) | Pharmaceutical adsorption influenced by natural organic matter and pore dimension tuning | Pharmaceutical wastewater treatment |
10 [98] | Ordered mesoporous carbons (OMCs) | Synthesis of ordered and disordered mesoporous carbons and their electrochemical properties | Energy storage devices (supercapacitors) |
Acknowledgments
Conflicts of Interest
References
- Xing, Y.; Wang, W.; Liu, W.; Song, Z. Enhancing Slurry Stability and Surface Flatness of Silicon Wafers through Organic Amine-Catalyzed Synthesis Silica Sol. Nanomaterials 2024, 14, 1371. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Lu, J.J.-Q. 3D Integration Technologies: An Overview. In Materials for Advanced Packaging; Lu, D., Wong, C.P., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–26. [Google Scholar] [CrossRef]
- Li, G.; Xiao, C.; Zhang, S.; Sun, R.; Wu, Y. An Experimental Investigation of Silicon Wafer Thinning by Sequentially Using Constant-Pressure Diamond Grinding and Fixed-Abrasive Chemical Mechanical Polishing. J. Mater. Process. Technol. 2022, 301, 117453. [Google Scholar] [CrossRef]
- Stöber, W.; Fink, A.; Bohn, E. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. J. Colloid Interface Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- Green, D.L.; Jayasundara, S.; Lam, Y.-F.; Harris, M.T. Chemical Reaction Kinetics Leading to the First Stober Silica Nanoparticles–NMR and SAXS Investigation. J. Non-Cryst. Solids 2003, 315, 166–179. [Google Scholar] [CrossRef]
- Malay, O.; Yilgor, I.; Menceloglu, Y.Z. Effects of Solvent on TEOS Hydrolysis Kinetics and Silica Particle Size under Basic Conditions. J. Sol-Gel Sci. Technol. 2013, 67, 351–361. [Google Scholar] [CrossRef]
- Bari, A.H.; Jundale, R.B.; Kulkarni, A.A. Understanding the Role of Solvent Properties on Reaction Kinetics for Synthesis of Silica Nanoparticles. Chem. Eng. J. 2020, 398, 125427. [Google Scholar] [CrossRef]
- Bourebrab, M.A.; Oben, D.T.; Durand, G.G.; Taylor, P.G.; Bruce, J.I.; Bassindale, A.R.; Taylor, A. Influence of the Initial Chemical Conditions on the Rational Design of Silica Particles. J. Sol-Gel Sci. Technol. 2018, 88, 430–441. [Google Scholar] [CrossRef]
- Yoshida, K. Abrasive Properties of Nano Silica Particles Prepared by a Sol–Gel Method for Polishing Silicon Wafers. J. Sol-Gel Sci. Technol. 2007, 43, 9–13. [Google Scholar] [CrossRef]
- Bae, J.-Y.; Han, M.-H.; Lee, S.-J.; Kim, E.-S.; Lee, K.; Lee, G.; Park, J.-H.; Park, J.-G. Silicon Wafer CMP Slurry Using a Hydrolysis Reaction Accelerator with an Amine Functional Group Remarkably Enhances Polishing Rate. Nanomaterials 2022, 12, 3893. [Google Scholar] [CrossRef]
- Bonneviot, L.; Albela, B.; Gao, F.; Perriat, P.; Epicier, T.; El Eter, M. Protocrystallinity of Monodispersed Ultra-Small Templated Mesoporous Silica Nanoparticles. Nanomaterials 2024, 14, 1052. [Google Scholar] [CrossRef]
- Vallet-Regí, M.; Colilla, M.; González, B. Medical Applications of Organic–Inorganic Hybrid Materials within the Field of Silica-Based Bioceramics. Chem. Soc. Rev. 2011, 40, 596–607. [Google Scholar] [CrossRef] [PubMed]
- Cotí, K.K.; Belowich, M.E.; Liong, M.; Ambrogio, M.W.; Lau, Y.A.; Khatib, H.A.; Zink, J.I.; Khashab, N.M.; Stoddart, J.F. Mechanised Nanoparticles for Drug Delivery. Nanoscale 2009, 1, 16–39. [Google Scholar] [CrossRef] [PubMed]
- Ashley, C.E.; Carnes, E.C.; Phillips, G.K.; Padilla, D.; Durfee, P.N.; Brown, P.A.; Hanna, T.N.; Liu, J.; Phillips, B.; Carter, M.B.; et al. The Targeted Delivery of Multicomponent Cargos to Cancer Cells by Nanoporous Particle-Supported Lipid Bilayers. Nat. Mater. 2011, 10, 389–397. [Google Scholar] [CrossRef]
