Inkjet Printing of Long-Range Ordering Two-Dimensional Magnetic Ti0.8Co0.2O2 Film
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Synthesis of Ti0.8Co0.2O2 Nanosheets
3.2. Characterization of Ti0.8Co0.2O2 Nanosheets
3.3. Rheological Properties of Ti0.8Co0.2O2 Nanosheet Inks
3.4. Characterization of Inkjet-Printed Ti0.8Co0.2O2 Nanosheet Films
3.5. Magnetic Properties of Inkjet-Printed Ti0.8Co0.2O2 Nanosheet Films
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, G.; Kang, J.; Ng, L.W.; Zhu, X.; Howe, R.C.; Jones, C.G.; Hersam, M.C.; Hasan, T. Functional inks and printing of two-dimensional materials. Chem. Soc. Rev. 2018, 47, 3265–3300. [Google Scholar] [CrossRef] [PubMed]
- Conti, S.; Calabrese, G.; Parvez, K.; Pimpolari, L.; Pieri, F.; Iannaccone, G.; Casiraghi, C.; Fiori, G. Printed transistors made of 2D material-based inks. Nat. Rev. Mater. 2023, 8, 651–667. [Google Scholar] [CrossRef]
- Huang, X.; Chen, J.; Xie, H.; Zhao, F.; Fan, S.; Zhang, Y. Inkjet printing of 2D polyaniline for fabricating flexible and patterned electrochromic devices. Sci. China Mater. 2022, 65, 2217–2226. [Google Scholar] [CrossRef]
- Neterebskaia, V.O.; Goncharenko, A.O.; Morozova, S.M.; Kolchanov, D.S.; Vinogradov, A.V. Inkjet printing humidity sensing pattern based on self-organizing polystyrene spheres. Nanomaterials 2020, 10, 1538. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Dong, Z. Interfacial Regulation for 3D printing based on slice-based photopolymerization. Adv. Mater. 2023, 35, 2300903. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Xie, Y.; Ma, Y.; Zhang, B.; Xia, B.; Zhang, P.; Qian, W.; He, D.; Zhang, X.; Li, B.W.; et al. Aqueous MXene/xanthan gum hybrid inks for screen-printing electromagnetic shielding, Joule heater, and piezoresistive sensor. Small 2022, 18, 2107087. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.S.; Parvez, K.; Feng, X.; Müllen, K. Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 2013, 4, 2487. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.S.; Liu, Z.; Parvez, K.; Feng, X.; Müllen, K. Ultrathin printable graphene supercapacitors with AC line-filtering performance. Adv. Mater. 2015, 27, 3669–3675. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, T.; Nurdiwijayanto, L.; Ma, R.; Sasaki, T. Chemically exfoliated inorganic nanosheets for nanoelectronics. Appl. Phys. Rev. 2022, 9, 021313. [Google Scholar] [CrossRef]
- Jun, H.Y.; Kim, S.J.; Choi, C.H. Ink formulation and printing parameters for inkjet printing of two dimensional materials: A mini review. Nanomaterials 2021, 11, 3441. [Google Scholar] [CrossRef]
- Song, O.; Rhee, D.; Kim, J.; Jeon, Y.; Mazánek, V.; Söll, A.; Kwon, Y.A.; Cho, J.H.; Kim, Y.H.; Sofer, Z.; et al. All inkjet-printed electronics based on electrochemically exfoliated two-dimensional metal, semiconductor, and dielectric. NPJ 2D Mater. Appl. 2022, 6, 64. [Google Scholar] [CrossRef]
- Bonaccorso, F.; Bartolotta, A.; Coleman, J.N.; Backes, C. 2D-crystal-based functional inks. Adv. Mater. 2016, 28, 6136–6166. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Fu, Y.; Zhang, X.; Zhang, X.; Li, B.W.; Nan, C.W. Flexible high-performance microcapacitors enabled by all-printed two-dimensional nanosheets. Sci. Bull. 2022, 67, 2541–2549. [Google Scholar] [CrossRef] [PubMed]
- Maluangnont, T.; Matsuba, K.; Geng, F.; Ma, R.; Yamauchi, Y.; Sasaki, T. Osmotic swelling of layered compounds as a route to producing high-quality two-dimensional materials. A comparative study of tetramethylammonium versus tetrabutylammonium cation in a lepidocrocite-type titanate. Chem. Mater 2013, 25, 3137–3146. [Google Scholar] [CrossRef]
