Development of Alkylthiazole-Based Novel Thermoelectric Conjugated Polymers for Facile Organic Doping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Monomers
2.3. Synthesis of Polymers
2.4. Characterization of the Materials
2.5. Two-Dimensional Grazing-Incidence X-ray Diffraction (2D-GIXD) Experiments
2.6. Sample Preparation
2.7. Device Characterization
3. Results and Discussion
3.1. Synthesis and Characterization of Materials
3.2. Optical and Electrochemical Properties
3.3. Thermoelectric Properties
3.4. Morphological Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, J.; Tritt, T.M. Advances in thermoelectric materials research: Looking back and moving forward. Science 2017, 357, eaak9997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Y.J.; Wu, D.; Cao, X.H.; Zhou, W.X.; Tang, L.M.; Chen, K.Q. Nanoscale organic thermoelectric materials: Measurement, theoretical models, and optimization strategies. Adv. Funct. Mater. 2020, 30, 1903873. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, W.; Zhang, F.; Dai, K.; Li, C.; Fan, Y.; Chen, G.; Zheng, Q. Soft Organic Thermoelectric Materials: Principles, Current State of the Art and Applications. Small 2022, 18, 2104922. [Google Scholar]
- Russ, B.; Glaudell, A.; Urban, J.J.; Chabinyc, M.L.; Segalman, R.A. Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 2016, 1, 1–14. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, P.; Tang, G.; Chen, D.; Qian, Q.; Yang, Z. High-Performance n-Type Bi2Te3 Thermoelectric Fibers with Oriented Crystal Nanosheets. Nanomaterials 2023, 13, 326. [Google Scholar] [CrossRef]
- Nautiyal, H.; Lohani, K.; Mukherjee, B.; Isotta, E.; Malagutti, M.A.; Ataollahi, N.; Pallecchi, I.; Putti, M.; Misture, S.T.; Rebuffi, L.; et al. Mechanochemical Synthesis of Sustainable Ternary and Quaternary Nanostructured Cu2SnS3, Cu2ZnSnS4, and Cu2ZnSnSe4 Chalcogenides for Thermoelectric Applications. Nanomaterials 2023, 13, 366. [Google Scholar] [CrossRef]
- Zhao, L.-D.; Lo, S.-H.; Zhang, Y.; Sun, H.; Tan, G.; Uher, C.; Wolverton, C.; Dravid, V.P.; Kanatzidis, M.G. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373–377. [Google Scholar]
- Zhu, B.; Liu, X.; Wang, Q.; Qiu, Y.; Shu, Z.; Guo, Z.; Tong, Y.; Cui, J.; Gu, M.; He, J. Realizing record high performance in n-type Bi 2 Te 3-based thermoelectric materials. Energy Environ. Sci. 2020, 13, 2106–2114. [Google Scholar] [CrossRef]
- Cho, C.; Stevens, B.; Hsu, J.H.; Bureau, R.; Hagen, D.A.; Regev, O.; Yu, C.; Grunlan, J.C. Completely organic multilayer thin film with thermoelectric power factor rivaling inorganic tellurides. Adv. Mater. 2015, 27, 2996–3001. [Google Scholar] [CrossRef]
