Implications of White Light-Emitting Diode-Based Photoirradiation on Green Synthesis of Silver Nanoparticles by Methanol- and Aqueous-Based Extracts of Bergenia ciliata Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of Phytochemicals from Bergenia ciliata by Maceration
2.3. Gas Chromatography-Mass Spectroscopy (GCMS) Analysis of the Extract
2.4. Optimization of Green Synthesis of Silver Nanoparticle Synthesis
2.5. Effect of White Light-Emitting Diode on the Green Synthesis of Silver Nanoparticles
2.6. Characterization of the Silver Nanoparticles
2.6.1. Percent Nanoparticle Yield and Particle Size Analysis of the Silver Nanoparticles Synthesized by the Extracts
2.6.2. Morphological Study of the Nanoparticles by Scanning Electron Microscopy
2.6.3. Elemental Analysis of the Nanoparticles by Energy-Dispersive X-ray (EDX) Spectroscopy
2.6.4. Functional Group Analysis of the Nanoparticles by Fourier Transform Infrared (FTIR) Analysis
2.6.5. X-ray Diffraction Analysis
2.6.6. Stability Studies of Nanoparticles
2.7. Statistical Analysis
3. Results
3.1. Gas Chromatography–Mass Spectroscopy (GCMS) Analysis of the Extract
3.2. Concentration-Dependent Optimization of Silver Nanoparticle Synthesis
3.3. Effect of White Light-Emitting Diode on the Green Synthesis of Silver Nanoparticles
3.4. Characterization of the Silver Nanoparticles
3.4.1. Percent Nanoparticle Yield and Particle Size Analysis of the Silver Nanoparticles Synthesized by the Leaf Extracts
3.4.2. Morphological Study of the Nanoparticles by Scanning Electron Microscopy
3.4.3. Elemental Analysis of Nanoparticles by Energy-Dispersive X-ray (EDX) Spectroscopy
3.4.4. Functional Group Identification of the Silver Nanoparticles by Fourier Transform Infrared Analysis
3.4.5. X-ray Diffraction (XRD) Analysis
3.4.6. Stability Studies of the Silver Nanoparticles
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Danai, L.; Rolband, L.A.; Perdomo, V.A.; Skelly, E.; Kim, T.; Afonin, K.A. Optical, Structural and Antibacterial Properties of Silver Nanoparticles and DNA-Templated Silver Nanoclusters. Nanomedicine 2023, 18, 769–782. [Google Scholar] [CrossRef] [PubMed]
- Riaz Ahmed, K.B.; Nagy, A.M.; Brown, R.P.; Zhang, Q.; Malghan, S.G.; Goering, P.L. Silver Nanoparticles: Significance of Physicochemical Properties and Assay Interference on the Interpretation of in Vitro Cytotoxicity Studies. Toxicol. Vitr. 2017, 38, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, Y.Y.; Huang, J.; Chen, C.Y.; Wang, Z.X.; Xie, H. Silver Nanoparticles: Synthesis, Medical Applications and Biosafety. Theranostics 2020, 10, 8996–9031. [Google Scholar] [CrossRef] [PubMed]
- Habeeb Rahuman, H.B.; Dhandapani, R.; Narayanan, S.; Palanivel, V.; Paramasivam, R.; Subbarayalu, R.; Thangavelu, S.; Muthupandian, S. Medicinal Plants Mediated the Green Synthesis of Silver Nanoparticles and Their Biomedical Applications. IET Nanobiotechnol. 2022, 16, 115–144. [Google Scholar] [CrossRef] [PubMed]
- Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of Silver Nanoparticles: Chemical, Physical and Biological Methods. Res. Pharm. Sci. 2014, 9, 385. [Google Scholar] [PubMed]
