Hydrophilic and Hydrophobic: Modified GeO2 Aerogels by Ambient Pressure Drying
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Choice of Modifying Agent and Solvent for Gels with Different Prehistory
3.2. Characterization of Gel-1
3.3. Characterization of Gel-2
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kesserwan, F.; Ahmad, M.N.; Khalil, M.; El-Rassy, H. Hybrid CaO/Al2O3 Aerogel as Heterogeneous Catalyst for Biodiesel Production. Chem. Eng. J. 2020, 385, 123834. [Google Scholar] [CrossRef]
- Zion, N.; Cullen, D.A.; Zelenay, P.; Elbaz, L. Heat-Treated Aerogel as a Catalyst for the Oxygen Reduction Reaction. Angew. Chem.-Int. Ed. 2020, 59, 2483–2489. [Google Scholar] [CrossRef]
- Jung, S.M.; Kim, D.W.; Jung, H.Y. Unconventional Capacity Increase Kinetics of a Chemically Engineered SnO2aerogel Anode for Long-Term Stable Lithium-Ion Batteries. J. Mater. Chem. A Mater. 2020, 8, 8244–8254. [Google Scholar] [CrossRef]
- Patil, R.; Phadatare, M.; Blomquist, N.; Örtegren, J.; Hummelgård, M.; Meshram, J.; Dubal, D.; Olin, H. Highly Stable Cycling of Silicon-Nanographite Aerogel-Based Anode for Lithium-Ion Batteries. ACS Omega 2021, 6, 6600–6606. [Google Scholar] [CrossRef] [PubMed]
- Yorov, K.E.; Yapryntsev, A.D.; Baranchikov, A.E.; Khamova, T.V.; Straumal, E.A.; Lermontov, S.A.; Ivanov, V.K. Luminescent Alumina-Based Aerogels Modified with Tris(8-Hydroxyquinolinato)Aluminum. J. Solgel Sci. Technol. 2018, 86, 400–409. [Google Scholar] [CrossRef]
- Kameneva, S.V.; Yorov, K.E.; Kamilov, R.K.; Kottsov, S.Y.; Teplonogova, M.A.; Khamova, T.V.; Popkov, M.A.; Tronev, I.V.; Baranchikov, A.E.; Ivanov, V.K. Epoxide Synthesis of Binary Rare Earth Oxide Aerogels with High Molar Ratios (1:1) of Eu, Gd, and Yb. J. Solgel Sci. Technol. 2023, 107, 586–597. [Google Scholar] [CrossRef]
- García Ramírez, V.M.; García Murillo, A.; de Carrillo Romo, F.J.; Alvarez González, R.I.; Madrigal Bujaidar, E. A New Ultrafine Luminescent La2O3:Eu3+ Aerogel. Gels 2023, 9, 615. [Google Scholar] [CrossRef]
- Rao, A.V.; Zhao, S.; Pajonk, G.M.; Bangi, U.K.H.; Rao, A.P.; Koebel, M.M. Sodium Silicate-Based Aerogels by Ambient Pressure Drying. In Springer Handbook of Aerogels; Aegerter, M.A., Leventis, N., Koebel, M., Steiner, S.A., III, Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2023; pp. 393–417. [Google Scholar]
- Hüsing, N.; Schubert, U.; Misof, K.; Fratzl, P. Formation and Structure of Porous Gel Networks from Si(OMe)4 in the Presence of A(CH2)NSi(OR)3 (A = Functional Group). Chem. Mater. 1998, 10, 3024–3032. [Google Scholar] [CrossRef]
- Nah, H.Y.; Kim, Y.; Kim, T.; Lee, K.Y.; Parale, V.G.; Lim, C.H.; Seo, J.Y.; Park, H.H. Comparisonal Studies of Surface Modification Reaction Using Various Silylating Agents for Silica Aerogel. J. Solgel Sci. Technol. 2020, 96, 346–359. [Google Scholar] [CrossRef]
- Torres, R.B.; Vareda, J.P.; Lamy-Mendes, A.; Durães, L. Effect of Different Silylation Agents on the Properties of Ambient Pressure Dried and Supercritically Dried Vinyl-Modified Silica Aerogels. J. Supercrit. Fluids 2019, 147, 81–89. [Google Scholar] [CrossRef]
- Kucheyev, S.O.; Baumann, T.F.; Wang, Y.M.; Van Buuren, T.; Poco, J.F.; Satcher, J.H.; Hamza, A.V. Monolithic, High Surface Area, Three-Dimensional GeO2 Nanostructures. Appl. Phys. Lett. 2006, 88, 103117. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, G.; Chen, B.; Liu, T.; Mei, Y.; Luo, X. Monolithic Germanium Oxide Aerogel with the Building Block of Nano-Crystals. Mater. Lett. 2013, 104, 41–43. [Google Scholar] [CrossRef]
