Tuning the Charge Transfer in MWCNTs via the Incorporation of ZnONPs and AgNPs: The Role of Carbon Binding with ZnO/Ag Heterostructures in Reactive Species Formation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Synthesis of MWCNT/ZnO
2.3. Synthesis of AgNPs on MWCNT/ZnO Heterostructure
2.4. Physical and Chemical Characterization
2.5. Evaluation of the Reactive Species Generation
3. Results and Discussion
3.1. Formation of MWCNT/ZnO/Ag Heterostructure
3.2. Charge Transfer Process in AgNPs on MWCNT/ZnO Heterostructure
3.3. The Chemical Nature of AgNPs on MWCNT/ZnO Heterostructure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andhari, S.S.; Wavhale, R.D.; Dhobale, K.D.; Tawade, B.V.; Chate, G.P.; Patil, Y.N.; Khandare, J.J.; Banerjee, S.S. Self-Propelling Targeted Magneto-Nanobots for Deep Tumor Penetration and pH-Responsive Intracellular Drug Delivery. Sci. Rep. 2020, 10, 4703. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Mendoza, J.J.; Sánchez-Ramírez, B.; Cigarroa-Mayorga, O.E.; Orrantia-Borunda, E.; Talamás-Rohana, P. Noncytotoxic Carbon Nanotubes Bioconjugated with Fucosyltransferase 4-Derived Peptides Modulate Macrophage Polarization In Vitro. BioNanoScience 2024, 14, 299–317. [Google Scholar] [CrossRef]
- Korobeynikov, S.M.; Ridel, A.V.; Karpov, D.I. Electrical Properties of Transformer Oil with the Addition of Extremely Low Concentrations of Carbon Nanotubes. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 1643–1651. [Google Scholar] [CrossRef]
- Babu, Y.S.; Hussain, S.A.; Prasad, B.D. Wear Behaviour and Hardness of CNT Reinforced Alumina Composites. In Intelligent Manufacturing and Energy Sustainability; Talpa Sai, P.H.V.S., Potnuru, S., Avcar, M., Ranjan Kar, V., Eds.; ICIMES 2023; Smart Innovation, Systems and Technologies, 372; Springer: Singapore, 2024. [Google Scholar] [CrossRef]
- Sapra, G.; Kumar, P.; Kumar, N.; Vig, R.; Sharma, M. Effect of processing conditions on the electrical resistance of MWCNT/epoxy nanocomposite based strain sensors. J. Mater. Sci. Mater. Electron. 2018, 29, 19264–19277. [Google Scholar] [CrossRef]
- Helal, A.I.; Vshivkov, S.A.; Zaki, M.F.; Elkalashy, S.I.; Soliman, T.S. Effect of carbon nano tube in the structural and physical properties of polyvinyl chloride films. Phys. Scr. 2021, 96, 085804. [Google Scholar] [CrossRef]
- Kala, K.; Kumar, U.; Devi, K.Y.; Kapali, B.S.C.; Devi, N.B. Optical biosensor manufacturing for Chronic Lymphocytic Leukemia biomarker detection with -walled carbon nano tubes-based multi electrodes. Surfaces Interfaces 2023, 42 Pt A, 103371. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, Y.; Jin, W.; Hu, Y.; Cui, Y. Carbon Nanotube Field-Effect Transistor-Based Chemical and Biological Sensors. Sensors 2021, 21, 995. [Google Scholar] [CrossRef]
- Fahd, A.; Baranovsky, A.; Dubois, C.; Chaouki, J.; Elbasuney, S.; Shokry, S. Thrust characteristics of nano-carbon/Al/oxygenated salt nanothermites for micro-energetic applications. Def. Technol. 2023, 30, 55–69. [Google Scholar] [CrossRef]
- Rajamohan, N.; Bosu, S.; Rajasimman, M.; Varjani, S. Environmental remediation of selenium using surface modified carbon nano tubes—Characterization, influence of variables, equilibrium and kinetic analysis. Environ. Res. 2023, 216 Pt 2, 114629. [Google Scholar] [CrossRef]