- Scheele, M.; Oeschler, N.; Meier, K.; Kornowski, A.; Klinke, C.; Weller, H. Synthesis and thermoelectric characterization of Bi2Te3 nanoparticles. Adv. Funct. Mater. 2009, 19, 3476–3483. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Li, Z.; Duan, W. Thermal and Thermoelectric Properties of Graphene. Small 2014, 10, 2182–2199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burton, M.R.; Liu, T.; McGettrick, J.; Mehraban, S.; Baker, J.; Pockett, A.; Watson, T.; Fenwick, O.; Carnie, M.J. Thin Film Tin Selenide (SnSe) Thermoelectric Generators Exhibiting Ultralow Thermal Conductivity. Adv. Mater. 2018, 30, 1801357. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, J.L.; Ferguson, A.J.; Cho, C.; Grunlan, J.C. Carbon-Nanotube-Based Thermoelectric Materials and Devices. Adv. Mater. 2018, 30, 1704386. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xu, H.; Zheng, Z.; Wang, C.; Li, X.; Li, F.; Fan, P.; Chen, Y.-X. Effects of Si Substrates with Variable Initial Orientations on the Growth and Thermoelectric Properties of Bi-Sb-Te Thin Films. Nanomaterials 2023, 13, 257. [Google Scholar] [CrossRef]
- Wang, N.; Shen, C.; Sun, Z.; Xiao, H.; Zhang, H.; Yin, Z.; Qiao, L. High-Temperature Thermoelectric Monolayer Bi2TeSe2 with High Power Factor and Ultralow Thermal Conductivity. ACS Appl. Energy Mater. 2022, 5, 2564–2572. [Google Scholar]
- Zhou, D.; Zhang, H.; Zheng, H.; Xu, Z.; Xu, H.; Guo, H.; Li, P.; Tong, Y.; Hu, B.; Chen, L. Recent Advances and Prospects of Small Molecular Organic Thermoelectric Materials. Small 2022, 18, 2200679. [Google Scholar] [CrossRef]
- McGrail, B.T.; Sehirlioglu, A.; Pentzer, E. Polymer composites for thermoelectric applications. Angew. Chem. Int. Ed. 2015, 54, 1710–1723. [Google Scholar] [CrossRef]
- Massetti, M.; Jiao, F.; Ferguson, A.J.; Zhao, D.; Wijeratne, K.; Würger, A.; Blackburn, J.L.; Crispin, X.; Fabiano, S. Unconventional thermoelectric materials for energy harvesting and sensing applications. Chem. Rev. 2021, 121, 12465–12547. [Google Scholar] [CrossRef]
- Zeng, M.; Zavanelli, D.; Chen, J.; Saeidi-Javash, M.; Du, Y.; LeBlanc, S.; Snyder, G.J.; Zhang, Y. Printing thermoelectric inks toward next-generation energy and thermal devices. Chem. Soc. Rev. 2022, 51, 485–512. [Google Scholar] [CrossRef]
- Emelianova, E.; Van der Auweraer, M.; Bässler, H. Hopping approach towards exciton dissociation in conjugated polymers. J. Chem. Phys. 2008, 128, 224709. [Google Scholar] [CrossRef]
- Schuster, R.; Knupfer, M.; Berger, H. Exciton band structure of pentacene molecular solids: Breakdown of the Frenkel exciton model. Phys. Rev. lett. 2007, 98, 037402. [Google Scholar] [CrossRef] [PubMed]
- Aragó, J.; Troisi, A. Dynamics of the excitonic coupling in organic crystals. Phys. Rev. Lett. 2015, 114, 026402. [Google Scholar] [CrossRef] [PubMed]
- Pautmeier, L.; Richert, R.; Bässler, H. Poole-Frenkel behavior of charge transport in organic solids with off-diagonal disorder studied by Monte Carlo simulation. Syn. Met. 1990, 37, 271–281. [Google Scholar] [CrossRef]
- Bässler, H.; Schönherr, G.; Abkowitz, M.; Pai, D. Hopping transport in prototypical organic glasses. Phys. Rev. B 1982, 26, 3105. [Google Scholar] [CrossRef]