- Chutrakulwong, F.; Thamaphat, K.; Limsuwan, P. Photo-Irradiation Induced Green Synthesis of Highly Stable Silver Nanoparticles Using Durian Rind Biomass: Effects of Light Intensity, Exposure Time and pH on Silver Nanoparticles Formation. J. Phys. Commun. 2020, 4, 095015. [Google Scholar] [CrossRef]
- Dubey, R.K.; Shukla, S.; Hussain, Z. Green Synthesis of Silver Nanoparticles; A Sustainable Approach with Diverse Applications. Zhongguo Ying Yong Sheng Li Xue Za Zhi 2023, 39, e20230007. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, E.; Foroumadi, A.; Firoozpour, L. What Is the Role of Phytochemical Compounds as Capping Agents for the Inhibition of Aggregation in the Green Synthesis of Metal Oxide Nanoparticles? A DFT Molecular Level Response. Inorg. Chem. Commun. 2023, 147, 110243. [Google Scholar] [CrossRef]
- Ovais, M.; Khalil, A.T.; Islam, N.U.; Ahmad, I.; Ayaz, M.; Saravanan, M.; Shinwari, Z.K.; Mukherjee, S. Role of Plant Phytochemicals and Microbial Enzymes in Biosynthesis of Metallic Nanoparticles. Appl. Microbiol. Biotechnol. 2018, 102, 6799–6814. [Google Scholar] [CrossRef]
- Dhir, R.; Chauhan, S.; Subham, P.; Kumar, S.; Sharma, P.; Shidiki, A.; Kumar, G. Plant-Mediated Synthesis of Silver Nanoparticles: Unlocking Their Pharmacological Potential–a Comprehensive Review. Front. Bioeng. Biotechnol. 2023, 11, 1324805. [Google Scholar] [CrossRef]
- Ahmad, M.; Butt, M.A.; Zhang, G.; Sultana, S.; Tariq, A.; Zafar, M. Bergenia ciliata: A Comprehensive Review of Its Traditional Uses, Phytochemistry, Pharmacology and Safety. Biomed. Pharmacother. 2018, 97, 708–721. [Google Scholar] [CrossRef] [PubMed]
- Zia, G.; Sadia, H.; Nazir, S.; Ejaz, K.; Ali, S.; Ihsan-ul-Haq; Iqbal, T.; Khan, M.A.R.; Raza, A.; Andleeb, S. In Vitro Studies on Cytotoxic, DNA Protecting, Antibiofilm and Antibacterial Effects of Biogenic Silver Nanoparticles Prepared with Bergenia ciliata Rhizome Extract. Curr. Pharm. Biotechnol. 2018, 19, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.J.; Kumari, S.; Shameli, K.; Selamat, J.; Sazili, A.Q. Green Synthesis and Characterization of Pullulan Mediated Silver Nanoparticles through Ultraviolet Irradiation. Materials 2019, 12, 2382. [Google Scholar] [CrossRef] [PubMed]
- Lungulescu, E.M.; Fierascu, R.C.; Stan, M.S.; Fierascu, I.; Radoi, E.A.; Banciu, C.A.; Gabor, R.A.; Fistos, T.; Marutescu, L.; Popa, M.; et al. Gamma Radiation-Mediated Synthesis of Antimicrobial Polyurethane Foam/Silver Nanoparticles. Polymers 2024, 16, 1369. [Google Scholar] [CrossRef] [PubMed]
- Anjana, V.N.; Joseph, M.; Francis, S.; Joseph, A.; Koshy, E.P.; Mathew, B. Microwave Assisted Green Synthesis of Silver Nanoparticles for Optical, Catalytic, Biological and Electrochemical Applications. Artif. Cells Nanomed. Biotechnol. 2021, 49, 438–449. [Google Scholar] [CrossRef] [PubMed]
- Anjum, S.; Chaudhary, R.; Khan, A.K.; Hashim, M.; Anjum, I.; Hano, C.; Abbasi, B.H. Light-Emitting Diode (LED)-Directed Green Synthesis of Silver Nanoparticles and Evaluation of Their Multifaceted Clinical and Biological Activities. RSC Adv. 2022, 12, 22266–22284. [Google Scholar] [CrossRef] [PubMed]