- Pethaperumal, S.; Mohanraj, G.T.; Kumar, P.S. Characterization of MWCNT and SWCNT functionalized by acid treatments and the effect of functionalized carbon nanotubes on electrical properties of PMMA-MWCNT and PMMA-SWCNT nanocomposites. Appl. Nanosci. 2023, 13, 4167–4176. [Google Scholar] [CrossRef]
- Ali, A.J.; Eddin, B.E.; Chaichan, M.T. An investigation of effect of hematocrit on thermal conductivity of a bio-nanofluid (MWCNT or SWCNT with blood). Therm. Sci. Eng. Prog. 2021, 25, 100985. [Google Scholar] [CrossRef]
- Ibrahim, M.; Khan, M.I. Mathematical modeling and analysis of SWCNT-Water and MWCNT-Water flow over a stretchable sheet. Comput. Methods Programs Biomed. 2020, 187, 105222. [Google Scholar] [CrossRef]
- Babitha; Madhura, K.R.; Makinde, O.D. Computational study on heat transfer and MHD-electrified flow of fractional Maxwell nanofluids suspended with SWCNT and MWCNT. Heat Transf. 2021, 50, 5813–5834. [Google Scholar] [CrossRef]
- Öner, D.; Ghosh, M.; Bové, H.; Moisse, M.; Boeckx, B.; Duca, R.-C.; Poels, K.; Luyts, K.; Putzeys, E.; Van Landuydt, K.; et al. Differences in MWCNT- and SWCNT-induced DNA methylation alterations in association with the nuclear deposition. Part. Fibre Toxicol. 2018, 15, 11. [Google Scholar] [CrossRef]
- Sánchez, D.; Sánchez, D.; Toniolo, F.S.; Toniolo, F.S.; Schmal, M.; Schmal, M. The Performance of Cu and Ce Oxides Nanoparticles on Functionalized MWCNTs Walls for the CO Preferential Oxidation. Catal. Lett. 2024, 154, 1907–1918. [Google Scholar] [CrossRef]
- Novais, G.B.; Dias, M.A.; Santana, A.A.; Batista, T.C.; Marques, M.N.; Melo, C.R.; Albuquerque, R.L.; Gomes, M.Z.; Severino, P.; Souto, E.B.; et al. Isoflavones-functionalized single-walled and multi-walled carbon nanotubes: Synthesis and characterization of new nanoarchitetonics for biomedical uses. J. Mol. Struct. 2023, 1294 Pt 1, 136351. [Google Scholar] [CrossRef]
- Zou, Y.; Zhou, B.; Guo, W.; Sun, Z.; Lu, X.; Li, L. PLLA/(MWCNTs-ZnO)@PDA composite with NIR-light induced shape memory effect, antibacterial properties and 3D printability. Mater. Today Chem. 2024, 37, 101995. [Google Scholar] [CrossRef]
- Qu, Y.; Xie, P.; Zhou, Y.; Ding, J.; Chen, Y.; Gong, X.; Yang, J.; Peng, Q.; Qi, X. Graphitized-MWCNT/CaCu3Ti4O12 metacomposites for tunable ε′-negative and ε′-near-zero response with enhanced electromagnetic shielding. Ceram. Int. 2023, 49 Pt A, 37407–37414. [Google Scholar] [CrossRef]
- Xia, X.; Zhao, S.; Wang, J.; Du, H.; Weng, G.J. Tuning the AC electric responses of decorated PDA@MWCNT/PVDF nanocomposites. Compos. Sci. Technol. 2022, 222, 109398. [Google Scholar] [CrossRef]
- Cortés-Valadez, P.J.; Baños-López, E.; Hernández-Rodríguez, Y.M.; Cigarroa-Mayorga, O.E. Bryophyte-Bioinspired Nanoporous AAO/C/MgO Composite for Enhanced CO2 Capture: The Role of MgO. Nanomaterials 2024, 14, 658. [Google Scholar] [CrossRef]
- Deepanraj, B.; Tirth, V.; Algahtani, A.; Elsehly, E. The performance of multi-walled carbon nanotubes-based filters with acid functionalization for enhanced methylene blue removal from water resources. Alex. Eng. J. 2024, 88, 310–316. [Google Scholar] [CrossRef]
- Mohamed, S.R.; Abdul-Aziz, M.R.; Saber, S.; Khabiri, G.; Khalil, A.S. Precise engineering of Fe3O4/MWCNTs heterostructures for high-performance supercapacitors. J. Alloys Compd. 2023, 957, 170281. [Google Scholar] [CrossRef]