- Suzuki, T.; De Nicola, A.; Okada, T.; Matsui, H. Fully Atomistic Molecular Dynamics Simulation of a TIPS-Pentacene:Polystyrene Mixed Film Obtained via the Solution Process. Nanomaterials 2023, 13, 312. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Harima, Y.; Zhu, L.; Kunugi, Y.; Yamashita, K.; Sakamoto, M.-A.; Sato, M.-A. Mobilities of charge carriers hopping between π-conjugated polymer chains. J. Mater. Chem. 2001, 11, 3043–3048. [Google Scholar] [CrossRef]
- Abtahi, A.; Johnson, S.; Park, S.M.; Luo, X.; Liang, Z.; Mei, J.; Graham, K.R. Designing π-conjugated polymer blends with improved thermoelectric power factors. J. Mater. Chem. A 2019, 7, 19774–19785. [Google Scholar] [CrossRef]
- Hertel, D.; Bässler, H.; Scherf, U.; Hörhold, H. Charge carrier transport in conjugated polymers. J. Chem. Phys. 1999, 110, 9214–9222. [Google Scholar] [CrossRef]
- Aïch, R.B.; Blouin, N.; Bouchard, A.; Leclerc, M. Electrical and Thermoelectric Properties of Poly(2,7-Carbazole) Derivatives. Chem. Mater. 2009, 21, 751–757. [Google Scholar] [CrossRef]
- Tam, T.L.D.; Wu, G.; Chien, S.W.; Lim, S.F.V.; Yang, S.-W.; Xu, J. High Spin Pro-Quinoid Benzo[1,2-c;4,5-c′]bisthiadiazole Conjugated Polymers for High-Performance Solution-Processable Polymer Thermoelectrics. ACS Mater. Lett. 2020, 2, 147–152. [Google Scholar] [CrossRef]
- Ding, J.; Liu, Z.; Zhao, W.; Jin, W.; Xiang, L.; Wang, Z.; Zeng, Y.; Zou, Y.; Zhang, F.; Yi, Y.; et al. Selenium-Substituted Diketopyrrolopyrrole Polymer for High-Performance p-Type Organic Thermoelectric Materials. Angew. Chem. Int. Ed. 2019, 58, 18994–18999. [Google Scholar] [CrossRef] [PubMed]
- Suh, E.H.; Oh, J.G.; Jung, J.; Noh, S.H.; Lee, T.S.; Jang, J. Brønsted Acid Doping of P3HT with Largely Soluble Tris (pentafluorophenyl) borane for Highly Conductive and Stable Organic Thermoelectrics Via One-Step Solution Mixing. Adv. Energy Mater. 2020, 10, 2002521. [Google Scholar] [CrossRef]
- Liang, Z.; Zhang, Y.; Souri, M.; Luo, X.; Boehm, A.M.; Li, R.; Zhang, Y.; Wang, T.; Kim, D.-Y.; Mei, J. Influence of dopant size and electron affinity on the electrical conductivity and thermoelectric properties of a series of conjugated polymers. J. Mater. Chem. A 2018, 6, 16495–16505. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, Y.; Xu, W.; Zhu, D. Thermoelectric energy from flexible P3HT films doped with a ferric salt of triflimide anions. Energy Environ. Sci. 2012, 5, 9639–9644. [Google Scholar] [CrossRef]
- Zhao, W.; Ding, J.; Zou, Y.; Di, C.-a.; Zhu, D. Chemical doping of organic semiconductors for thermoelectric applications. Chem. Soc. Rev. 2020, 49, 7210–7228. [Google Scholar] [CrossRef]
- Min, J.; Kim, D.; Han, S.G.; Park, C.; Lim, H.; Sung, W.; Cho, K. Position-Induced Efficient Doping for Highly Doped Organic Thermoelectric Materials. Adv. Electron. Mater. 2022, 8, 2101142. [Google Scholar] [CrossRef]
- Untilova, V.; Biskup, T.; Biniek, L.; Vijayakumar, V.; Brinkmann, M. Control of chain alignment and crystallization helps enhance charge conductivities and thermoelectric power factors in sequentially doped P3HT: F4TCNQ films. Macromolecules 2020, 53, 2441–2453. [Google Scholar] [CrossRef]
