Broadband Antireflective Hybrid Micro/Nanostructure on Zinc Sulfide Fabricated by Optimal Bessel Femtosecond Laser
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Meena, V.S.; Mehata, M.S. Investigation of grown ZnS film on HgCdTe substrate for passivation of infrared photodetector. Thin Solid Films 2021, 731, 138751. [Google Scholar] [CrossRef]
- Yue, S.; Hou, M.; Wang, R.; Guo, H.; Hou, Y.; Li, M.; Zhang, Z.; Wang, Y.; Zhang, Z. Ultra-broadband metamaterial absorber from ultraviolet to long-wave infrared based on CMOS-compatible materials. Opt. Express 2020, 28, 31844–31861. [Google Scholar] [CrossRef]
- Bushunov, A.A.; Tarabrin, M.K.; Lazarev, V.A. Review of Surface Modification Technologies for Mid-Infrared Antireflection Microstructures Fabrication. Laser Photonics Rev. 2021, 15, 2000202. [Google Scholar] [CrossRef]
- Busse, L.E.; Frantz, J.A.; Shaw, L.B.; Aggarwal, I.D.; Sanghera, J.S. Review of antireflective surface structures on laser optics and windows. Appl. Opt. 2015, 54, F303–F310. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.L.A.; Altharawi, A.; Fale, P.L.; Song, C.L.; Kazarian, S.G.; Cinque, G.; Untereiner, V.; Sockalingum, G.D. Transmission Fourier Transform Infrared Spectroscopic Imaging, Mapping, and Synchrotron Scanning Microscopy with Zinc Sulfide Hemispheres on Living Mammalian Cells at Sub-Cellular Resolution. Appl. Spectrosc. 2020, 74, 544–552. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, T.; Fan, S.; Cheng, G. Fabrication of Micro Hole Array on the Surface of CVD ZnS by Scanning Ultrafast Pulse Laser for Antireflflection. Opt. Mater. 2017, 66, 356–360. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; Li, L.; Zhong, L.; Wang, K.; Gan, W.; Qiu, Y. High-Performance Flexible Transparent Conductive Films Enabled by a Commonly Used Antireflection Layer. ACS Appl. Mater. Interfaces 2020, 13, 2979–2987. [Google Scholar] [CrossRef]
- Jung, S.-M.; Kim, Y.-H.; Kim, S.-I.; Yoo, S.-I. Design and fabrication of multi-layer antireflection coating for III-V solar cell. Curr. Appl. Phys. 2011, 11, 538–541. [Google Scholar] [CrossRef]
- Moghadam, R.Z.; Ahmadvand, H.; Jannesari, M. Design and fabrication of multi-layers infrared antireflection coating consisting of ZnS and Ge on ZnS substrate. Infrared Phys. Technol. 2016, 75, 18–21. [Google Scholar] [CrossRef]
- Ma, C.; Wang, L.; Fan, X.; Liu, J. Broadband antireflection and hydrophobic CaF2 film prepared with magnetron sputtering. Appl. Surf. Sci. 2021, 560, 149924. [Google Scholar] [CrossRef]
- Cherupurakal, N.; Mozumder, M.S.; Mourad, A.H.I.; Lalwani, S. Recent advances in superhydrophobic polymers for antireflective self-cleaning solar panels. Renew. Sustain. Energy Rev. 2021, 151, 111538. [Google Scholar] [CrossRef]
- Yoo, Y.J.; Kim, Y.J.; Kim, S.-Y.; Lee, J.H.; Kim, K.; Ko, J.H.; Lee, J.W.; Lee, B.H.; Song, Y.M. Mechanically robust antireflective moth-eye structures with a tailored coating of dielectric materials. Opt. Mater. Express 2019, 9, 4178–4186. [Google Scholar] [CrossRef]