- Self-Assembled Multicompartment Liquid Crystalline Lipid Carriers for Protein, Peptide, and Nucleic Acid Drug Delivery. Acc. Chem. Res. 2011, 44, 147–156. Available online: https://pubs-acs-org.inc.bib.cnrs.fr/doi/full/10.1021/ar100120v (accessed on 11 September 2024). [CrossRef] [PubMed]
- Fowler, C.E.; Khushalani, D.; Lebeau, B.; Mann, S. Nanoscale Materials with Mesostructured Interiors. Adv. Mater. 2001, 13, 649–652. [Google Scholar] [CrossRef]
- Sadasivan, S.; Khushalani, D.; Mann, S. Synthesis and Shape Modification of Organo-Functionalised Silica Nanoparticles with Ordered Mesostructured Interiors. J. Mater. Chem. 2003, 13, 1023–1029. [Google Scholar] [CrossRef]
- Facile Synthesis of Monodisperse Spherical MCM-48 Mesoporous Silica Nanoparticles with Controlled Particle Size. Chem. Mater. 2010, 22, 5093–5104. Available online: https://pubs-acs-org.inc.bib.cnrs.fr/doi/full/10.1021/cm1017344?casa_token=UooWp0vVWioAAAAA%3AMqpvyd47kUTL-zQDu13SgPnLQbmfMBk8XXAEuG1bqfC2WQArTdx8tGXhssiNWwDB_AWrjBWHnGlKRC4 (accessed on 11 September 2024). [CrossRef]
- El Haskouri, J.; Ortiz de Zárate, D.; Guillem, C.; Beltrán-Porter, A.; Caldés, M.; Marcos, M.D.; Beltrán-Porter, D.; Latorre, J.; Amorós, P. Hierarchical Porous Nanosized Organosilicas. Chem. Mater. 2002, 14, 4502–4504. [Google Scholar] [CrossRef]
- Qiao, Z.-A.; Zhang, L.; Guo, M.; Liu, Y.; Huo, Q. Synthesis of Mesoporous Silica Nanoparticles via Controlled Hydrolysis and Condensation of Silicon Alkoxide. Chem. Mater. 2009, 21, 3823–3829. [Google Scholar] [CrossRef]
- Möller, K.; Kobler, J.; Bein, T. Colloidal Suspensions of Mercapto-Functionalized Nanosized Mesoporous Silica. J. Mater. Chem. 2007, 17, 624–631. [Google Scholar] [CrossRef]
- Ménard, M.; Ali, L.M.A.; Vardanyan, A.; Charnay, C.; Raehm, L.; Cunin, F.; Bessière, A.; Oliviero, E.; Theodossiou, T.A.; Seisenbaeva, G.A.; et al. Upscale Synthesis of Magnetic Mesoporous Silica Nanoparticles and Application to Metal Ion Separation: Nanosafety Evaluation. Nanomaterials 2023, 13, 3155. [Google Scholar] [CrossRef] [PubMed]
- Ménard, M.; Meyer, F.; Affolter-Zbaraszczuk, C.; Rabineau, M.; Adam, A.; Ramirez, P.D.; Bégin-Colin, S.; Mertz, D. Design of Hybrid Protein-Coated Magnetic Core-Mesoporous Silica Shell Nanocomposites for MRI and Drug Release Assessed in a 3D Tumor Cell Model. Nanotechnology 2019, 30, 174001. [Google Scholar] [CrossRef] [PubMed]
- A Theranostic Nanocomposite System Based on Radial Mesoporous Silica Hybridized with Fe3O4 Nanoparticles for Targeted Magnetic Field Responsive chemotherapy of breast cancer. RSC Adv. 2018, 8, 4321–4328. Available online: https://pubs-rsc-org.inc.bib.cnrs.fr/en/content/articlehtml/2018/ra/c7ra12446e (accessed on 11 September 2024). [CrossRef]
- Nasirzadeh, K.; Nazarian, S.; Gheibi Hayat, S.M. Inorganic Nanomaterials: A Brief Overview of the Applications and Developments in Sensing and Drug Delivery. J. Appl. Biotechnol. Rep. 2016, 3, 395–402. [Google Scholar]
- Multifunctional Magnetic Mesoporous Silica Nanocomposites with Improved Sensing Performance and Effective Removal Ability toward Hg(II). Langmuir 2012, 28, 1657–1662. Available online: https://pubs-acs-org.inc.bib.cnrs.fr/doi/full/10.1021/la204494v?casa_token=JtAUypiiBuEAAAAA%3A_1VImSbQsl-LmqyH27DDz9Fq0KKSVpALDwHBxAsG2wakudt56jbXLwlFNfMaoymUKgAfA0flMSAPrXI (accessed on 11 September 2024). [CrossRef]