- Lim, E.; Peterson, K.A.; Su, G.M.; Chabinyc, M.L. Thermoelectric properties of poly (3-hexylthiophene)(P3HT) doped with 2, 3, 5, 6-Tetrafluoro-7, 7, 8, 8-tetracyanoquinodimethane (F4TCNQ) by vapor-phase infiltration. Chem. Mater. 2018, 30, 998–1010. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, I.E.; Aasen, E.W.; Oliveira, J.L.; Fonseca, T.N.; Roehling, J.D.; Li, J.; Zhang, G.; Augustine, M.P.; Mascal, M.; Moulé, A.J. Comparison of solution-mixed and sequentially processed P3HT: F4TCNQ films: Effect of doping-induced aggregation on film morphology. J. Mater. Chem. C 2016, 4, 3454–3466. [Google Scholar] [CrossRef] [Green Version]
- Scholes, D.T.; Hawks, S.A.; Yee, P.Y.; Wu, H.; Lindemuth, J.R.; Tolbert, S.H.; Schwartz, B.J. Overcoming film quality issues for conjugated polymers doped with F4TCNQ by solution sequential processing: Hall effect, structural, and optical measurements. J. Phys. Chem. Lett. 2015, 6, 4786–4793. [Google Scholar] [CrossRef]
- Patel, S.N.; Glaudell, A.M.; Peterson, K.A.; Thomas, E.M.; O’Hara, K.A.; Lim, E.; Chabinyc, M.L. Morphology controls the thermoelectric power factor of a doped semiconducting polymer. Sci. Adv. 2017, 3, e1700434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, C.; Wang, L.; Liu, T.; Zhou, X.; Wan, T.; Wang, S.; Chen, Z.; Gao, C.; Wang, L. Polar Side Chain Effects on the Thermoelectric Properties of Benzo [1, 2-b: 4, 5-b′] Dithiophene-Based Conjugated Polymers. Macromol. Rapid Commun. 2019, 40, 1900082. [Google Scholar] [CrossRef] [PubMed]
- Suh, E.H.; Jeong, M.K.; Lee, K.; Jeong, W.; Jang, J.; Jung, I.H. Solution-state doping-assisted molecular ordering and enhanced thermoelectric properties of an amorphous polymer. Int. J. Energy Res. 2021, 45, 21540–21551. [Google Scholar] [CrossRef]
- Suh, E.H.; Jeong, M.-K.; Lee, K.; Jeong, W.; Jeong, Y.J.; Jung, I.H.; Jang, J. Understanding the Solution-State Doping of Donor–Acceptor Polymers Through Tailored Side Chain Engineering for Thermoelectrics. Adv. Funct. Mater. 2022, 32, 2270291. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, R.; Sauvé, G.; Kowalewski, T.; McCullough, R.D. Highly disordered polymer field effect transistors: N-alkyl dithieno [3, 2-b: 2′, 3′-d] pyrrole-based copolymers with surprisingly high charge carrier mobilities. J. Am. Chem. Soc. 2008, 130, 13167–13176. [Google Scholar] [CrossRef]
- Lin, F.-J.; Lin, S.-D.; Chin, C.-H.; Chuang, W.-T.; Hsu, C.-S. Novel conjugated polymers based on bis-dithieno [3, 2-b; 2′, 3′-d] pyrrole vinylene donor and diketopyrrolopyrrole acceptor: Side chain engineering in organic field effect transistors. Polym. Chem. 2018, 9, 28–37. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Nguyen, L.T.; Nguyen, H.T.; Phan, N.L.T.; Nguyen, V.Q.; Nguyen, L.T.T.; Hoang, M.H.; Le Tran, H.; Mai, P.T.; Murata, H. Direct (hetero) arylation polymerization for the synthesis of donor–acceptor conjugated polymers based on N-benzoyldithieno [3, 2-b: 2′, 3′-d] pyrrole and diketopyrrolopyrrole toward organic photovoltaic cell application. Polym. Int. 2019, 68, 1776–1786. [Google Scholar] [CrossRef]