- Sarmin, M.; Gurung, S.; Sarkar, S.; Das, S.; Hoda, M. Photocatalysis-Enhanced Synthesis and Stabilization of Silver Nanoparticles by Methanol-Based Phytochemicals Extract of Trigonella foenum-graecum Seeds. JCIS Open 2024, 15, 100116. [Google Scholar] [CrossRef]
- Patterson, A.L. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56, 978. [Google Scholar] [CrossRef]
- Amini, S.M.; Akbari, A. Metal Nanoparticles Synthesis through Natural Phenolic Acids. IET Nanobiotechnol. 2019, 13, 771–777. [Google Scholar] [CrossRef]
- Jiang, X.; Yu, A. One-Step Approach for the Synthesis and Self-Assembly of Silver Nanoparticles. J. Nanosci. Nanotechnol. 2010, 10, 7643–7647. [Google Scholar] [CrossRef]
- Chen, F.; Jiang, S.; Zhou, Q.; Chen, S.; Wu, Z.; Guo, Y.; Wei, A.; Yuan, J.; Huang, G. Synthesis of Small-Sized Gold Nanorod Using Catechol as a Reducing Agent. Opt. Mater. 2023, 145, 114497. [Google Scholar] [CrossRef]
- Gebru, H.; Cui, S.; Li, Z.; Wang, X.; Pan, X.; Liu, J.; Guo, K. Facile PH-Dependent Synthesis and Characterization of Catechol Stabilized Silver Nanoparticles for Catalytic Reduction of 4-Nitrophenol. Catal. Lett. 2017, 147, 2134–2143. [Google Scholar] [CrossRef]
- Yoo, S.; Nam, D.H.; Singh, T.I.; Leem, G.; Lee, S. Effect of Reducing Agents on the Synthesis of Anisotropic Gold Nanoparticles. Nano Converg. 2022, 9, 5. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, W.; Zhao, L.; Rong, L.; Lan, S.; Sun, H.; Zhang, H.; Yang, B. Hydroquinone-Assisted Synthesis of Branched Au–Ag Nanoparticles with Polydopamine Coating as Highly Efficient Photothermal Agents. ACS Appl. Mater. Interfaces 2015, 7, 11613–11623. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.A.; Asiri, S.M.M.; Alzohairy, M.A.; Alomary, M.N.; Almatroudi, A.; Khan, F.A. Biofabricated Fatty Acids-Capped Silver Nanoparticles as Potential Antibacterial, Antifungal, Antibiofilm and Anticancer Agents. Pharmaceuticals 2021, 14, 139. [Google Scholar] [CrossRef] [PubMed]
- Kinayyigit, S. Role of Phenols and Phenol Derivatives in the Synthesis of Nanoparticles. In Reducing Agents in Colloidal Nanoparticle Synthesis; Mourdikoudis, S., Ed.; The Royal Society of Chemistry: Cambridge, UK, 2021; pp. 73–96. ISBN 978-1-83916-165-0. [Google Scholar]
- Fouad, H.; Yang, G.; El-Sayed, A.A.; Mao, G.; Khalafallah, D.; Saad, M.; Ga’al, H.; Ibrahim, E.; Mo, J. Green Synthesis of AgNP–Ligand Complexes and Their Toxicological Effects on Nilaparvata lugens. J. Nanobiotechnol. 2021, 19, 318. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, Y.; Tanaka, H.; Sakamoto, H.; Hayashi, N.; Kofuji, Y.; Ichikawa, S.; Hirai, T. Synthesis of Au Nanoparticles with Benzoic Acid as Reductant and Surface Stabilizer Promoted Solely by UV Light. Langmuir 2017, 33, 13797–13804. [Google Scholar] [CrossRef] [PubMed]
- Dalvi, B.R.; Siddiqui, E.A.; Syed, A.S.; Velhal, S.M.; Ahmad, A.; Bandivdekar, A.B.; Devarajan, P.V. Nevirapine Loaded Core Shell Gold Nanoparticles by Double Emulsion Solvent Evaporation: In Vitro and In Vivo Evaluation. Curr. Drug Deliv. 2016, 13, 1071–1083. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, R.R.; Chakraborty, M.; Mandal, T.K. Synthesis of Size-Tunable Gold Nanoparticles by Poly(Vinylphenol) and Electrostatic Multilayer Deposition of the Gold-Poly(Vinylphenol) Nanocomposites. J. Nanosci. Nanotechnol. 2004, 4, 844–848. [Google Scholar] [CrossRef]