- Highly Chelating Stellate Mesoporous Silica Nanoparticles for Specific Iron Removal from Biological Media-ScienceDirect. J. Colloid Interface Sci. 2020, 579, 140–151. Available online: https://www-sciencedirect-com.inc.bib.cnrs.fr/science/article/pii/S0021979720307530 (accessed on 11 September 2024). [CrossRef]
- Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S.G.; Nel, A.E.; Tamanoi, F.; Zink, J.I. Multifunctional Inorganic Nanoparticles for Imaging, Targeting, and Drug Delivery. ACS Nano 2008, 2, 889–896. [Google Scholar] [CrossRef]
- Kim, J.; Kim, H.S.; Lee, N.; Kim, T.; Kim, H.; Yu, T.; Song, I.C.; Moon, W.K.; Hyeon, T. Multifunctional Uniform Nanoparticles Composed of a Magnetite Nanocrystal Core and a Mesoporous Silica Shell for Magnetic Resonance and Fluorescence Imaging and for Drug Delivery. Angew. Chem.-Int. Ed. 2008, 47, 8438–8441. [Google Scholar] [CrossRef]
- Lin, X.; Xiong, Y.; Dong, F. Sodium Alginate/UiO-66-NH2 Nanocomposite for Phosphate Removal. Nanomaterials 2024, 14, 1176. [Google Scholar] [CrossRef]
- Maharajan, T.; Ceasar, S.A.; Krishna, T.P.A.; Ignacimuthu, S. Management of Phosphorus Nutrient amid Climate Change for Sustainable Agriculture. J. Environ. Qual. 2021, 50, 1303–1324. [Google Scholar] [CrossRef]
- Zahed, M.A.; Salehi, S.; Tabari, Y.; Farraji, H.; Ataei-Kachooei, S.; Zinatizadeh, A.A.; Kamali, N.; Mahjouri, M. Phosphorus Removal and Recovery: State of the Science and Challenges. Environ. Sci. Pollut. Res. 2022, 29, 58561–58589. [Google Scholar] [CrossRef] [PubMed]
- Priya, E.; Kumar, S.; Verma, C.; Sarkar, S.; Maji, P.K. A Comprehensive Review on Technological Advances of Adsorption for Removing Nitrate and Phosphate from Waste Water. J. Water Process Eng. 2022, 49, 103159. [Google Scholar] [CrossRef]
- Wang, X.; Dou, L.; Li, Z.; Yang, L.; Yu, J.; Ding, B. Flexible Hierarchical ZrO2 Nanoparticle-Embedded SiO2 Nanofibrous Membrane as a Versatile Tool for Efficient Removal of Phosphate. ACS Appl. Mater. Interfaces 2016, 8, 34668–34676. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Liang, C.; Yu, J.; Zhang, Q.; Song, M.; Chen, F. Preferable Phosphate Sequestration by Nano-La(III) (Hydr)Oxides Modified Wheat Straw with Excellent Properties in Regeneration. Chem. Eng. J. 2017, 315, 345–354. [Google Scholar] [CrossRef]
- Liu, X.; Shen, F.; Smith, R.L.; Qi, X. Black Liquor-Derived Calcium-Activated Biochar for Recovery of Phosphate from Aqueous Solutions. Bioresour. Technol. 2019, 294, 122198. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Xie, Y.; Lu, H.; Xin, Y.; Altaf, R.; Zhu, S.; Liu, D. Facile Preparation of Dual La-Zr Modified Magnetite Adsorbents for Efficient and Selective Phosphorus Recovery. Chem. Eng. J. 2021, 413, 127530. [Google Scholar] [CrossRef]
- Progress, Challenges, and Prospects of MOF-Based Adsorbents for Phosphate Recovery from Wastewater-ScienceDirect. J. Water Process Eng. 2024, 63, 105530. Available online: https://www-sciencedirect-com.inc.bib.cnrs.fr/science/article/pii/S2214714424007621 (accessed on 11 September 2024). [CrossRef]
- Modulation by Amino Acids: Toward Superior Control in the Synthesis of Zirconium Metal–Organic Frameworks-Gutov-2016. Chem.–A Eur. J.-Wiley Online Libr. 2016, 22, 13582–13587. Available online: https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/chem.201600898?casa_token=oXftQPxoUqgAAAAA:c7Ctz9A5ziFBrXfd9NbLP7orntyKCwm3e8rd4AMl0MJ-bn9pG9SUSC6b2QdAEW7KJudrDMUYq4TIfg (accessed on 11 September 2024).
