Enhancement of Structural, Optical and Photoelectrochemical Properties of n−Cu2O Thin Films with K Ions Doping toward Biosensor and Solar Cell Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structural Investigations
3.2. Raman Analysis
3.3. Surface Morphology Evaluation
3.4. Photoluminescence (PL) Evaluation
3.5. Optical Analysis
3.6. Photocurrent and Photoelectrochemical Measurements
3.7. Mott–Schottky and Electrochemical Impedance Spectroscopy (EIS) Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, D.; Yang, J.; Wang, J.; Yang, J.; Qiao, G. Construction of Cu2O-reduced graphene oxide composites with enhanced photoelectric and photocatalytic properties. Opt. Mater. 2019, 100, 109612. [Google Scholar] [CrossRef]
- Deng, C.; Hong, R.; Jing, M.; Shi, J.; Yan, T.; Tao, C.; Zhang, D. Photocatalytic performance of TiO2 thin film decorated with Cu2O nanoparticles by laser ablation. Opt. Mater. 2019, 94, 130–137. [Google Scholar] [CrossRef]
- Jayathilaka, C.; Kumara, L.S.R.; Ohara, K.; Song, C.; Kohara, S.; Sakata, O.; Siripala, W.; Jayanetti, S. Enhancement of Solar Cell Performance of Electrodeposited Ti/n−Cu2O/p-Cu2O/Au Homojunction Solar Cells by Interface and Surface Modification. Crystals 2020, 10, 609. [Google Scholar] [CrossRef]
- Elfadill, N.G.; Hashim, M.R.; Chahrour, K.M.; Mohammed, S.A. Preparation of p-type Na-doped Cu2O by electrodeposition for a p-n homojunction thin film solar cell. Semicond. Sci. Technol. 2016, 31, 065001. [Google Scholar] [CrossRef]
- Sanjana, T.; Sunil, M.A.; Shaik, H.; Kumar, K.N. Studies on DC sputtered cuprous oxide thin films for solar cell absorber layers. Mater. Chem. Phys. 2022, 281, 125922. [Google Scholar] [CrossRef]
- Yang, F.; Peng, W.; Zhou, Y.; Li, R.; Xiang, G.; YueLiu, J.Z.; Zhang, J.; Zhao, Y.; Wang, H. Thermal optimization of defected Cu2O photon-absorbing layer and the steady p-Cu2O/n-Si photovoltaic application. Vacuum 2022, 198, 110876. [Google Scholar] [CrossRef]
- Geng, J.; Ma, J.; Li, F.; Ma, S.; Zhang, D.; Ning, X. RETRACTED: Atomic layer deposition of Cu2O on NH2-MIL-101(Fe) for enhanced photocatalytic performance and decreased electron/hole recombination. Ceram. Int. 2020, 47, 13291–13300. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, X.; Gao, P.; Nie, J.; Yang, F.; Guo, B.; Zhang, J. Preparation of BiOCl/Cu2O composite particles and its photocatalytic degradation of moxifloxacin. Opt. Mater. 2022, 128, 112432. [Google Scholar] [CrossRef]
- Kathalingam, A.; Vikraman, D.; Kim, H.-S.; Park, H. Facile fabrication of n-ZnO nanorods/p-Cu2O heterojunction and its photodiode property. Opt. Mater. 2017, 66, 122–130. [Google Scholar] [CrossRef]
- Iivonen, T.; Heikkilä, M.J.; Popov, G.; Nieminen, H.-E.; Kaipio, M.; Kemell, M.; Mattinen, M.; Meinander, K.; Mizohata, K.; Räisänen, J.; et al. Atomic Layer Deposition of Photoconductive Cu2O Thin Films. ACS Omega 2019, 4, 11205–11214. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Parui, S.S.; Limbu, S.; Mahato, D.K.; Tiwari, N.; Chauhan, R.N. Structural and optical properties of sol–gel derived CuO and Cu2O nanoparticles. Mater. Today Proc. 2020, 41, 237–241. [Google Scholar] [CrossRef]
- Chen, X.; Liu, E.; Zhang, D.; Zhang, Z.; Dong, Q.; Zhang, X.; Ding, X.; Chen, S.; Zhu, X. Synthesis of novel muscovite loaded nano Ag/Cu2-xFexO composites with excellent visible-light responsive photocatalysis. Opt. Mater. 2022, 124, 112002. [Google Scholar] [CrossRef]