- Han, K.H.; Kim, S.-G.; Kim, J.-H.; Song, S.; Yu, H.-Y. Charge transfer mechanism for realization of double negative differential transconductance. npj 2D Mater. Appl. 2024, 8, 15. [Google Scholar] [CrossRef]
- Ramos-Álvarez, D.; Hernández-Rodríguez, Y.; Vega-Gómez, J.; Cigarroa-Mayorga, O. Influence of copper support on the charge transfer enhancement of zinc oxide nanoflakes. Mater. Lett. 2023, 349, 134875. [Google Scholar] [CrossRef]
- Wú, W.; Luo, Z.; Yao, D.-X.; Wang, M. Superexchange and charge transfer in the nickelate superconductor La3Ni2O7 under pressure. Sci. China Phys. Mech. Astron. 2024, 67, 117402. [Google Scholar] [CrossRef]
- Brzhezinskaya, M.M.; Vinogradov, N.A.; Zimina, A.; Muradyan, V.E.; Shul’ga, Y.M.; Vinogradov, A.S. Characterization of fluorinated multiwalled carbon nanotubes with X-ray absorption, photoelectron and emission spectroscopies. Appl. Phys. A 2009, 94, 445–448. [Google Scholar] [CrossRef]
- Krestinin, A.V.; Kharitonov, A.P.; Shul’ga, Y.M.; Zhigalina, O.M.; Knerel’man, E.I.; Dubois, M.; Brzhezinskaya, M.M.; Vinogradov, A.S.; Preobrazhenskii, A.B.; Zvereva, G.I.; et al. Fabrication and characterization of fluorinated single-walled carbon nanotubes. Nanotechnologies Russ. 2009, 4, 60–78. [Google Scholar] [CrossRef]
- Ali Al-Asbahi, B. Tailoring Optoelectronic Properties of ZnO Nanoparticles via Incorporation of Multiwalled Carbon Nanotube Contents on of ZnO/MWCNT Nanocomposites. ECS J. Solid State Sci. Technol. 2023, 12, 121002. [Google Scholar] [CrossRef]
- Manikandan, V.; Athithya, S.; Harish, S.; Archana, J.; Navaneethan, M. Solution-processed UV–visible photodetector based on Ag enfold g-C3N4 nanosheets with MWCNT nanotube hybrid nanostructure. Opt. Mater. 2022, 134 Pt B, 113086. [Google Scholar] [CrossRef]
- Cigarroa-Mayorga, O.E.; Talamás-Rohana, P.; Gallardo-Hernández, S. Transmission Electron Microscopy Study on the Process of Gold Nanoporous Film Formation on AAO Substrate by Thermal Treatment. Microsc. Microanal. 2023, 29 (Suppl. 1), 821–822. [Google Scholar] [CrossRef]
- Yao, L.; Chen, Q. Chapter 10—Machine learning in nanomaterial electron microscopy data analysis. In Materials Today, Intelligent Nanotechnology; Zheng, Y., Wu, Z., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 279–305. [Google Scholar]
- Kononenko, O.; Brzhezinskaya, M.; Zotov, A.; Korepanov, V.; Levashov, V.; Matveev, V.; Roshchupkin, D. Influence of numerous Moir?e superlattices on transport properties of twisted multilayer graphene. Carbon 2022, 194, 52–61. [Google Scholar] [CrossRef]
- Rojas-Chávez, H.; Cruz-Martínez, H.; Montejo-Alvaro, F.; Farías, R.; Hernández-Rodríguez, Y.; Guillen-Cervantes, A.; Ávila-García, A.; Cayetano-Castro, N.; Medina, D.; Cigarroa-Mayorga, O. The formation of ZnO structures using thermal oxidation: How a previous chemical etching favors either needle-like or cross-linked structures. Mater. Sci. Semicond. Process. 2020, 108, 104888. [Google Scholar] [CrossRef]
- Khalatbary, M.; Hossein Sayadi, M.; Hajiani, M.; Nowrouzi, M.; Homaeigohar, S. Sustainable Synthesis of γ-Fe2O3/MWCNT/Ag Nano-Composites Using the Viscum album Leaf Extract and Waste Car Tire for Removal of Sulfame-thazine and Bacteria from Wastewater Streams. Nanomaterials 2022, 12, 2798. [Google Scholar] [CrossRef] [PubMed]