- Liu, R.; Chi, L.; Wang, X.; Wang, Y.; Sui, Y.; Xie, T.; Arandiyan, H. Effective and Selective Adsorption of Phosphate from Aqueous Solution via Trivalent-Metals-Based Amino-MIL-101 MOFs. Chem. Eng. J. 2019, 357, 159–168. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, J.; Zhang, S.; Alsaedi, A.; Hayat, T.; Li, J.; Song, Y. Efficient Removal of Metal Contaminants by EDTA Modified MOF from Aqueous Solutions. J. Colloid Interface Sci. 2019, 555, 403–412. [Google Scholar] [CrossRef]
- Zhang, Q.; Sang, Z.; Li, Q.; Gong, J.; Peng, X.; Li, L.; Zhang, Z.; Zhang, B.; Li, S.; Yang, X. Facile Fabrication of La/Ca Bimetal-Organic Frameworks for Economical and Efficient Remove Phosphorus from Water. J. Mol. Liq. 2022, 356, 119024. [Google Scholar] [CrossRef]
- Shams, M.; Dehghani, M.H.; Nabizadeh, R.; Mesdaghinia, A.; Alimohammadi, M.; Najafpoor, A.A. Adsorption of Phosphorus from Aqueous Solution by Cubic Zeolitic Imidazolate Framework-8: Modeling, Mechanical Agitation versus Sonication. J. Mol. Liq. 2016, 224, 151–157. [Google Scholar] [CrossRef]
- Wang, L.; Shi, C.; Wang, L.; Pan, L.; Zhang, X.; Zou, J.-J. Rational Design, Synthesis, Adsorption Principles and Applications of Metal Oxide Adsorbents: A Review. Nanoscale 2020, 12, 4790–4815. [Google Scholar] [CrossRef] [PubMed]
- Xi, H.; Li, Q.; Yang, Y.; Zhang, J.; Guo, F.; Wang, X.; Xu, S.; Ruan, S. Highly Effective Removal of Phosphate from Complex Water Environment with Porous Zr-Bentonite Alginate Hydrogel Beads: Facile Synthesis and Adsorption Behavior Study. Appl. Clay Sci. 2021, 201, 105919. [Google Scholar] [CrossRef]
- Highly Porous Zirconium-Crosslinked Graphene Oxide/Alginate Aerogel Beads for Enhanced Phosphate Removal-ScienceDirect. Chem. Eng. J. 2019, 359, 779–789. Available online: https://www-sciencedirect-com.inc.bib.cnrs.fr/science/article/pii/S1385894718319740 (accessed on 11 September 2024). [CrossRef]
- Zhao, Y.; Gai, L.; Liu, H.; An, Q.; Xiao, Z.; Zhai, S. Network Interior and Surface Engineering of Alginate-Based Beads Using Sorption Affinity Component for Enhanced Phosphate Capture. Int. J. Biol. Macromol. 2020, 162, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Jansen, C.; Assahub, N.; Spieß, A.; Liang, J.; Schmitz, A.; Xing, S.; Gökpinar, S.; Janiak, C. The Complexity of Comparative Adsorption of C6 Hydrocarbons (Benzene, Cyclohexane, n-Hexane) at Metal–Organic Frameworks. Nanomaterials 2022, 12, 3614. [Google Scholar] [CrossRef] [PubMed]
- Potential of Metal–Organic Frameworks for Adsorptive Separation of Industrially and Environmentally Relevant Liquid Mixtures-ScienceDirect. Coord. Chem. Rev. 2018, 367, 82–126. Available online: https://www-sciencedirect-com.inc.bib.cnrs.fr/science/article/pii/S0010854517306975 (accessed on 11 September 2024). [CrossRef]
- Gelles, T.; Krishnamurthy, A.; Adebayo, B.; Rownaghi, A.; Rezaei, F. Abatement of Gaseous Volatile Organic Compounds: A Material Perspective. Catal. Today 2020, 350, 3–18. [Google Scholar] [CrossRef]
- Barea, E.; Montoro, C.R.; Navarro, J.A. Toxic Gas Removal–Metal–Organic Frameworks for the Capture and Degradation of Toxic Gases and Vapours. Chem. Soc. Rev. 2014, 43, 5419–5430. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Yang, Z.; Wang, P.; Yan, Y.; Ran, J. Adsorption Materials for Volatile Organic Compounds (VOCs) and the Key Factors for VOCs Adsorption Process: A Review. Sep. Purif. Technol. 2020, 235, 116213. [Google Scholar] [CrossRef]
- Yang, C.; Miao, G.; Pi, Y.; Xia, Q.; Wu, J.; Li, Z.; Xiao, J. Abatement of Various Types of VOCs by Adsorption/Catalytic Oxidation: A Review. Chem. Eng. J. 2019, 370, 1128–1153. [Google Scholar] [CrossRef]