- Chen, G.; Chen, B.; Liu, T.; Mei, Y.; Ren, H.; Bi, Y.; Luo, X.; Zhang, L. The Synthesis and Characterization of Germanium Oxide Aerogel. J. Non-Cryst. Solids 2012, 358, 3322–3326. [Google Scholar] [CrossRef]
- Han, L.; Wei, Q.; Chen, H.; Tang, J.; Wei, M. Open-Framework Germanates Derived GeO2/C Nanocomposite as a Long-Life and High-Capacity Anode for Lithium-Ion Batteries. J. Alloys Compd. 2021, 881, 160533. [Google Scholar] [CrossRef]
- Vekhov, V.A.; Vitukhnovskaya, B.S.; Doronkina, R.F. Change in the State and Solubility of Germanium Dioxide in Ammonical Aqueous Solutions. Russ. J. Inorg. Chem. 1966, 11, 132–135. [Google Scholar]
- Gajtko, O.M.; Veselova, V.O.; Khvoshchevskaya, D.A.; Kottsov, S.Y. Method for Producing Aerogel Based on Amorphous Germanium Dioxide. Patent RU2796091C1, 28 December 2022. [Google Scholar]
- Iacomi, P.; Llewellyn, P.L. PyGAPS: A Python-Based Framework for Adsorption Isotherm Processing and Material Characterisation. Adsorption 2019, 25, 1533–1542. [Google Scholar] [CrossRef]
- Lobaz, V.; Rabyk, M.; Pánek, J.; Doris, E.; Nallet, F.; Štěpánek, P.; Hrubý, M. Photoluminescent Polysaccharide-Coated Germanium(IV) Oxide Nanoparticles. Colloid. Polym. Sci. 2016, 294, 1225–1235. [Google Scholar] [CrossRef]
- Adachi, T.; Sakka, S. Sintering of Silica Gel Derived from the Alkoxysilane Solution Containing N,N-Dimethylformamide. J. Non-Cryst. Solids 1988, 100, 250–253. [Google Scholar] [CrossRef]
- Mahadik, S.A.; Pedraza, F.; Parale, V.G.; Park, H.H. Organically Modified Silica Aerogel with Different Functional Silylating Agents and Effect on Their Physico-Chemical Properties. J. Non-Cryst. Solids 2016, 453, 164–171. [Google Scholar] [CrossRef]
- Venkateswara Rao, A.; Kulkarni, M.M.; Amalnerkar, D.P.; Seth, T. Surface Chemical Modification of Silica Aerogels Using Various Alkyl-Alkoxy/Chloro Silanes. Appl. Surf. Sci. 2003, 206, 262–270. [Google Scholar] [CrossRef]
- Bhagat, S.D.; Kim, Y.H.; Moon, M.J.; Ahn, Y.S.; Yeo, J.G. A Cost-Effective and Fast Synthesis of Nanoporous SiO2 Aerogel Powders Using Water-Glass via Ambient Pressure Drying Route. Solid. State Sci. 2007, 9, 628–635. [Google Scholar] [CrossRef]
- Feng, S.; Tsai, M.; Greenblatt, M. Preparation, Ionic Conductivity, and Humidity-Sensing Property of Crystalline Microporous Sodium Germanates, Na3HGe7O16.Cntdot.XH2O, x = 0–6. I. Chem. Mater. 1992, 4, 388–393. [Google Scholar] [CrossRef]
- Madon, M.; Gillet, P.; Julien, C.; Price, G.D. A Vibrational Study of Phase Transitions among the GeO2 Polymorphs. Phys. Chem. Miner. 1991, 18, 7–18. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, W.; Wang, D.; Zhong, Q. Study on the Reaction Mechanism of the Propylene Oxide Rearrangement via in Situ DRIFTS. Chem. Eng. J. 2017, 307, 1047–1054. [Google Scholar] [CrossRef]
- Yang, Z.; Yu, H.; Li, X.; Ding, H.; Ji, H. Hyperelastic and Hydrophobic Silica Aerogels with Enhanced Compressive Strength by Using VTES/MTMS as Precursors. J. Non-Cryst. Solids 2019, 525, 119677. [Google Scholar] [CrossRef]
- Kottsov, S.Y.; Shmelev, M.A.; Baranchikov, A.E.; Kiskin, M.A.; Sharipov, A.U.; Efimov, N.N.; Rubtsova, I.K.; Nikolaevskii, S.A.; Kopitsa, G.P.; Khamova, T.V.; et al. Aerogel-Based Single-Ion Magnets: A Case Study of a Cobalt(II) Complex Immobilized in Silica. Molecules 2023, 28, 418. [Google Scholar] [CrossRef]
- Rouquerol, F.; Rouquerol, J.; Sing, K.S.W.; Llewellyn, P.; Maurin, G. Adsorption by Powders and Porous Solids; Elsevier Ltd.: Oxford, UK; ISBN 9780080970356.