- El-Shaer, A.; Ismail, W.; Abdelfatah, M. Towards low cost fabrication of inorganic white light emitting diode based on electrodeposited Cu2O thin film/TiO2 nanorods heterojunction. Mater. Res. Bull. 2019, 116, 111–116. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, J.; Cai, L.; Yao, Z.; Duan, C.; Zhao, Z.; Zhao, C.; Mai, W. Solution-processed high-quality Cu2O thin films as hole transport layers for pushing the conversion efficiency limit of Cu2O/Si heterojunction solar cells. Solar RRL 2020, 4, 1900339. [Google Scholar] [CrossRef]
- Zubairu, A.; Gimba, A.; Gutti, B.; Audu, A. Potentiostatic Elehctro-Deposition of pn Homo-Junction Cuprous Oxide Solar Cells. Energy Power 2020, 10, 20–25. [Google Scholar]
- Kardarian, K.; Nunes, D.; Sberna, P.; Ginsburg, A.; Keller, D.; Pinto, J.; Deuermeier, J.; Anderson, A.; Zaban, A.; Martins, R. Effect of Mg doping on Cu2O thin films and their behavior on the TiO2/Cu2O heterojunction solar cells. Sol. Energy Mater. Sol. Cells 2016, 147, 27–36. [Google Scholar] [CrossRef]
- Özdal, T.; Kılıç, M.; Kavak, H. Impact of improvements in ZnO thin film solution process on ZnO/Cu2O solar cell performance. Superlattices Microstruct. 2021, 156, 106948. [Google Scholar] [CrossRef]
- El-Shafai, N.M.; Ibrahim, M.M.; Abdelfatah, M.; Ramadan, M.S.; El-Mehasseb, I.M. Synthesis, characterization, and cytotoxicity of self-assembly of hybrid nanocomposite modified membrane of carboxymethyl cellulose/graphene oxide for photocatalytic antifouling, energy storage, and supercapacitors application. Colloids Surf. A Physicochem. Eng. Asp. 2021, 626, 127035. [Google Scholar] [CrossRef]
- Abdelfatah, M.; Ismail, W.; El-Shaer, A. Low cost inorganic white light emitting diode based on submicron ZnO rod arrays and electrodeposited Cu2O thin film. Mater. Sci. Semicond. Process. 2018, 81, 44–47. [Google Scholar] [CrossRef]
- Jagadeesan, M.; Movlaee, K.; Krishnakumar, T.; Leonardi, S.; Neri, G. One-step microwave-assisted synthesis and characterization of novel CuO nanodisks for non-enzymatic glucose sensing. J. Electroanal. Chem. 2019, 835, 161–168. [Google Scholar] [CrossRef]
- Ismail, W.; El-Shafai, N.M.; El-Shaer, A.; Abdelfatah, M. Impact of substrate type on the surface and properties of electrodeposited Cu2O nanostructure films as an absorber layer for solar cell applications. Mater. Sci. Semicond. Process. 2020, 120, 105335. [Google Scholar] [CrossRef]
- Salah, H.Y.; Abdelfatah, M.; El-Shaer, A.; Oraby, A.H. Effect of Al doped ZnO on optical and photovoltaic properties of the p-Cu2O/n-AZO solar cells. Ceram. Int. 2023, 49, 7746–7752. [Google Scholar] [CrossRef]
- Ganesan, K.P.; Anandhan, N.; Gopu, G.; Amaliroselin, A.; Marimuthu, T.; Paneerselvam, R. An enhancement of ferromagnetic, structural, morphological, and optical properties of Mn-doped Cu2O thin films by an electrodeposition technique. J. Mater. Sci. Mater. Electron. 2019, 30, 19524–19535. [Google Scholar] [CrossRef]
- Rahal, H.; Kihal, R.; Affoune, A.M.; Rahal, S. Effect of Solution pH on Properties of Cuprous Oxide Thin Films Prepared by Electrodeposition from a New Bath. J. Electron. Mater. 2020, 49, 4385–4391. [Google Scholar] [CrossRef]