- Jungwirth, T.; Sinova, J.; Manchon, A.; Marti, X.; Wunderlich, J.; Felser, C. The multiple directions of antiferromagnetic spintronics. Nat. Phys. 2018, 14, 200–203. [Google Scholar] [CrossRef]
- Osada, M.; Ebina, Y.; Takada, K.; Sasaki, T. Gigantic magneto-optical effects in multilayer assemblies of two-dimensional titania nanosheets. Adv. Mater. 2006, 18, 295–299. [Google Scholar] [CrossRef]
- Osada, M.; Yoguchi, S.; Itose, M.; Li, B.W.; Ebina, Y.; Fukuda, K.; Kotani, Y.; Ono, K.; Ueda, S.; Sasaki, T. Controlled doping of semiconducting titania nanosheets for tailored spinelectronic materials. Nanoscale 2014, 6, 14227–14236. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Sasaki, T. Titanium oxide nanosheets: Graphene analogues with versatile functionalities. Chem. Rev. 2014, 114, 9455–9486. [Google Scholar] [CrossRef] [PubMed]
- Unterman, S.; Charles, L.F.; Strecker, S.E.; Kramarenko, D.; Pivovarchik, D.; Edelman, E.R.; Artzi, N. Hydrogel nanocomposites with independently tunable rheology and mechanics. ACS Nano 2017, 11, 2598–2610. [Google Scholar] [CrossRef]
- Akuzum, B.; Maleski, K.; Anasori, B.; Lelyukh, P.; Alvarez, N.J.; Kumbur, E.C.; Gogotsi, Y. Rheological characteristics of 2D titanium carbide (MXene) dispersions: A guide for processing MXenes. ACS Nano 2018, 12, 2685–2694. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, P.; Li, B.W.; Zhang, B.; Yu, Y.; Shen, Z.; Zhang, X.; Wu, J.; Nan, C.W.; Zhang, S. Inkjet printing of perovskite nanosheets for microcapacitors. Adv. Electron. Mater. 2021, 7, 2100402. [Google Scholar] [CrossRef]
- Withers, F.; Yang, H.; Britnell, L.; Rooney, A.P.; Lewis, E.; Felten, A.; Woods, C.R.; Sanchez Romaguera, V.; Georgiou, T.; Eckmann, A.; et al. Heterostructures produced from nanosheet-based inks. Nano Lett. 2014, 14, 3987–3992. [Google Scholar] [CrossRef] [PubMed]
- McManus, D.; Vranic, S.; Withers, F.; Sanchez-Romaguera, V.; Macucci, M.; Yang, H.; Sorrentino, R.; Parvez, K.; Son, S.K.; Iannaccone, G.; et al. Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat. Nanotechnol. 2017, 12, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Fromm, J. Numerical calculation of the fluid dynamics of drop-on-demand jets. IBM J. Res. Dev. 1984, 28, 322–333. [Google Scholar] [CrossRef]
- Piatti, E.; Arbab, A.; Galanti, F.; Carey, T.; Anzi, L.; Spurling, D.; Roy, A.; Zhussupbekova, A.; Patel, K.A.; Kim, J.M.; et al. Charge transport mechanisms in inkjet-printed thin-film transistors based on two-dimensional materials. Nat. Electron. 2021, 4, 893–905. [Google Scholar] [CrossRef]
- Timmerman, M.A.; Xia, R.; Wang, Y.; Sotthewes, K.; Huijben, M.; Ten Elshof, J.E. Long-range ordering of two-dimensional wide bandgap tantalum oxide nanosheets in printed films. J. Mater. Chem. C 2021, 9, 5699–5705. [Google Scholar] [CrossRef]
- Osada, M.; Ebina, Y.; Fukuda, K.; Ono, K.; Takada, K.; Yamaura, K. Ferromagnetism in two-dimensional Ti0.8Co0.2O2 nanosheets. Phys. Rev. B 2006, 73, 153301. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.; Zhang, P. Inkjet Printing of Long-Range Ordering Two-Dimensional Magnetic Ti0.8Co0.2O2 Film. Nanomaterials 2024, 14, 834. https://doi.org/10.3390/nano14100834
Du Y, Zhang P. Inkjet Printing of Long-Range Ordering Two-Dimensional Magnetic Ti0.8Co0.2O2 Film. Nanomaterials. 2024; 14(10):834. https://doi.org/10.3390/nano14100834
Chicago/Turabian StyleDu, Yuntian, and Pengxiang Zhang. 2024. "Inkjet Printing of Long-Range Ordering Two-Dimensional Magnetic Ti0.8Co0.2O2 Film" Nanomaterials 14, no. 10: 834. https://doi.org/10.3390/nano14100834
APA StyleDu, Y., & Zhang, P. (2024). Inkjet Printing of Long-Range Ordering Two-Dimensional Magnetic Ti0.8Co0.2O2 Film. Nanomaterials, 14(10), 834. https://doi.org/10.3390/nano14100834