- Chan, L.W.; Morse, D.E.; Gordon, M.J. Moth eye-inspired anti-reflective surfaces for improved IR optical systems & visible LEDs fabricated with colloidal lithography and etching. Bioinspiration Biomim. 2018, 13, 041001. [Google Scholar] [CrossRef]
- Yin, K.; Chu, D.; Dong, X.; Wang, C.; Duan, J.-A.; He, J. Femtosecond laser induced robust periodic nanoripple structured mesh for highly efficient oil–water separation. Nanoscale 2017, 9, 14229–14235. [Google Scholar] [CrossRef] [PubMed]
- Kuroo, S.-I.; Oyama, S.; Shiraishi, K.; Sasho, H.; Fukushima, K. Reduction of light reflection at silicon-plate surfaces by means of subwavelength gratings in terahertz region. Appl. Opt. 2010, 49, 2806–2812. [Google Scholar] [CrossRef]
- Ye, X.; Jiang, X.; Huang, J.; Geng, F.; Sun, L.; Zu, X.; Wu, W.; Zheng, W. Formation of Broadband Antireflective and Superhydrophilic Subwavelength Structures on Fused Silica Using One-step Self-masking Reactive Ion Rtching. Sci. Rep. 2015, 5, 13023. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Yi, S.; Kim, J.D.; Yin, X.; Li, J.; Bong, J.; Liu, D.; Liu, S.-C.; Kvit, A.; Zhou, W.; et al. Enhanced Performance of Ge Photodiodes via Monolithic Antireflection Texturing and α-Ge Self-Passivation by Inverse Metal-Assisted Chemical Etching. ACS Nano 2018, 12, 6748–6755. [Google Scholar] [CrossRef]
- Saifullah, M.S.M.; Asbahi, M.; Kiyani, M.B.-K.; Tripathy, S.; Ong, E.A.H.; Ibn Saifullah, A.; Tan, H.R.; Dutta, T.; Ganesan, R.; Valiyaveettil, S.; et al. Direct Patterning of Zinc Sulfide on a Sub-10 Nanometer Scale via Electron Beam Lithography. ACS Nano 2017, 11, 9920–9929. [Google Scholar] [CrossRef] [PubMed]
- Bacon-Brown, D.A.; Braun, P.V. Tunable Antireflection Coating to Remove Index-Matching Requirement for Interference Lithography. Adv. Opt. Mater. 2018, 6, 1701049. [Google Scholar] [CrossRef]
- Jacobo-Martín, A.; Rueda, M.; Hernández, J.J.; Navarro-Baena, I.; Monclús, M.A.; Molina-Aldareguia, J.M.; Rodríguez, I. Bioinspired antireflective flexible films with optimized mechanical resistance fabricated by roll to roll thermal nanoimprint. Sci. Rep. 2021, 11, 2419. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, M.; Chen, L.; Cai, B.; Yang, R.; Zhu, Y. Broadband terahertz anti-reflective structure fabricated by femtosecond laser drilling technique. Opt. Commun. 2016, 361, 148–152. [Google Scholar] [CrossRef]
- Ionin, A.A.; Klimachev, Y.M.; Kozlov, A.Y.; Kudryashov, S.I.; Ligachev, A.E.; Makarov, S.V.; Seleznev, L.V.; Sinitsyn, D.V.; Rudenko, A.A.; Khmelnitsky, R.A. Direct femtosecond laser fabrication of antireflective layer on GaAs surface. Appl. Phys. B Laser Opt. 2013, 111, 419–423. [Google Scholar] [CrossRef]
- Jia, X.; Li, Z.; Wang, C.; Li, K.; Zhang, L.; Ji’An, D. Study of the dynamics of material removal processes in combined pulse laser drilling of alumina ceramic. Opt. Laser Technol. 2023, 160, 109053. [Google Scholar] [CrossRef]
- Jia, X.; Li, K.; Li, Z.; Wang, C.; Chen, J.; Cui, S. Multi-scan picosecond laser welding of non-optical contact soda lime glass. Opt. Laser Technol. 2023, 161, 109164. [Google Scholar] [CrossRef]