- Kim, J.; Kang, J.; Park, Y.-S.; Ahn, H.; Eom, S.H.; Jang, S.-Y.; Jung, I.H. Alkylthiazole-based semicrystalline polymer donors for fullerene-free organic solar cells. Polym. Chem. 2019, 10, 4314–4321. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Rev. C.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Mukhopadhyaya, T.; Lee, T.D.; Ganley, C.; Tanwar, S.; Raj, P.; Li, L.; Song, Y.; Clancy, P.; Barman, I.; Thon, S.; et al. Stable High-Conductivity Ethylenedioxythiophene Polymers via Borane-Adduct Doping. Adv. Funct. Mater. 2022, 32, 2208541. [Google Scholar] [CrossRef]
- Mansour, A.E.; Valencia, A.M.; Lungwitz, D.; Wegner, B.; Tanaka, N.; Shoji, Y.; Fukushima, T.; Opitz, A.; Cocchi, C.; Koch, N. Understanding the evolution of the Raman spectra of molecularly p-doped poly(3-hexylthiophene-2,5-diyl): Signatures of polarons and bipolarons. Phys. Chem. Chem. Phys. 2022, 24, 3109–3118. [Google Scholar] [CrossRef]
- Chua, L.-L.; Zaumseil, J.; Chang, J.-F.; Ou, E.C.W.; Ho, P.K.H.; Sirringhaus, H.; Friend, R.H. General observation of n-type field-effect behaviour in organic semiconductors. Nature 2005, 434, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Suh, E.H.; Kim, S.B.; Yang, H.S.; Jang, J. Regulating Competitive Doping in Solution-Mixed Conjugated Polymers for Dramatically Improving Thermoelectric Properties. Adv. Funct. Mater. 2022, 32, 2207413. [Google Scholar] [CrossRef]
- Jeong, Y.J.; Jung, J.; Suh, E.H.; Yun, D.-J.; Oh, J.G.; Jang, J. Self-Healable and Stretchable Organic Thermoelectric Materials: Electrically Percolated Polymer Nanowires Embedded in Thermoplastic Elastomer Matrix. Adv. Funct. Mater. 2020, 30, 1905809. [Google Scholar] [CrossRef]
- Suh, E.H.; Jeong, Y.J.; Oh, J.G.; Lee, K.; Jung, J.; Kang, Y.S.; Jang, J. Doping of donor-acceptor polymers with long side chains via solution mixing for advancing thermoelectric properties. Nano Energy 2019, 58, 585–595. [Google Scholar] [CrossRef]
- Tam, T.L.D.; Ng, C.K.; Lim, S.L.; Yildirim, E.; Ko, J.; Leong, W.L.; Yang, S.-W.; Xu, J. Proquinoidal-Conjugated Polymer as an Effective Strategy for the Enhancement of Electrical Conductivity and Thermoelectric Properties. Chem. Mater. 2019, 31, 8543–8550. [Google Scholar] [CrossRef]
- Kohno, S.; Yamashita, Y.; Kasuya, N.; Mikie, T.; Osaka, I.; Takimiya, K.; Takeya, J.; Watanabe, S. Controlled steric selectivity in molecular doping towards closest-packed supramolecular conductors. Commun. Mater. 2020, 1, 79. [Google Scholar] [CrossRef]
- Zhang, X.; Steckler, T.T.; Dasari, R.R.; Ohira, S.; Potscavage, W.J.; Tiwari, S.P.; Coppée, S.; Ellinger, S.; Barlow, S.; Brédas, J.-L.; et al. Dithienopyrrole-based donor–acceptor copolymers: Low band-gap materials for charge transport, photovoltaics and electrochromism. J. Mater. Chem. 2010, 20, 123–134. [Google Scholar] [CrossRef]