- Agasti, N.; Kaushik, N.K. Myristic Acid Capped Silver Nanoparticles: Aqueous Phase Synthesis and pH-Induced Optical Properties. J. Chin. Adv. Mater. Soc. 2014, 2, 31–39. [Google Scholar] [CrossRef]
- Shankar, S.; Rhim, J.W. Tocopherol-Mediated Synthesis of Silver Nanoparticles and Preparation of Antimicrobial PBAT/Silver Nanoparticles Composite Films. LWT—Food Sci. Technol. 2016, 72, 149–156. [Google Scholar] [CrossRef]
- Shaaban, M.T.; Ghaly, M.F.; Fahmi, S.M. Antibacterial Activities of Hexadecanoic Acid Methyl Ester and Green-Synthesized Silver Nanoparticles against Multidrug-Resistant Bacteria. J. Basic. Microbiol. 2021, 61, 557–568. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.L.; Wang, Y.Y.; Wan, C.C.; Lee, C.L. Self-Assembly of Pd Nanoparticles in Dodecanol in Situ Generated from Sodium Dodecyl Sulfate and Its Potential Applications. Colloids Surf. A Physicochem. Eng. Asp. 2006, 275, 11–16. [Google Scholar] [CrossRef]
- Das, R.; Gang, S.; Nath, S.S.; Bhattacharjee, R. Preparation of Linoleic Acid-Capped Silver Nanoparticles and Their Antimicrobial Effect. IET Nanobiotechnol. 2012, 6, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chang, G.; Xu, Y.; Li, Z.; Du, X.; Yang, Y.; Jiang, Z.; Ni, H.; Li, Q. Effect of Phytol Isolated from Edible Red Alga (Bangia fusco-purpurea) on Tyrosinase Inhibition and Its Application on Food Preservation. LWT 2023, 185. [Google Scholar] [CrossRef]
- Al Ghossein, R.M.; Hossain, M.S.; Khodadadi, J.M. Experimental Determination of Temperature-Dependent Thermal Conductivity of Solid Eicosane-Based Silver Nanostructure-Enhanced Phase Change Materials for Thermal Energy Storage. Int. J. Heat. Mass. Transf. 2017, 107, 697–711. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.; John Wiley & Sons: New York, NY, USA, 2004; ISBN 0470093072/9780470093078. [Google Scholar]
- Barai, P.; Raval, N.; Acharya, S.; Acharya, N. Bergenia ciliata Ameliorates Streptozotocin-Induced Spatial Memory Deficits through Dual Cholinesterase Inhibition and Attenuation of Oxidative Stress in Rats. Biomed. Pharmacother. 2018, 102, 966–980. [Google Scholar] [CrossRef] [PubMed]
- Rizwana, H.; Alwhibi, M.S.; Al-Judaie, R.A.; Aldehaish, H.A.; Alsaggabi, N.S. Sunlight-Mediated Green Synthesis of Silver Nanoparticles Using the Berries of Ribes rubrum (Red Currants): Characterisation and Evaluation of Their Antifungal and Antibacterial Activities. Molecules 2022, 27, 2186. [Google Scholar] [CrossRef] [PubMed]
- Arshad, H.; Sadaf, S.; Hassan, U. De-Novo Fabrication of Sunlight Irradiated Silver Nanoparticles and Their Efficacy against E. coli and S. epidermidis. Sci. Rep. 2022, 12, 676. [Google Scholar] [CrossRef] [PubMed]
- Siaw, Y.M.; Jeevanandam, J.; Hii, Y.S.; Chan, Y.S. Photo-Irradiation Coupled Biosynthesis of Magnesium Oxide Nanoparticles for Antibacterial Application. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2020, 393, 2253–2264. [Google Scholar] [CrossRef]