- Almansob, A.; Bahkali, A.H.; Albarrag, A.; Alshomrani, M.; Binjomah, A.; Hailan, W.A.; Ameen, F. Effective treatment of resistant opportunistic fungi associated with immuno-compromised individuals using silver biosynthesized nanoparticles. Appl. Nanosci. 2022, 12, 3871–3882. [Google Scholar] [CrossRef]
- Ansari, S.; Ansari, M.S.; Satsangee, S.P.; Jain, R. Bi2O3/ZnO nanocomposite: Synthesis, characterizations and its application in electrochemical detection of balofloxacin as an anti-biotic drug. J. Pharm. Anal. 2020, 11, 57–67. [Google Scholar] [CrossRef]
- Alzate, M.; Gamba, O.; Daza, C.; Santamaria, A.; Gallego, J. Iron/multiwalled carbon nanotube (Fe/MWCNT) hybrid materials characterization: Thermogravimetric analysis as a powerful characterization technique. J. Therm. Anal. Calorim. 2022, 147, 12355–12363. [Google Scholar] [CrossRef]
- Cigarroa-Mayorga, O. Enhancement of photocatalytic activity in ZnO NWs array due to Fe2O3 NPs electrodeposited on the nanowires surface: The role of ZnO-Fe2O3 interface. Mater. Today Commun. 2022, 33, 104879. [Google Scholar] [CrossRef]
- Su, Y.; Ding, H.; Sun, M.; Liu, X.; Dai, C.; Li, Y.; Xu, G.; Zeng, C. Construction of BiOIO3/AgIO3 Z-Scheme Photocatalysts for the Efficient Removal of Persistent Organic Pollutants under Natural Sunlight Illumination. Langmuir 2022, 38–51, 16163–16171. [Google Scholar] [CrossRef] [PubMed]
- Yaou Balarabe, B.; Maity, P. Visible light-driven complete photocatalytic oxidation of organic dye by plasmonic Au-TiO2 nanocatalyst under batch and continuous flow condition. Colloids Surf. A Physicochem. Eng. Asp. 2022, 655, 130247. [Google Scholar] [CrossRef]
- Kou, H.; Jia, L.; Wang, C. Electrochemical deposition of flower-like ZnO nanoparticles on a silver-modified carbon nanotube/polyimide membrane to improve its photoelectric activity and photocatalytic performance. Carbon 2012, 50, 3522–3529. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, C.; Zhan, Y.; Lin, X.; Zheng, Q.; Wei, K.; Zhu, J. Photocatalytic Activity of Ag/ZnO Heterostructure Nano-catalyst: Correlation between Structure and Property. J. Phys. Chem. C 2008, 112–129, 10773–10777. [Google Scholar] [CrossRef]
- Lu, W.; Liu, G.; Gao, S.; Xing, S.; Wang, J. Tyrosine-assisted preparation of Ag/ZnO nanocomposites with enhanced photocatalytic performance and synergistic antibacterial activities. Nanotechnology 2008, 19, 445711. [Google Scholar] [CrossRef] [PubMed]
- Alex, K.V.; Pavai, P.T.; Rugmini, R.; Shiva Prasad, M.; Kamakshi, K.; Chandra Sekhar, K. Green Synthesized Ag Nano-particles for Bio-Sensing and Photocatalytic Applications. ACS Omega 2020, 5–22, 13123–13129. [Google Scholar] [CrossRef] [PubMed]
- Sobaszek, M.; Brzhezinskaya, M.; Olejnik, A.; Mortet, V.; Alam, M.; Sawczak, M.; Ficek, M.; Gazda, M.; Weiss, Z.; Bogdanowicz, R. Highly Occupied Surface States at Deuterium-Grown Boron-Doped Diamond Interfaces for Efficient Photoelectrochemistry. Small 2023, 19, e2208265. [Google Scholar] [CrossRef] [PubMed]
- Brzhezinskaya, M.; Mishakov, I.V.; Bauman, Y.I.; Shubin, Y.V.; Maksimova, T.A.; Stoyanovskii, V.O.; Gerasimov, E.Y.; Vedyagin, A.A. One-pot functionalization of catalytically derived carbon nanostructures with heteroatoms for toxic-free environment. Appl. Surf. Sci. 2022, 590, 153055. [Google Scholar] [CrossRef]