- Burrezo, P.M.; Zafra, J.L.; López Navarrete, J.T.; Casado, J. Quinoidal/Aromatic Transformations in π-Conjugated Oligomers: Vibrational Raman studies on the Limits of Rupture for π-Bonds. Angew. Chem. Int. Ed. 2017, 56, 2250–2259. [Google Scholar] [CrossRef]
- Rybakiewicz, R.; Skorka, L.; Louarn, G.; Ganczarczyk, R.; Zagorska, M.; Pron, A. N-substituted dithienopyrroles as electrochemically active monomers: Synthesis, electropolymerization and spectroelectrochemistry of the polymerization products. Electrochim. Acta 2019, 295, 472–483. [Google Scholar] [CrossRef]
- Wade, J.; Wood, S.; Beatrup, D.; Hurhangee, M.; Bronstein, H.; McCulloch, I.; Durrant, J.R.; Kim, J.-S. Operational electrochemical stability of thiophene-thiazole copolymers probed by resonant Raman spectroscopy. J. Chem. Phys. 2015, 142, 244904. [Google Scholar] [CrossRef] [Green Version]
- Hamidi-Sakr, A.; Biniek, L.; Bantignies, J.-L.; Maurin, D.; Herrmann, L.; Leclerc, N.; Lévêque, P.; Vijayakumar, V.; Zimmermann, N.; Brinkmann, M. A Versatile Method to Fabricate Highly In-Plane Aligned Conducting Polymer Films with Anisotropic Charge Transport and Thermoelectric Properties: The Key Role of Alkyl Side Chain Layers on the Doping Mechanism. Adv. Funct. Mater. 2017, 27, 1700173. [Google Scholar] [CrossRef]
λmax (nm) a | Egopt (eV) b | Eox (V)/EHOMO (eV) c | ELUMO (eV) d | ||
---|---|---|---|---|---|
Solution a | Film | ||||
PDTz | 528 | 554 | 1.81 | 0.16/−4.9 | −3.09 |
PDTTz | 528 | 557 | 1.79 | 0.27/−5.0 | −3.21 |
Polymer | Mobility (cm2 V−1 s−1) | Electrical Conductivity σ (S cm−1) | Seebeck Coefficient S (µV K−1) | Power Factor S2σ (µW m−1 K−2) |
---|---|---|---|---|
PDTz | 2.2 × 10−3 | 0.05 ± 0.004 | 181 | 0.18 ± 0.01 |
PDTTz | 4.6 × 10−3 | 0.47 ± 0.02 | 101 | 0.48 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Suh, E.H.; Lee, K.; Kim, G.; Kim, H.; Jang, J.; Jung, I.H. Development of Alkylthiazole-Based Novel Thermoelectric Conjugated Polymers for Facile Organic Doping. Nanomaterials 2023, 13, 1286. https://doi.org/10.3390/nano13071286
Kim J, Suh EH, Lee K, Kim G, Kim H, Jang J, Jung IH. Development of Alkylthiazole-Based Novel Thermoelectric Conjugated Polymers for Facile Organic Doping. Nanomaterials. 2023; 13(7):1286. https://doi.org/10.3390/nano13071286
Chicago/Turabian StyleKim, Junho, Eui Hyun Suh, Kyumin Lee, Gyuri Kim, Hansu Kim, Jaeyoung Jang, and In Hwan Jung. 2023. "Development of Alkylthiazole-Based Novel Thermoelectric Conjugated Polymers for Facile Organic Doping" Nanomaterials 13, no. 7: 1286. https://doi.org/10.3390/nano13071286
APA StyleKim, J., Suh, E. H., Lee, K., Kim, G., Kim, H., Jang, J., & Jung, I. H. (2023). Development of Alkylthiazole-Based Novel Thermoelectric Conjugated Polymers for Facile Organic Doping. Nanomaterials, 13(7), 1286. https://doi.org/10.3390/nano13071286