- Muniz, F.T.L.; Miranda, M.A.R.; dos Santos, C.M.; Sasaki, J.M. The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallogr. Sect. A Found. Adv. 2016, 72, 385–390. [Google Scholar] [CrossRef]
- Abdelfatah, M.; Salah, H.; El-Henawey, M.; Oraby, A.; El-Shaer, A.; Ismail, W. Insight into Co concentrations effect on the structural, optical, and photoelectrochemical properties of ZnO rod arrays for optoelectronic applications. J. Alloys Compd. 2021, 873, 159875. [Google Scholar] [CrossRef]
- Huang, B.; Shao, Y.; Liu, Y.; Lu, Z.; Lu, X.; Liao, S. Improving Potassium-Ion Batteries by Optimizing the Composition of Prussian Blue Cathode. ACS Appl. Energy Mater. 2019, 2, 6528–6535. [Google Scholar] [CrossRef]
- Taşer, A.; Güldüren, M.E.; Güney, H. Fe doping effects in MgO thin films grown with SILAR technique. Mater. Chem. Phys. 2021, 272, 124993. [Google Scholar] [CrossRef]
- Chen, Y.; Tan, H.; Wu, X.; Sun, Q.; Wang, D.; Wang, Y. Effect of Doping Ce Ions on Morphology and Photocatalytic Activity of CuO Nanostructures. Cryst. Res. Technol. 2019, 54, 1900033. [Google Scholar] [CrossRef]
- Brandt, I.S.; Tumelero, M.A.; Martins, C.A.; Cid, C.C.P.; Faccio, R.; Pasa, A.A. Defects controlling electrical and optical properties of electrodeposited Bi doped Cu2O. J. Appl. Phys. 2018, 123, 161412. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.; Liu, W.; Quan, L.; Han, N.; Bai, S.; Luo, R.; Feng, Y.; Li, D.; Che, A. Cu2O and rGO hybridizing for enhancement of low-concentration NO2 sensing at room temperature. Ind. Eng. Chem. Res. 2018, 57, 10086–10094. [Google Scholar] [CrossRef]
- Zhao, G.; Wu, G.; Liu, Y.; He, Y.; Feng, J.; Li, D. Preparation of AuPd/ZnO–CuO for the directional oxidation of glycerol to DHA. Catal. Sci. Technol. 2020, 10, 6223–6234. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, D.; Li, J.; Gan, G.; Rao, Y.; Huang, X.; Yang, Y.; Shi, L.; Liao, Y.; Liu, C.; et al. Crystal structure, bond energy, Raman spectra, and microwave dielectric properties of Ti-doped Li3Mg2NbO6. Ceramics 2020, 103, 4321–4332. [Google Scholar]
- Abdelfatah, M.; Basuni, A.; Salah, H.; Bakry, M.; Darwesh, N.; Ismail, W.; El-Shaer, A. Improvement of physical and electrochemical properties of Cu2O thin films with Fe ions doping towards optoelectronic applications. Opt. Mater. 2022, 130, 112583. [Google Scholar] [CrossRef]
- Zgair, I.A.; Alkhayatt, A.H.O.; Muhmood, A.A.; Hussain, S.K. Investigation of structure, optical and photoluminescence characteristics of Li doped CuO nanostructure thin films synthesized by SILAR method. Optik 2019, 191, 48–54. [Google Scholar] [CrossRef]
- Chatterjee, S.; Pal, A.J. Introducing Cu2O Thin Films as a Hole-Transport Layer in Efficient Planar Perovskite Solar Cell Structures. J. Phys. Chem. C 2016, 120, 1428–1437. [Google Scholar] [CrossRef]
- Hssi, A.A.; Atourki, L.; Labchir, N.; Ouafi, M.; Abouabassi, K.; Elfanaoui, A.; Ihlal, A.; Bouabid, K. Optical and dielectric properties of electrochemically deposited p-Cu2O films. Mater. Res. Express 2020, 7, 016424. [Google Scholar] [CrossRef]
- Dhanabalan, K.; Ravichandran, A.T.; Ravichandran, K.; Valanarasu, S.; Mantha, S. Effect of Co doped material on the structural, optical and magnetic properties of Cu2O thin films by SILAR technique. J. Mater. Sci. Mater. Electron. 2016, 28, 4431–4439. [Google Scholar] [CrossRef]