- Sarmin, M.; Gurung, S.; Sarkar, S.; Das, S.; Hoda, M. White LED Light-Based Photocatalysis Enhances the Green Synthesis of Silver Nanoparticles by Trigonella foenum-graecum Seeds’ Aqueous Extract. Nano-Struct. Nano-Objects 2024, 37, 101091. [Google Scholar] [CrossRef]
- Varatharaj, R. Influence of Elemental Composition on Structural, Thermal and Hydration Behavior of Gold-Silver Bimetallic Nanoparticles. J. Mol. Model. 2022, 28, 53. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Sánchez, L.; Blanco, M.C.; López-Quintela, M.A. Electrochemical Synthesis of Silver Nanoparticles. J. Phys. Chem. B 2000, 104, 9683–9688. [Google Scholar] [CrossRef]
- Mehta, B.K.; Chhajlani, M.; Shrivastava, B.D. Green Synthesis of Silver Nanoparticles and Their Characterization by XRD. J. Phys. Conf. Ser. 2017, 836, 012050. [Google Scholar] [CrossRef]
- Anand, S.; Kuppusamy, R.R.P.; Padmanabhan, P. Insight into the Kinetically and Thermodynamically Controlled Biosynthesis of Silver Nanoparticles. IET Nanobiotechnol. 2020, 14, 864–869. [Google Scholar] [CrossRef]
Extract Type | Total Phenolic Content (mg * QE/g of Extract) | Total Flavonoid Content (mg * QE/g of Extract) |
---|---|---|
Methanol | 176.553 ± 0.003 | 116.512 ± 0.002 |
Aqueous | 111.067 ± 0.035 | 82.218 ± 0.001 |
S. No. | Chemical Name | Type of Phytochemical | PubChem ID | Area% | Reducing Potential | Stabilizing Activity |
---|---|---|---|---|---|---|
01. | Pyrogallol | phenol | 1057 | 20.75 | [19] | [20] |
02. | 5-Hydroxymethylfurfural | furan | 237332 | 12.00 | -- | -- |
03. | Catechol | phenol | 289 | 8.61 | [21] | [22] |
04. | 13-Docosenamide, (Z)- | fatty amide | 5365371 | 2.49 | -- | -- |
05. | Hydroquinone | phenol | 785 | 2.19 | [23] | [24] |
06. | 2-Palmitoylglycerol | fatty acid ester | 123409 | 0.79 | -- | -- |
07. | palmitic acid | fatty acid | 985 | 0.35 | -- | [25] |
08. | Phenol | phenol | 996 | 0.29 | [26] | -- |
09. | Benzoic acid | carboxylic acid | 243 | 0.18 | [27] | [28] |
10. | Glyceryl monostearate | fatty acid ester | 24699 | 0.18 | -- | [29] |
11. | 4-Vinylphenol | phenol | 62453 | 0.15 | [26] | [30] |
12. | myristic acid | fatty acid | 11005 | 0.14 | -- | [31] |
13. | Squalene | terpenoid | 638072 | 0.13 | -- | -- |
14. | Geranic acid | fatty acid | 5275520 | 0.08 | -- | -- |
15. | dihydroferulic acid | carboxylic acid | 14340 | 0.06 | -- | -- |
Sl. No. | Chemical Name | Type of Phytochemical | Pubchem ID | Area % | Reducing Potential | Stabilizing Activity |
---|---|---|---|---|---|---|
01. | Pyrogallol | phenol | 1057 | 38.85 | [19] | [20] |
02. | 5-Hydroxymethylfurfural | furan | 237332 | 9.17 | -- | -- |
03. | Hydroquinone | phenol | 785 | 5.78 | [24] | [24] |
04. | palmitic acid | fatty acid | 985 | 4.38 | -- | [25] |
05. | Vitamin E | vitamin | 483926503 | 3.14 | [32] | [32] |
06. | myristic acid | fatty acid | 11005 | 0.96 | -- | [31] |
07. | methyl palmitate | fatty acid ester | 8181 | 0.90 | -- | [33] |
08. | 1-Dodecanol | fatty alcohol | 8193 | 0.69 | [34] | [34] |
09. | Catechol | phenol | 289 | 0.67 | [21] | [22] |
10. | linoleic acid | fatty acid | 5280450 | 0.47 | -- | [35] |
11. | Glyceryl monostearate | fatty acid ester | 24699 | 0.33 | -- | [29] |
12. | Phytol | terpenoid | 5280435 | 0.27 | [36] | -- |
