Scanning Near-Field Optical Microscopy of Ultrathin Gold Films
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Bi, Y.-G.; Liu, Y.-F.; Zhang, X.-L.; Yin, D.; Wang, W.-Q.; Feng, J.; Sun, H.-B. Ultrathin Metal Films as the Transparent Electrode in ITO-Free Organic Optoelectronic Devices. Adv. Opt. Mater. 2019, 7, 1800778. [Google Scholar] [CrossRef]
- Malureanu, R.; Lavrinenko, A. Ultra-thin films for plasmonics: A technology overview. Nanotechnol. Rev. 2015, 4, 259–275. [Google Scholar] [CrossRef]
- Maniyara, R.A.; Rodrigo, D.; Yu, R.; Canet-Ferrer, J.; Ghosh, D.S.; Yongsunthon, R.; Pruneri, V. Tunable plasmons in ultrathin metal films. Nat. Photonics 2019, 13, 328–333. [Google Scholar] [CrossRef]
- Yun, J. Ultrathin Metal films for Transparent Electrodes of Flexible Optoelectronic Devices. Adv. Funct. Mater. 2017, 27, 1606641. [Google Scholar] [CrossRef]
- Bi, Y.-G.; Feng, J.; Ji, J.-H.; Chen, Y.; Liu, Y.-S.; Li, Y.-F.; Liu, Y.-F.; Zhang, X.-L.; Sun, H.-B. Ultrathin and ultrasmooth Au films as transparent electrodes in ITO-free organic light-emitting devices. Nanoscale 2016, 8, 10010–10015. [Google Scholar] [CrossRef]
- Sukham, J.; Takayama, O.; Lavrinenko, A.V.; Malureanu, R. High-Quality Ultrathin Gold Layers with an APTMS Adhesion for Optimal Performance of Surface Plasmon Polariton-Based Devices. ACS Appl. Mater. Interfaces 2017, 9, 25049–25056. [Google Scholar] [CrossRef]
- Kossoy, A.; Merk, V.; Simakov, D.; Leosson, K.; Kéna-Cohen, S.; Maier, S.A. Optical and Structural Properties of Ultra-thin Gold Films. Adv. Opt. Mater. 2015, 3, 71–77. [Google Scholar] [CrossRef]
- Huo, P.; Zhang, S.; Liang, Y.; Lu, Y.; Xu, T. Hyperbolic Metamaterials and Metasurfaces: Fundamentals and Applications. Adv. Opt. Mater. 2019, 7, 1801616. [Google Scholar] [CrossRef]
- Petrov, I.; Barna, P.B.; Hultman, L.; Greene, J.E. Microstructural evolution during film growth. J. Vac. Sci. Technol. 2003, 21, S117. [Google Scholar] [CrossRef]
- Abd El-Fattah, Z.M.; Mkhitaryan, V.; Brede, J.; Fernández, L.; Li, C.; Guo, Q.; Ghosh, A.; Echarri, A.R.; Naveh, D.; Xia, F.; et al. Plasmonics in Atomically Thin Crystalline Silver Films. ACS Nano 2019, 13, 7771–7779. [Google Scholar] [CrossRef]
- Logeeswaran, V.J.; Kobayashi, N.P.; Islam, M.S.; Wu, W.; Chaturvedi, P.; Fang, N.X.; Wang, S.Y.; Williams, R.S. Ultrasmooth Silver Thin Films Deposited with a Germanium Nucleation Layer. Nano Lett. 2009, 9, 178–182. [Google Scholar] [CrossRef]
- Zaretski, A.V.; Root, S.E.; Savchenko, A.; Molokanova, E.; Printz, A.D.; Jibril, L.; Arya, G.; Mercola, M.; Lipomi, D.J. Metallic Nanoislands on Graphene as Highly Sensitive Transducers of Mechanical, Biological, and Optical Signals. Nano Lett. 2016, 16, 1375–1380. [Google Scholar] [CrossRef]
- Gong, C.; Huang, C.; Miller, J.; Cheng, L.; Hao, Y.; Cobden, D.; Kim, J.; Ruoff, R.S.; Wallace, R.M.; Cho, K.; et al. Metal Contacts on Physical Vapor Deposited Monolayer MoS2. ACS Nano 2013, 7, 11350–11357. [Google Scholar] [CrossRef]
- Huang, Y.; Pan, Y.H.; Yang, R.; Bao, L.H.; Meng, L.; Luo, H.L.; Gao, H.J. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 2020, 11, 2453. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, D.; Liu, W.; Xie, X.; Anselmo, A.C.; Mitragotri, S.; Banerjee, K. MoS2 Field-Effect Transistor for Next-Generation Label-Free Biosensors. ACS Nano 2014, 8, 3992–4003. [Google Scholar] [CrossRef]
- Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotech. 2013, 8, 497–501. [Google Scholar] [CrossRef]
- Tsai, M.-L.; Su, S.-H.; Chang, J.-K.; Tsai, D.-S.; Chen, C.-H.; Wu, C.-I.; Li, L.-J.; Chen, L.-J.; He, J.-H. Monolayer MoS2 Heterojunction Solar Cells. ACS Nano 2014, 8, 8317–8322. [Google Scholar] [CrossRef] [PubMed]
- Popov, I.; Seifert, G.; Tománek, D. Designing Electrical Contacts to MoS2 Monolayers: A Computational Study. Phys. Rev. Lett. 2012, 108, 156802. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Cheng, G.; You, L.; Li, H.; Zhu, H.; Li, W.; Kopanski, J.J.; Obeng, Y.S.; Walker, A.R.H.; Gundlach, D.J.; et al. Influence of Metal–MoS2 Interface on MoS2 Transistor Performance: Comparison of Ag and Ti Contacts. ACS Appl. Mater. Interfaces 2015, 7, 2. [Google Scholar] [CrossRef]
- Shen, Y.-H.; Hsu, C.-C.; Chang, P.-C.; Lin, W.-C. Height reversal in Au coverage on MoS2 flakes/SiO2: Thermal control of interfacial nucleation. Appl. Phys. Lett. 2019, 114, 181601. [Google Scholar] [CrossRef]
- Kidd, T.E.; Weber, J.; O’Leary, E.; Stollenwerk, A.J. Preparation of Ultrathin Gold Films with Subatomic Surface Roughness. Langmuir 2021, 37, 9472–9477. [Google Scholar] [CrossRef] [PubMed]
- Yakubovsky, D.I.; Stebunov, Y.V.; Kirtaev, R.V.; Ermolaev, G.A.; Mironov, M.S.; Novikov, S.M.; Arsenin, A.V.; Volkov, V.S. Ultrathin and Ultrasmooth Gold Films on Monolayer MoS2. Adv. Mater. Interfaces 2019, 6, 1900196. [Google Scholar] [CrossRef]
- Zhou, H.; Yu, F.; Guo, C.F.; Wang, Z.; Lan, Y.; Wang, G.; Fang, Z.; Liu, Y.; Chen, S.; Sun, L.; et al. Well-oriented epitaxial gold nanotriangles and bowties on MoS2 for surface-enhanced Raman scattering. Nanoscale 2015, 7, 9153–9157. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, H.; Zhou, D.; Zhu, Y.; Ye, H.; Moe, Y.A.; Wang, R. Direct observation of epitaxial alignment of Au on MoS2 at atomic resolution. Nano Res. 2019, 12, 947–954. [Google Scholar] [CrossRef]
- Chen, K.-C.; Lai, S.-M.; Wu, B.-Y.; Chen, C.; Lin, S.-Y. Van der Waals Epitaxy of Large-Area and Single-Crystalline Gold Films on MoS2 for Low-Contact-Resistance 2D–3D Interfaces. ACS Appl. Nano Mater. 2020, 3, 2997–3003. [Google Scholar] [CrossRef]
- Lu, J.; Lu, J.H.; Liu, H.; Liu, B.; Gong, L.; Tok, E.S.; Loh, K.P.; Sow, C.H. Microlandscaping of Au Nanoparticles on Few-Layer MoS2 Films for Chemical Sensing. Small 2015, 11, 1792–1800. [Google Scholar] [CrossRef] [PubMed]
- Kidd, T.E.; Weber, J.; Holzapfel, R.; Doore, K.; Stollenwerka, A.J. Three-dimensional quantum size effects on the growth of Au islands on MoS2. Appl. Phys. Lett. 2018, 113, 191603. [Google Scholar] [CrossRef]
- Shen, T.; Valencia, D.; Wang, Q.; Wang, K.-C.; Povolotskyi, M.; Kim, M.J.; Klimeck, G.; Chen, Z.; Appenzeller, J. MoS2 for Enhanced Electrical Performance of Ultrathin Copper Films. ACS Appl. Mater. Interfaces 2019, 11, 31. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Wu, B.Y.; Chen, K.C.; Wu, C.H.; Lin, S.Y. Highly conductive nanometer-thick gold films grown on molybdenum disulfide surfaces for interconnect applications. Sci. Rep. 2020, 10, 14463. [Google Scholar] [CrossRef]
- Liu, Y.W.; Zhang, D.J.; Tsai, P.C.; Chiang, C.T.; Tu, W.C.; Lin, S.Y. Nanometer-thick copper films with low resistivity grown on 2D material surfaces. Sci. Rep. 2022, 12, 1823. [Google Scholar] [CrossRef]