- Sun, X.; Wu, T.; Yan, Z.; Chen, W.-J.; Lian, X.-B.; Xia, Q.; Chen, S.; Wu, Q.-H. Novel MOF-5 Derived Porous Carbons as Excellent Adsorption Materials for n-Hexane. J. Solid State Chem. 2019, 271, 354–360. [Google Scholar] [CrossRef]
- Bhattarai, D.P.; Pant, B.; Acharya, J.; Park, M.; Ojha, G.P. Recent Progress in Metal–Organic Framework-Derived Nanostructures in the Removal of Volatile Organic Compounds. Molecules 2021, 26, 4948. [Google Scholar] [CrossRef] [PubMed]
- Sapianik, A.A.; Kovalenko, K.A.; Samsonenko, D.G.; Barsukova, M.O.; Dybtsev, D.N.; Fedin, V.P. Exceptionally Effective Benzene/Cyclohexane Separation Using a Nitro-Decorated Metal–Organic Framework. Chem. Commun. 2020, 56, 8241–8244. [Google Scholar] [CrossRef]
- Coordinatively Unsaturated Metal Sites (Open Metal Sites) in Metal–Organic Frameworks: Design and Applications-Chemical Society Reviews (RSC Publishing). Chem. Soc. Rev. 2020, 49, 2751–2798. Available online: https://pubs-rsc-org.inc.bib.cnrs.fr/en/content/articlelanding/2020/cs/c9cs00609e (accessed on 11 September 2024). [CrossRef]
- Liu, A.; Peng, X.; Jin, Q.; Jain, S.K.; Vicent-Luna, J.M.; Calero, S.; Zhao, D. Adsorption and Diffusion of Benzene in Mg-MOF-74 with Open Metal Sites. ACS Appl. Mater. Interfaces 2019, 11, 4686–4700. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, X.; Zhou, T.; Sundmacher, K. Computational Screening of Metal-Organic Frameworks for Ethylene Purification from Ethane/Ethylene/Acetylene Mixture. Nanomaterials 2022, 12, 869. [Google Scholar] [CrossRef]
- Recent Advances in Intensified Ethylene Production—A Review. ACS Catal. 2019, 9, 8592–8621. Available online: https://pubs-acs-org.inc.bib.cnrs.fr/doi/full/10.1021/acscatal.9b02922?casa_token=awulhrYCRMkAAAAA%3AMw6DHdSzLv0OTWxh1dQCHjAyXdQDqoUy3q3Px32akCshOZS6eS16k8Vkb60YMSiQ_ZvRIWsWXUVBDLM (accessed on 11 September 2024). [CrossRef]
- Sholl, D.S.; Lively, R.P. Seven Chemical Separations to Change the World. Nature 2016, 532, 435–437. [Google Scholar] [CrossRef]
- Xiang, S.-C.; Zhang, Z.; Zhao, C.-G.; Hong, K.; Zhao, X.; Ding, D.-R.; Xie, M.-H.; Wu, C.-D.; Das, M.C.; Gill, R.; et al. Rationally Tuned Micropores within Enantiopure Metal-Organic Frameworks for Highly Selective Separation of Acetylene and Ethylene. Nat. Commun. 2011, 2, 204. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Ramirez-Cuesta, A.J.; Newby, R.; Garcia-Sakai, V.; Manuel, P.; Callear, S.K.; Campbell, S.I.; Tang, C.C.; Schröder, M. Supramolecular Binding and Separation of Hydrocarbons within a Functionalized Porous Metal–Organic Framework. Nat. Chem. 2015, 7, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Pore Chemistry and Size Control in Hybrid Porous Materials for Acetylene Capture from Ethylene. Science 2016, 353, 141–144. Available online: https://www.science.org/doi/full/10.1126/science.aaf2458?casa_token=1-uDVtZ1SuEAAAAA%3ADqKTIEdlcP9dTjCl4gI1gqFX7708-9T1w5GQm2YX3XvKTK_EgPj692AK2YMdMQhkhVcndqVXyHS8HQ (accessed on 11 September 2024). [CrossRef] [PubMed]
- Introduction of π-Complexation into Porous Aromatic Framework for Highly Selective Adsorption of Ethylene over Ethane. J. Am. Chem. Soc. 2014, 136, 8654–8660. Available online: https://pubs-acs-org.inc.bib.cnrs.fr/doi/full/10.1021/ja502119z?casa_token=g63rKkOx0wIAAAAA%3A5MjRvVk2txHP4mcbi7VfuXhsskvfA8NWvu4PNBr9c9Wb2mh4T4_oPqvsGxPXlOUxPf5ICHM520cCEuY (accessed on 11 September 2024). [CrossRef] [PubMed]
- Ethane/Ethene Separation Turned on Its Head: Selective Ethane Adsorption on the Metal−Organic Framework ZIF-7 through a Gate-Opening Mechanism. J. Am. Chem. Soc. 2010, 132, 17704–17706. Available online: https://pubs-acs-org.inc.bib.cnrs.fr/doi/full/10.1021/ja1089765?casa_token=mYUJE8kczpAAAAAA%3A-aWmUSdwkg4zzhWTCcqHMMml1Tn7e-K9aZ9s0WaSqO-21AS7s7i2kcuVIUfCV1F2S1MQQ_l2AzEyvm8 (accessed on 11 September 2024). [CrossRef]