- Abdelghany, A.; Meikhail, M.; Elsheshtawy, N.; Salah, H. Structural and thermal stabilization correlation of PEO/PVA-AgCl polymer composites. Middle East J. Appl. Sci. 2015, 5, 1–6. [Google Scholar]
- Farea, M.O.; Abdelghany, A.M.; Oraby, A.H. Optical and dielectric characteristics of polyethylene oxide/sodium alginate-modified gold nanocomposites. RSC Adv. 2020, 10, 37621–37630. [Google Scholar] [CrossRef]
- Ganesan, K.P.; Anandhan, N.; Amaliroselin, A.; Thangamuthu, R.; Marimuthu, T.; Panneerselvam, R. Tuning the magnetic properties of electrochemically deposited Cu2O thin films by Fe incorporation. J. Mater. Sci. Mater. Electron. 2019, 30, 15482–15492. [Google Scholar] [CrossRef]
- Živković, A.; Roldan, A.; de Leeuw, N.H. Tuning the electronic band gap of Cu2O via transition metal doping for improved photovoltaic applications. Phys. Rev. Mater. 2019, 3, 115202. [Google Scholar] [CrossRef] [Green Version]
- Yan, B.; Wang, Y.; Jiang, T.; Wu, X. Synthesis and enhanced photocatalytic property of La-doped CuO nanostructures by electrodeposition method. J. Mater. Sci. Mater. Electron. 2016, 27, 5389–5394. [Google Scholar] [CrossRef]
- Choudhury, B.; Dey, M.; Choudhury, A. Defect generation, d-d transition, and band gap reduction in Cu-doped TiO2 nanoparticles. Int. Nano Lett. 2013, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Salah, H.Y.; Mahmoud, K.R.; Ismail, W.; El-Shaer, A.; Oraby, A.H.; Abdelfatah, M.; El-Henawey, M.I. Influence of Nickel Concentration on the Microstructure, Optical, Electrical, and Photoelectrochemical Properties of ZnO Nanorods Synthesized by Hydrothermal Method. J. Electron. Mater. 2022, 51, 910–920. [Google Scholar] [CrossRef]
- Abderrahmane, B.; Djamila, A.; Chaabia, N.; Foudil, R. Improvement of ZnO nanorods photoelectrochemical, optical, structural and morphological characterizations by cerium ions doping. J. Alloys Compd. 2020, 829, 154498. [Google Scholar] [CrossRef]
- Salah, H.Y.; Bakry, M.; Kubas, M.; Ismail, W.; El-Henawey, M.I.; Oraby, A.H.; El-Shaer, A.; Abdelfatah, M. Improvement of the structural, morphological, optical, and photoelectrochemical properties of Al-doped ZnO nanorods for use in biosensors and solar cells. Eur. Phys. J. Plus 2022, 137, 1319. [Google Scholar] [CrossRef]
- Han, J.; Chang, J.; Wei, R.; Ning, X.; Li, J.; Li, Z.; Guo, H.; Yang, Y. Mechanistic investigation on tuning the conductivity type of cuprous oxide (Cu2O) thin films via deposition potential. Int. J. Hydrogen Energy 2018, 43, 13764–13777. [Google Scholar] [CrossRef]
- Chen, Y.C.; Chen, Y.J.; Dong, P.H.; Hsu, Y.K. Benchmarked photoelectrochemical water splitting by nickel-doped n-type cuprous oxide. ACS Appl. Energy Mater. 2020, 3, 1373–1380. [Google Scholar] [CrossRef]
- Kalubowila, K.D.R.N.; Jayathileka, K.M.D.C.; Kumara, L.S.R.; Ohara, K.; Sakata, O.; Gunewardene, M.S.; Jayasundara, J.M.D.R.; Dissanayake, D.P.; Jayanetti, J.K.D.S. Effect of Bath pH on Electronic and Morphological Properties of Electrodeposited Cu2O Thin Films. J. Electrochem. Soc. 2019, 166, D113–D119. [Google Scholar] [CrossRef]
- Liang, X.; He, Q.; Zhang, J.; Ding, X.; Gao, Y.; Chen, W.; Zhang, K.H.; Haw, C.Y. Enhanced photo-carrier transportation at semiconductor/electrolyte interface of TiO2 photoanode by oxygen vacancy engineering. Appl. Surf. Sci. 2022, 597, 153744. [Google Scholar] [CrossRef]