- Shi, Y.; Huang, J.K.; Jin, L.; Hsu, Y.T.; Yu, S.F.; Li, L.J.; Yang, H.Y. Selective Decoration of Au Nanoparticles on Monolayer MoS2 Single Crystals. Sci. Rep. 2013, 3, 1839. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Hu, W.; Jing, Y.; Luo, W.; Liao, L.; Pan, A.; Wu, S.; Cheng, J.; Chen, X.; Lu, W. Surface Plasmon-Enhanced Photodetection in Few Layer MoS2 Phototransistors with Au Nanostructure Arrays. Small 2015, 11, 2392–2398. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Hu, D.; Mescall, R.; You, G.; Basov, D.N.; Dai, Q.; Liu, M. Modern Scattering-Type Scanning Near-Field Optical Microscopy for Advanced Material Research. Adv. Mater. 2019, 31, 1804774. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, Y. Visibility of subsurface nanostructures in scattering-type scanning near-field optical microscopy imaging. Opt. Express 2020, 28, 6696–6707. [Google Scholar] [CrossRef] [PubMed]
- Bauld, R.; Hesari, M.; Workentin, M.S.; Fanchini, G. Thermal stability of Au25− molecular precursors and nucleation of gold nanoparticles in thermosetting polyimide thin films. Appl. Phys. Lett. 2012, 101, 243114. [Google Scholar] [CrossRef]
- Stanciu, S.G.; Tranca, D.E.; Zampini, G.; Hristu, R.; Stanciu, G.A.; Chen, X.; Liu, M.; Stenmark, H.A.; Latterini, L. Scattering-type Scanning Near-Field Optical Microscopy of Polymer-Coated Gold Nanoparticles. ACS Omega 2022, 7, 11353–11362. [Google Scholar] [CrossRef]
- Alonso-González, P.; Nikitin, A.; Gao, Y.; Woessner, A.; Lundeberg, M.B.; Principi, A.; Forcellini, N.; Yan, W.; Vélez, S.; Huber, A.J.; et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat. Nanotech. 2017, 12, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Nikelshparg, E.I.; Baizhumanov, A.A.; Bochkova, Z.V.; Novikov, S.M.; Yakubovsky, D.I.; Arsenin, A.V.; Volkov, V.S.; Goodilin, E.A.; Semenova, A.A.; Sosnovtseva, O.; et al. Detection of hypertension-induced changes in erythrocytes by SERS nanosensors. Biosensors 2022, 12, 32. [Google Scholar] [CrossRef]
- Brazhe, N.A.; Nikelshparg, E.I.; Baizhumanov, A.A.; Grivennikova, V.G.; Semenova, A.A.; Novikov, S.M.; Volkov, V.S.; Arsenin, A.V.; Yakubovsky, D.I.; Evlyukhin, A.B.; et al. SERS uncovers the link between conformation of cytochrome c heme and mitochondrial membrane potential. Free. Radic. Biol. Med. 2023, 196, 133–144. [Google Scholar] [CrossRef]
- Ermolaev, G.A.; Grudinin, D.V.; Stebunov, Y.V.; Voronin, K.V.; Kravets, V.G.; Duan, J.; Mazitov, A.B.; Tselikov, G.I.; Bylinkin, A.; Yakubovsky, D.I.; et al. Giant optical anisotropy in transition metal dichalcogenides for next-generation photonics. Nat. Commun. 2021, 12, 854. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, B.; Chen, X.; Ruta, F.L.; Shao, Y.; Sternbach, A.J.; Basov, D.N. Nano-spectroscopy of excitons in atomically thin transition metal dichalcogenides. Nat. Commun. 2022, 13, 542. [Google Scholar] [CrossRef]
- Hu, F.; Fei, Z. Recent Progress on Exciton Polaritons in Layered Transition-Metal Dichalcogenides. Adv. Optical Mater. 2020, 8, 1901003. [Google Scholar] [CrossRef]
- de Oliveira, T.V.A.G.; Nörenberg, T.; Álvarez-Pérez, G.; Wehmeier, L.; Taboada-Gutiérrez, J.; Obst, M.; Hempel, F.; Lee, E.J.H.; Klopf, J.M.; Errea, I.; et al. Nanoscale-Confined Terahertz Polaritons in a van der Waals Crystal. Adv. Mater. 2021, 33, 2005777. [Google Scholar] [CrossRef]