- Liao, P.-Q.; Zhang, W.-X.; Zhang, J.-P.; Chen, X.-M. Efficient Purification of Ethene by an Ethane-Trapping Metal-Organic Framework. Nat. Commun. 2015, 6, 8697. [Google Scholar] [CrossRef]
- Boosting Ethane/Ethylene Separation within Isoreticular Ultramicroporous Metal–Organic Frameworks. J. Am. Chem. Soc. 2018, 140, 12940–12946. Available online: https://pubs-acs-org.inc.bib.cnrs.fr/doi/full/10.1021/jacs.8b07563?casa_token=bo_ldeNzwswAAAAA%3AIjWiAQNX5zGOK779v67IXflv9nxCsUVUX_F_bCwiUKi87DgF-j8WjKZQjStbJ_4DIvDI5zGnF7VXhl8 (accessed on 11 September 2024). [CrossRef]
- Chen, Y.; Qiao, Z.; Wu, H.; Lv, D.; Shi, R.; Xia, Q.; Zhou, J.; Li, Z. An Ethane-Trapping MOF PCN-250 for Highly Selective Adsorption of Ethane over Ethylene. Chem. Eng. Sci. 2018, 175, 110–117. [Google Scholar] [CrossRef]
- Hao, H.-G.; Zhao, Y.-F.; Chen, D.-M.; Yu, J.-M.; Tan, K.; Ma, S.; Chabal, Y.; Zhang, Z.-M.; Dou, J.-M.; Xiao, Z.-H.; et al. Simultaneous Trapping of C2H2 and C2H6 from a Ternary Mixture of C2H2/C2H4/C2H6 in a Robust Metal–Organic Framework for the Purification of C2H4. Angew. Chem. Int. Ed. 2018, 57, 16067–16071. [Google Scholar] [CrossRef]
- Synergistic Sorbent Separation for One-Step Ethylene Purification from a Four-Component Mixture. Science 2019, 366, 241–246. Available online: https://www.science.org/doi/full/10.1126/science.aax8666?casa_token=MtGlQFhP3QIAAAAA%3AeJ1kOcuWu1i6vp2LPMIhRzfynes2rVJ6lnaafO3vpd14hAnL-xA5CLmFy2JYzQ6nW52SWEb-JNRdwg (accessed on 11 September 2024). [CrossRef]
- Shi, L.; Zhang, C.; Xing, Z.; Kang, Y.; Han, W.; Xin, M.; Hao, C. Effect of Nanoporous Molecular Sieves TS-1 on Electrical Properties of Crosslinked Polyethylene Nanocomposites. Nanomaterials 2024, 14, 985. [Google Scholar] [CrossRef] [PubMed]
- Said, A.R.; Nawar, A.G.; Elsayed, A.E.; Abd-Allah, M.A.; Kamel, S. Enhancing Electrical, Thermal, and Mechanical Properties of HV Cross-Linked Polyethylene Insulation Using Silica Nanofillers. J. Mater. Eng Perform 2021, 30, 1796–1807. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Xiao, K. Investigation of the Electrical Properties of XLPE/SiC Nanocomposites. Polym. Test. 2016, 50, 145–151. [Google Scholar] [CrossRef]
- Kochetov, R.; Tsekmes, I.A.; Morshuis, P.H.F. Electrical Conductivity, Dielectric Response and Space Charge Dynamics of an Electroactive Polymer with and without Nanofiller Reinforcement. Smart Mater. Struct. 2015, 24, 075019. [Google Scholar] [CrossRef]
- Morshuis, P.; Jeroense, M. Space Charge Measurements on Impregnated Paper: A Review of the PEA Method and a Discussion of Results. IEEE Electr. Insul. Mag. 1997, 13, 26–35. [Google Scholar] [CrossRef]
- Mizutani, T. Space Charge Measurement Techniques and Space Charge in Polyethylene. IEEE Trans. Dielectr. Electr. Insul. 1994, 1, 923–933. [Google Scholar] [CrossRef]
- Sarathi, R.; Sahu, R.K.; Rajeshkumar, P. Understanding the Thermal, Mechanical and Electrical Properties of Epoxy Nanocomposites. Mater. Sci. Eng. A 2007, 445–446, 567–578. [Google Scholar] [CrossRef]
- Thelakkadan, A.S.; Coletti, G.; Guastavino, F.; Fina, A. Effect of the Nature of Clay on the Thermo-Mechanodynamical and Electrical Properties of Epoxy/Clay Nanocomposites. Polym. Compos. 2011, 32, 1499–1504. [Google Scholar] [CrossRef]
- Roy, M.; Nelson, J.K.; MacCrone, R.K.; Schadler, L.S. Candidate Mechanisms Controlling the Electrical Characteristics of Silica/XLPE Nanodielectrics. J. Mater. Sci. 2007, 42, 3789–3799. [Google Scholar] [CrossRef]