- Atef, N.; Emara, S.S.; Eissa, D.S.; El-Sayed, A.; Abdelraouf, O.A.M.; Allam, N.K. Well-dispersed Au nanoparticles prepared via magnetron sputtering on TiO2 nanotubes with unprecedentedly high activity for water splitting. Electrochem. Sci. Adv. 2020, 1, e2000004. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Hsiao, Z.-Q.; Hsu, Y.-K. Effect of alkaline-doping on photoelectrochemical activity of electrodeposited cuprous oxide films. Int. J. Hydrogen Energy 2018, 43, 13032–13038. [Google Scholar] [CrossRef]
- Siddiqui, H.; Parra, M.R.; Qureshi, M.S.; Malik, M.M.; Haque, F.Z. Studies of structural, optical, and electrical properties associated with defects in sodium-doped copper oxide (CuO/Na) nanostructures. J. Mater. Sci. 2018, 53, 8826–8843. [Google Scholar] [CrossRef]
- Hamdani, I.; Bhaskarwar, A.N. Tuning of the structural, morphological, optoelectronic and interfacial properties of electrodeposited Cu2O towards solar water-splitting by varying the deposition pH. Sol. Energy Mater. Sol. Cells 2022, 240, 111719. [Google Scholar] [CrossRef]
- Koiki, B.A.; Orimolade, B.O.; Zwane, B.N.; Nkosi, D.; Mabuba, N.; Arotiba, O.A. Cu2O on anodised TiO2 nanotube arrays: A heterojunction photoanode for visible light assisted electrochemical degradation of pharmaceuticals in water. Electrochim. Acta 2020, 340, 135944. [Google Scholar] [CrossRef]
Doped Concentration | Crystallite Size Avg (D) (nm) | Dislocation Density (δ) × 1014 | Microstrain (ε) ×10−3 lines−2 m4 | Energy Gap (eV) |
---|---|---|---|---|
0 | 55 | 3.3 | 8.4 | 2.33 |
0.03 | 31.2 | 10.2 | 17 | 2.35 |
0.05 | 25.2 | 15.7 | 19.7 | 2.37 |
0.07 | 27.8 | 12.9 | 17.8 | 2.26 |
0.1 | 29.1 | 11.8 | 16.3 | 2.21 |
Samples | Vfb (V vs. Ag/AgCl) | Conductivity Type | Dopant’s Density (cm− 3) |
---|---|---|---|
Undoped Cu2O | −0.8 | n-type | 1.3 × 1017 |
0.03 K-Cu2O | −0.75 | n-type | 1.7 × 1017 |
0.05 K-Cu2O | −0.71 | n-type | 2.1 × 1017 |
0.07 K-Cu2O | −0.83 | n-type | 2.6 × 1017 |
0.1 K-Cu2O | −0.87 | n-type | 3.2 × 1017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelfatah, M.; Darwesh, N.; Habib, M.A.; Alduaij, O.K.; El-Shaer, A.; Ismail, W. Enhancement of Structural, Optical and Photoelectrochemical Properties of n−Cu2O Thin Films with K Ions Doping toward Biosensor and Solar Cell Applications. Nanomaterials 2023, 13, 1272. https://doi.org/10.3390/nano13071272
Abdelfatah M, Darwesh N, Habib MA, Alduaij OK, El-Shaer A, Ismail W. Enhancement of Structural, Optical and Photoelectrochemical Properties of n−Cu2O Thin Films with K Ions Doping toward Biosensor and Solar Cell Applications. Nanomaterials. 2023; 13(7):1272. https://doi.org/10.3390/nano13071272
Chicago/Turabian StyleAbdelfatah, Mahmoud, Nourhan Darwesh, Mohamed A. Habib, Omar K. Alduaij, Abdelhamid El-Shaer, and Walid Ismail. 2023. "Enhancement of Structural, Optical and Photoelectrochemical Properties of n−Cu2O Thin Films with K Ions Doping toward Biosensor and Solar Cell Applications" Nanomaterials 13, no. 7: 1272. https://doi.org/10.3390/nano13071272
APA StyleAbdelfatah, M., Darwesh, N., Habib, M. A., Alduaij, O. K., El-Shaer, A., & Ismail, W. (2023). Enhancement of Structural, Optical and Photoelectrochemical Properties of n−Cu2O Thin Films with K Ions Doping toward Biosensor and Solar Cell Applications. Nanomaterials, 13(7), 1272. https://doi.org/10.3390/nano13071272