- Govyadinov, A.A.; Mastel, S.; Golmar, F.; Chuvilin, A.; Carney, P.S.; Hillenbrand, R. Recovery of Permittivity and Depth from Near-Field Data as a Step toward Infrared Nanotomography. ACS Nano 2014, 8, 6911–6921. [Google Scholar] [CrossRef] [PubMed]
- Hillenbrand, R.; Keilmann, F. Complex Optical Constants on a Subwavelength Scale. Phys. Rev. Lett. 2000, 85, 3029–3032. [Google Scholar] [CrossRef] [PubMed]
- Mastel, S.; Govyadinov, A.A.; Maissen, C.; Chuvilin, A.; Berger, A.; Hillenbrand, R. Understanding the Image Contrast of Material Boundaries in IR Nanoscopy Reaching 5 nm Spatial Resolution. ACS Photonics 2018, 5, 3372–3378. [Google Scholar] [CrossRef]
- Mester, L.; Govyadinov, A.A.; Hillenbrand, R. High-fidelity nano-FTIR spectroscopy by on-pixel normalization of signal harmonics. Nanophotonics 2022, 11, 377–390. [Google Scholar] [CrossRef]
- Mastel, S.; Govyadinov, A.A.; de Oliveira, T.V.A.G.; Amenabar, I.; Hillenbrand, R. Nanoscale-resolved chemical identification of thin organic films using infrared near-field spectroscopy and standard Fourier transform infrared references. Appl. Phys. Lett. 2015, 106, 023113. [Google Scholar] [CrossRef]
- Babicheva, V.E.; Gamage, S.; Stockman, M.I.; Abate, Y. Near-field edge fringes at sharp material boundaries. Opt. Express 2017, 25, 23935. [Google Scholar] [CrossRef]
- Yakubovsky, D.I.; Arsenin, A.V.; Kirtaev, R.V.; Ermolaev, G.A.; Stebunov, Y.S.; Volkov, V.S. Near-field characterization of ultra-thin metal films. J. Phys. Conf. Ser. 2020, 1461, 012193. [Google Scholar] [CrossRef]
- Lee, C.; Yan, H.; Bru, L.E.; Heinz, T.F.; Hone, J.; Ryu, S. Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano 2010, 4, 2695–2700. [Google Scholar] [CrossRef] [PubMed]
- Yakubovsky, D.I.; Arsenin, A.V.; Stebunov, Y.V.; Fedyanin, D.Y.; Volkov, V.S. Optical constants and structural properties of thin gold films. Opt. Express 2017, 25, 25574–25587. [Google Scholar] [CrossRef] [PubMed]
- Yakubovsky, D.I.; Fedyanin, D.Y.; Arsenin, A.V.; Volkov, V.S. Optical constant of thin gold films: Structural morphology determined optical response. AIP Conf. Proc. 2017, 1874, 040057. [Google Scholar]
- Hu, D.; Yang, X.; Li, C.; Liu, R.; Yao, Z.; Hu, H.; Dai, Q. Probing optical anisotropy of nanometer-thin van der Waals microcrystals by near-field imaging. Nat. Commun. 2017, 8, 1471. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yakubovsky, D.I.; Grudinin, D.V.; Ermolaev, G.A.; Vyshnevyy, A.A.; Mironov, M.S.; Novikov, S.M.; Arsenin, A.V.; Volkov, V.S. Scanning Near-Field Optical Microscopy of Ultrathin Gold Films. Nanomaterials 2023, 13, 1376. https://doi.org/10.3390/nano13081376
Yakubovsky DI, Grudinin DV, Ermolaev GA, Vyshnevyy AA, Mironov MS, Novikov SM, Arsenin AV, Volkov VS. Scanning Near-Field Optical Microscopy of Ultrathin Gold Films. Nanomaterials. 2023; 13(8):1376. https://doi.org/10.3390/nano13081376
Chicago/Turabian StyleYakubovsky, Dmitry I., Dmitry V. Grudinin, Georgy A. Ermolaev, Andrey A. Vyshnevyy, Mikhail S. Mironov, Sergey M. Novikov, Aleksey V. Arsenin, and Valentyn S. Volkov. 2023. "Scanning Near-Field Optical Microscopy of Ultrathin Gold Films" Nanomaterials 13, no. 8: 1376. https://doi.org/10.3390/nano13081376
APA StyleYakubovsky, D. I., Grudinin, D. V., Ermolaev, G. A., Vyshnevyy, A. A., Mironov, M. S., Novikov, S. M., Arsenin, A. V., & Volkov, V. S. (2023). Scanning Near-Field Optical Microscopy of Ultrathin Gold Films. Nanomaterials, 13(8), 1376. https://doi.org/10.3390/nano13081376