- Saidi, M.; Bihl, F.; Gimello, O.; Louis, B.; Roger, A.-C.; Trens, P.; Salles, F. Evaluation of the Hydrophilic/Hydrophobic Balance of 13X Zeolite by Adsorption of Water, Methanol, and Cyclohexane as Pure Vapors or as Mixtures. Nanomaterials 2024, 14, 213. [Google Scholar] [CrossRef]
- Liu, L.; Tan, S.J.; Horikawa, T.; Do, D.D.; Nicholson, D.; Liu, J. Water Adsorption on Carbon—A Review. Adv. Colloid Interface Sci. 2017, 250, 64–78. [Google Scholar] [CrossRef] [PubMed]
- Peralta, R.A.; Alcántar-Vázquez, B.; Sánchez-Serratos, M.; González-Zamora, E.; Ibarra, I.A. Carbon Dioxide Capture in the Presence of Water Vapour in InOF-1. Inorg. Chem. Front. 2015, 2, 898–903. [Google Scholar] [CrossRef]
- Álvarez, J.R.; Peralta, R.A.; Balmaseda, J.; González-Zamora, E.; Ibarra, I.A. Water Adsorption Properties of a Sc(III) Porous Coordination Polymer for CO2 Capture Applications. Inorg. Chem. Front. 2015, 2, 1080–1084. [Google Scholar] [CrossRef]
- Adsorption of Water in Zeolite Sodium-Faujasite: A Molecular Simulation Study-ScienceDirect. Comptes Rendus Chim. 2005, 8, 485–490. Available online: https://www-sciencedirect-com.inc.bib.cnrs.fr/science/article/pii/S1631074804003224 (accessed on 11 September 2024). [CrossRef]
- Baerlocher, C.; McCusker, L.B.; Olson, D.H. Atlas of Zeolite Framework Types; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- He, M.-C.; Lin, S.-J.; Huang, T.-C.; Chen, G.-F.; Peng, Y.-P.; Chen, W.-H. The Influences of Pore Blockage by Natural Organic Matter and Pore Dimension Tuning on Pharmaceutical Adsorption onto GO-Fe3O4. Nanomaterials 2023, 13, 2063. [Google Scholar] [CrossRef]
- Morin-Crini, N.; Lichtfouse, E.; Fourmentin, M.; Ribeiro, A.R.L.; Noutsopoulos, C.; Mapelli, F.; Fenyvesi, É.; Vieira, M.G.A.; Picos-Corrales, L.A.; Moreno-Piraján, J.C.; et al. Removal of Emerging Contaminants from Wastewater Using Advanced Treatments. A Review. Environ. Chem. Lett. 2022, 20, 1333–1375. [Google Scholar] [CrossRef]
- Monitoring of 1300 Organic Micro-Pollutants in Surface Waters from Tianjin, North China-ScienceDirect. Chemosphere 2015, 122, 125–130. Available online: https://www-sciencedirect-com.inc.bib.cnrs.fr/science/article/pii/S0045653514013435 (accessed on 12 September 2024). [CrossRef]
- Emerging Investigators Series: Occurrence and Fate of Emerging Organic Contaminants in Wastewater Treatment Plants with an Enhanced Nitrification step. Environ. Sci. Water Res. Technol. 2018, 4, 1412–1426. Available online: https://pubs-rsc-org.inc.bib.cnrs.fr/en/content/articlehtml/2017/sc/c8ew00278a?casa_token=ZAXp6RUcdhAAAAAA:Qo5KaGgB4TfJzU5Eb5Bgwl69XQSigqQJV0-EUqyseL7lgALgHZv4PDm0-8yJen36RBDypyfJjW4kSeY (accessed on 12 September 2024). [CrossRef]
- Alessandretti, I.; Rigueto, C.V.T.; Nazari, M.T.; Rosseto, M.; Dettmer, A. Removal of Diclofenac from Wastewater: A Comprehensive Review of Detection, Characteristics and Tertiary Treatment Techniques. J. Environ. Chem. Eng. 2021, 9, 106743. [Google Scholar] [CrossRef]
- Jiang, X.; Shen, Y.; Wang, H.; Wang, C.; Ye, X.; Xiang, Z. Determination of Kaurenoic Acid in Rat Plasma Using UPLC-MS/MS and Its Application to a Pharmacokinetic Study. J. Pharm. Biomed. Anal. 2019, 164, 27–31. [Google Scholar] [CrossRef]
- Guo, Y.; Guo, Z.; Zhang, L.; Yoshimura, C.; Ye, Z.; Yu, P.; Qian, Y.; Hatano, Y.; Wang, J.; Niu, J. Photodegradation of Propranolol in Surface Waters: An Important Role of Carbonate Radical and Enhancing Toxicity Phenomenon. Chemosphere 2022, 297, 134106. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Yao, Z.; Ji, W.; Liu, D.; Zhang, H.; Li, A.; Huo, Z.; Zhou, Q. An Efficient Resin for Solid-Phase Extraction and Determination by UPLCMS/MS of 44 Pharmaceutical Personal Care Products in Environmental Waters. Front. Environ. Sci. Eng. 2020, 14, 51. [Google Scholar] [CrossRef]