13. | 4-Vinylphenol | phenol | 62453 | 0.25 | [26] | [30] |
14. | Squalene | terpenoid | 638072 | 0.21 | -- | -- |
15. | Benzoic acid | carboxylic acid | 243 | 0.17 | [27] | [28] |
16. | cis-cinnamic acid | carboxylic acid | 5372954 | 0.14 | [19] | -- |
17. | Phenol | phenol | 996 | 0.07 | [26] | -- |
18. | Eicosane | alkane | 8222 | 0.07 | -- | [37] |
Extract | Light Intensity (Lumens) | Percent Nanoparticles Yield | Z- Avg. (d. nm) | PDI | Size (d. nm) |
---|---|---|---|---|---|
Aqueous | dark | 17.26% ± 0.06 | 55.53 ± 8.547 | 0.268 | 28.21 |
250 | 12.04% ± 0.57 | 61.58 ± 0.386 | 0.378 | 4.765 | |
825 | 8.63% ± 0.57 | 66.93 ± 11.19 | 0.152 | 39.81 | |
Methanol | Dark | 1.23% ± 0.06 | 48.43 ± 6.282 | 0.315 | 20.90 |
250 | 4.52% ± 0.141 | 68.10 ± 11.90 | 0.153 | 44.63 | |
825 | 7.41% ± 0.14 | 75.19 ± 14.58 | 0.239 | 47.49 |
Extract | Light Intensity | % Silver | % Carbon | % Nitrogen | % Oxygen |
---|---|---|---|---|---|
Aqueous | Dark | 18.16 ± 1.01 | 11.50 ± 0.36 | 5.30 ± 0.2 | 31.96 ± 2.15 |
825 | 13.80 ± 0.78 | 16.60 ± 0.65 | 2.46 ± 0.46 | 5.70 ± 0.26 | |
Methanol | Dark | 24.16± 5.23 | 18.40 ± 0.20 | 3.53 ± 0.30 | 25.06 ± 1.50 |
825 | 14.16 ± 2.34 | 20.76 ± 2.12 | 2.10 ± 0.36 | 24.46 ± 6.00 |
Wave Numbers (cm−1) | Vibration Type | |||||
---|---|---|---|---|---|---|
AE Based AgNPs | ME Based AgNPs | |||||
Physical Mixture | Dark | 825 Lumens | Physical Mixture | Dark | 825 Lumens | |
3399.8 | -- | -- | -- | 3435 | -- | O-H stretching and N = H stretching (presence of primary amine group) |
-- | 2963.3 | 2963.2 | -- | 2963.3 | -- | |
1613.8 | -- | -- | -- | C––C Aromatic stretch | ||
1384.1 | -- | -- | 1383.4 | -- | -- | NH2 rocking |
1261.2 | 1261.4 | 1261.5 | -- | 1261.5 | 1261.4 | C–O stretching vibrations of alcohols, ethers, esters, carboxylic acids |
1090.8 | 1095 | 1095 | -- | 1095.8 | 1094.8 | C-O, C-C band of glycosides |
799.8 | 800.9 | 800.9 | 801 | 800.9 | 800.6 | C-H band of alkanes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurung, S.; Sarmin, M.; Hoda, M. Implications of White Light-Emitting Diode-Based Photoirradiation on Green Synthesis of Silver Nanoparticles by Methanol- and Aqueous-Based Extracts of Bergenia ciliata Leaves. Nanomaterials 2024, 14, 1327. https://doi.org/10.3390/nano14161327
Gurung S, Sarmin M, Hoda M. Implications of White Light-Emitting Diode-Based Photoirradiation on Green Synthesis of Silver Nanoparticles by Methanol- and Aqueous-Based Extracts of Bergenia ciliata Leaves. Nanomaterials. 2024; 14(16):1327. https://doi.org/10.3390/nano14161327
Chicago/Turabian StyleGurung, Sourav, Monalisha Sarmin, and Muddasarul Hoda. 2024. "Implications of White Light-Emitting Diode-Based Photoirradiation on Green Synthesis of Silver Nanoparticles by Methanol- and Aqueous-Based Extracts of Bergenia ciliata Leaves" Nanomaterials 14, no. 16: 1327. https://doi.org/10.3390/nano14161327
APA StyleGurung, S., Sarmin, M., & Hoda, M. (2024). Implications of White Light-Emitting Diode-Based Photoirradiation on Green Synthesis of Silver Nanoparticles by Methanol- and Aqueous-Based Extracts of Bergenia ciliata Leaves. Nanomaterials, 14(16), 1327. https://doi.org/10.3390/nano14161327