- Conradsson, T.; Zou, X.; Dadachov, M.S. Synthesis and Crystal Structure of a Novel Germanate: (NH4)4[(GeO2)3(GeO1.5F3)2]0.67H2O. Inorg. Chem. 2000, 39, 1716–1720. [Google Scholar] [CrossRef]
- Seguin, K.; Dallas, A.J.; Weineck, G. Rationalizing the Mechanism of HMDS Degradation in Air and Effective Control of the Reaction Byproducts. Metrol. Insp. Process Control. Microlithogr. XXII 2008, 6922, 692230. [Google Scholar] [CrossRef]
- Tan, I.H.; Da Silva, M.L.P.; Demarquette, N.R. Paper Surface Modification by Plasma Deposition of Double Layers of Organic Silicon Compounds. J. Mater. Chem. 2001, 11, 1019–1025. [Google Scholar] [CrossRef]
- Low, M.J.D.; Madison, N.; Ramamurthy, P. Infrared Spectra of Hydrogen and Water on Germania Gel Surfaces. Surf. Sci. 1969, 13, 238–250. [Google Scholar] [CrossRef]
- Low, M.J.D.; Matsushita, K. Infrared Spectra of the Surface Species Produced by Reactions of Ammonia with Germania Gel. J. Phys. Chem. 1969, 73, 908–910. [Google Scholar] [CrossRef]
- Veselova, V.O.; Khvoshchevskaya, D.A.; Golodukhina, S.V.; Kottsov, S.Y.; Gajtko, O.M. One Simple Approach to Novel Germania and Germanate Aerogels. Microporous Mesoporous Mater. 2024, 379, 113282. [Google Scholar] [CrossRef]
- Khatoon, N.; Subedi, B.; Chrisey, D.B. Synthesis of Silicon and Germanium Oxide Nanostructures via Photonic Curing; a Facile Approach to Scale Up Fabrication. ChemistryOpen 2024, 13, e202300260. [Google Scholar] [CrossRef]
- Zhao, Y.; Liang, X.; Chen, D.; Bian, X.; Liu, W.; Han, L. Denatured Proteins Show New Vitality: Green Synthesis of Germanium Oxide Hollow Microspheres with Versatile Functions by Denaturing Proteins around Bubbles. Aggregate 2023, 4, e204. [Google Scholar] [CrossRef]
- Schwertfeger, F.; Zimmerman, A.; Krempel, H. Use of Inorganic Aerogels in Pharmacy. U.S. Patent 6,280,744, 28 August 2001. [Google Scholar]
Gel-1 | Gel-2 | |
---|---|---|
Precursor | GeCl4 | GeO2 |
Germanium concentration in the gel | 0.3 mmol/mL | 0.6 mmol/mL |
Solvent | Butyl acetate | Water |
pH | Acidic | Basic |
Modifier solvent | Heptane | DMF |
Phase composition | GeO2 | (NH4)3H(Ge7O16)(H2O)x |
Modifier | SBET, m2/g | |
---|---|---|
Gel-1 | Gel-2 | |
HMDS | <10 | 106 |
MTMS | 77 | <10 |
DMCS | <10 | <10 |
Modifier Content, wt.% | |||||||
---|---|---|---|---|---|---|---|
0 (SCD) | 1 | 2.5 | 5 | 10 | 15 | ||
Gel-1 | Ge/Si | - | 0.5 | 0.2 | 0.1 | 0.05 | 0.03 |
SBET, m2/g | 180 | 24 | 62 | 89 | 77 | <10 | |
Gel-2 | Ge/Si | - | 2.3 | 0.9 | 0.5 | 0.2 | 0.15 |
SBET, m2/g | 93 | 75 | 65 | 140 | 106 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veselova, V.O.; Kottsov, S.Y.; Golodukhina, S.V.; Khvoshchevskaya, D.A.; Gajtko, O.M. Hydrophilic and Hydrophobic: Modified GeO2 Aerogels by Ambient Pressure Drying. Nanomaterials 2024, 14, 1511. https://doi.org/10.3390/nano14181511
Veselova VO, Kottsov SY, Golodukhina SV, Khvoshchevskaya DA, Gajtko OM. Hydrophilic and Hydrophobic: Modified GeO2 Aerogels by Ambient Pressure Drying. Nanomaterials. 2024; 14(18):1511. https://doi.org/10.3390/nano14181511
Chicago/Turabian StyleVeselova, Varvara O., Sergey Yu. Kottsov, Svetlana V. Golodukhina, Daria A. Khvoshchevskaya, and Olga M. Gajtko. 2024. "Hydrophilic and Hydrophobic: Modified GeO2 Aerogels by Ambient Pressure Drying" Nanomaterials 14, no. 18: 1511. https://doi.org/10.3390/nano14181511
APA StyleVeselova, V. O., Kottsov, S. Y., Golodukhina, S. V., Khvoshchevskaya, D. A., & Gajtko, O. M. (2024). Hydrophilic and Hydrophobic: Modified GeO2 Aerogels by Ambient Pressure Drying. Nanomaterials, 14(18), 1511. https://doi.org/10.3390/nano14181511