- Rabchinskii, M.K.; Sysoev, V.V.; Brzhezinskaya, M.; Solomatin, M.A.; Gabrelian, V.S.; Kirilenko, D.A.; Stolyarova, D.Y.; Saveliev, S.D.; Shvidchenko, A.V.; Cherviakova, P.D.; et al. Rationalizing Graphene–ZnO Composites for Gas Sensing via Functionalization with Amines. Nanomaterials 2024, 14, 735. [Google Scholar] [CrossRef] [PubMed]
- Brzhezinskaya, M.; Belenkov, E.; Greshnyakov, V.; Yalovega, G.; Bashkin, I. New aspects in the study of carbon-hydrogen interaction in hydrogenated carbon nanotubes for energy storage applications. J. Alloys Compd. 2019, 792, 713–720. [Google Scholar] [CrossRef]
- Bikiaris, D.; Vassiliou, A.; Chrissafis, K.; Paraskevopoulos, K.; Jannakoudakis, A.; Docoslis, A. Effect of acid treated multi-walled carbon nanotubes on the mechanical, permeability, thermal properties and thermo-oxidative stability of isotactic polypropylene. Polym. Degrad. Stab. 2008, 93, 952–967. [Google Scholar] [CrossRef]
- Castro, C.A.; Osorio, P.; Sienkiewicz, A.; Pulgarin, C.; Centeno, A.; Giraldo, S.A. Photocatalytic production of 1O2 and OH mediated by silver oxidation during the photoinactivation of Escherichia coli with TiO2. J. Hazard. Mater. 2012, 211–212, 172–181. [Google Scholar] [CrossRef]
- Al-Sarraj, A.; Saoud, K.M.; Elmel, A.; Mansour, S.; Haik, Y. Optoelectronic properties of highly porous silver oxide thin film. SN Appl. Sci. 2021, 3, 15. [Google Scholar] [CrossRef]
- Aranda, A.; Landers, R.; Carnelli, P.; Candal, R.; Alarcón, H.; Rodríguez, J. Influence of silver electrochemically deposited onto zinc oxide seed nanoparticles on the photoelectrochemical performance of zinc oxide nanorod films. Nanomater. Nanotechnol. 2019, 9, 1847980419844363. [Google Scholar] [CrossRef]
Sample | MB Degradation (%) | k |
---|---|---|
MWCNT | 18.5 | 0.0013 |
MWCNT/Ag | 30.96 | 0.0020 |
MWCNT/ZnO | 46.2 | 0.0034 |
Ag/MWCNT/ZnO/Ag | 61.80 | 0.0053 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gamiño-Barocio, I.; Vázquez-Vázquez, E.F.; Hernández-Rodríguez, Y.M.; Cigarroa-Mayorga, O.E. Tuning the Charge Transfer in MWCNTs via the Incorporation of ZnONPs and AgNPs: The Role of Carbon Binding with ZnO/Ag Heterostructures in Reactive Species Formation. Nanomaterials 2024, 14, 1517. https://doi.org/10.3390/nano14181517
Gamiño-Barocio I, Vázquez-Vázquez EF, Hernández-Rodríguez YM, Cigarroa-Mayorga OE. Tuning the Charge Transfer in MWCNTs via the Incorporation of ZnONPs and AgNPs: The Role of Carbon Binding with ZnO/Ag Heterostructures in Reactive Species Formation. Nanomaterials. 2024; 14(18):1517. https://doi.org/10.3390/nano14181517
Chicago/Turabian StyleGamiño-Barocio, Ismael, Eric Fernando Vázquez-Vázquez, Yazmín Mariela Hernández-Rodríguez, and Oscar Eduardo Cigarroa-Mayorga. 2024. "Tuning the Charge Transfer in MWCNTs via the Incorporation of ZnONPs and AgNPs: The Role of Carbon Binding with ZnO/Ag Heterostructures in Reactive Species Formation" Nanomaterials 14, no. 18: 1517. https://doi.org/10.3390/nano14181517
APA StyleGamiño-Barocio, I., Vázquez-Vázquez, E. F., Hernández-Rodríguez, Y. M., & Cigarroa-Mayorga, O. E. (2024). Tuning the Charge Transfer in MWCNTs via the Incorporation of ZnONPs and AgNPs: The Role of Carbon Binding with ZnO/Ag Heterostructures in Reactive Species Formation. Nanomaterials, 14(18), 1517. https://doi.org/10.3390/nano14181517