- Li, C.-M.; Chen, C.-H.; Chen, W.-H. Different Influences of Nanopore Dimension and pH between Chlorpheniramine Adsorptions on Graphene Oxide-Iron Oxide Suspension and Particle. Chem. Eng. J. 2017, 307, 447–455. [Google Scholar] [CrossRef]
- Lin, C.-H.; Li, C.-M.; Chen, C.-H.; Chen, W.-H. Removal of Chlorpheniramine and Variations of Nitrosamine Formation Potentials in Municipal Wastewaters by Adsorption onto the GO-Fe3O4. Environ. Sci. Pollut. Res. 2019, 26, 20701–20711. [Google Scholar] [CrossRef]
- Chen, W.-H.; Wong, Y.-T.; Huang, T.-H.; Chen, W.-H.; Lin, J.-G. Removals of Pharmaceuticals in Municipal Wastewater Using a Staged Anaerobic Fluidized Membrane Bioreactor. Int. Biodeterior. Biodegrad. 2019, 140, 29–36. [Google Scholar] [CrossRef]
- Yang, J.-Y.; Ko, T.H.; Kuk, Y.-S.; Seo, M.-K.; Kim, B.-S. A Facile Fabrication of Ordered Mesoporous Carbons Derived from Phenolic Resin and Mesophase Pitch via a Self-Assembly Method. Nanomaterials 2022, 12, 2686. [Google Scholar] [CrossRef]
- Portet, C.; Yushin, G.; Gogotsi, Y. Electrochemical Performance of Carbon Onions, Nanodiamonds, Carbon Black and Multiwalled Nanotubes in Electrical Double Layer Capacitors. Carbon 2007, 45, 2511–2518. [Google Scholar] [CrossRef]
- Wei, Y.-Z.; Fang, B.; Iwasa, S.; Kumagai, M. A Novel Electrode Material for Electric Double-Layer Capacitors. J. Power Sources 2005, 141, 386–391. [Google Scholar] [CrossRef]
- Modified Carbon Materials for High-Rate EDLCs Application-ScienceDirect. J. Power Sources 2006, 155, 487–491. Available online: https://www-sciencedirect-com.inc.bib.cnrs.fr/science/article/pii/S0378775305006774 (accessed on 12 September 2024). [CrossRef]
- Wang, C.-H.; Zhang, D.-W.; Liu, S.; Yamauchi, Y.; Zhang, F.-B.; Kaneti, Y.V. Ultrathin Nanosheet-Assembled Nickel-Based Metal–Organic Framework Microflowers for Supercapacitor Applications. Chem. Commun. 2022, 58, 1009–1012. [Google Scholar] [CrossRef]
- Tanahashi, I.; Yoshida, A.; Nishino, A. Electrochemical Characterization of Activated Carbon-Fiber Cloth Polarizable Electrodes for Electric Double-Layer Capacitors. J. Electrochem. Soc. 1990, 137, 3052. [Google Scholar] [CrossRef]
- FeSe and Fe3Se4 Encapsulated in Mesoporous Carbon for Flexible Solid-State Supercapacitor-ScienceDirect. Chem. Eng. J. 2022, 442, 136362. Available online: https://www-sciencedirect-com.inc.bib.cnrs.fr/science/article/pii/S1385894722018575 (accessed on 12 September 2024). [CrossRef]
- Taer, E.; Apriwandi, A.; Dalimunthe, B.K.L.; Taslim, R. A Rod-like Mesoporous Carbon Derived from Agro-Industrial Cassava Petiole Waste for Supercapacitor Application. J. Chem. Technol. Biotechnol. 2021, 96, 662–671. [Google Scholar] [CrossRef]
- Yang, J.-Y.; Park, J.-H.; Kuk, Y.-S.; Kim, B.-S.; Seo, M.-K. One-Step Densification of Carbon/Carbon Composites Impregnated with Pyrolysis Fuel Oil-Derived Mesophase Binder Pitches. C 2020, 6, 5. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guari, Y. Advanced Porous Nanomaterials: Synthesis, Properties, and Applications. Nanomaterials 2024, 14, 1602. https://doi.org/10.3390/nano14191602
Guari Y. Advanced Porous Nanomaterials: Synthesis, Properties, and Applications. Nanomaterials. 2024; 14(19):1602. https://doi.org/10.3390/nano14191602
Chicago/Turabian StyleGuari, Yannick. 2024. "Advanced Porous Nanomaterials: Synthesis, Properties, and Applications" Nanomaterials 14, no. 19: 1602. https://doi.org/10.3390/nano14191602
APA StyleGuari, Y. (2024). Advanced Porous Nanomaterials: Synthesis, Properties, and Applications. Nanomaterials, 14(19), 1602. https://doi.org/10.3390/nano14191602