- Malinauskas, M.; Žukauskas, A.; Hasegawa, S.; Hayasaki, Y.; Mizeikis, V.; Buividas, R.; Juodkazis, S. Ultrafast laser processing of materials: From science to industry. Light. Sci. Appl. 2016, 5, e16133. [Google Scholar] [CrossRef]
- Sugioka, K.; Cheng, Y. Ultrafast lasers—Reliable tools for advanced materials processing. Light. Sci. Appl. 2014, 3, e149. [Google Scholar] [CrossRef]
- Gamaly, E.G. Femtosecond Laser-Matter Interaction: Theory, Experiments and Applications; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Tarabrin, M.K.; Bushunov, A.A.; Teslenko, A.A.; Sakharova, T.; Hinkel, J.; Usenov, I.; Döhler, T.; Geißler, U.; Artyushenko, V.; Lazarev, V.A. Fabrication of an antireflection microstructure on AgClBr polycrystalline fiber by single pulse femtosecond laser ablation. Opt. Mater. Express 2021, 11, 487. [Google Scholar] [CrossRef]
- Bushunov, A.A.; Tarabrin, M.K.; Lazarev, V.A.; Karasik, V.E.; Korostelin, Y.V.; Frolov, M.P.; Skasyrsky, Y.K.; Kozlovsky, V.I. Fabrication of anti-reflective microstructures on chalcogenide crystals by femtosecond laser ablation. Opt. Mater. Express 2019, 9, 1689–1697. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, F.; Duan, J. Subwavelength Quasi-Periodic Array for Infrared Antireflection. Nanomaterials 2022, 12, 3520. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, F.; Wang, C.; Duan, J. Broadband antireflective subwavelength structures for infrared detection. Opt. Laser Technol. 2022, 149, 107931. [Google Scholar] [CrossRef]
- Yoo, Y.J.; Chang, K.S.; Hong, S.W.; Song, Y.M. Design of ZnS antireflective microstructures for mid- and far-infrared applications. Opt. Quantum Electron. 2015, 47, 1503–1508. [Google Scholar] [CrossRef]
- Li, X.; Li, M.; Liu, H.; Guo, Y. Fabrication of an Anti-Reflective Microstructure on ZnS by Femtosecond Laser Bessel Beams. Molecules 2021, 26, 4278. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Ki, H. Femtosecond laser patterning based on the control of surface reflectance. Appl. Surf. Sci. 2019, 494, 187–195. [Google Scholar] [CrossRef]
- Ko, Y.H.; Yu, J.S. Highly transparent sapphire micro-grating structures with large diffuse light scattering. Opt. Express 2011, 19, 15574–15583. [Google Scholar] [CrossRef]
- Toratani, E.; Kamata, M.; Obara, M. Self-fabrication of void array in fused silica by femtosecond laser processing. Appl. Phys. Lett. 2005, 87, 171103. [Google Scholar] [CrossRef]
- Bhuyan, M.K.; Courvoisier, F.; Lacourt, P.-A.; Jacquot, M.; Furfaro, L.; Withford, M.; Dudley, J. High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams. Opt. Express 2010, 18, 566–574. [Google Scholar] [CrossRef]
- Yuan, Y.; Jiang, L.; Li, X.; Zuo, P.; Zhang, X.; Lian, Y.; Ma, Y.; Liang, M.; Zhao, Y.; Qu, L. Ultrafast Shaped Laser Induced Synthesis of MXene Quantum Dots/Graphene for Transparent Supercapacitors. Adv. Mater. 2022, 34, 2110013. [Google Scholar] [CrossRef]
- Zhang, F.; Duan, J.A.; Zhou, X.; Wang, C. Broadband and wide-angle antireflective subwavelength microstructures on zinc sulfide fabricated by femtosecond laser parallel multi-beam. Opt. Express 2018, 26, 34016–34030. [Google Scholar] [CrossRef]
- Mastellone, M.; Pace, M.L.; Curcio, M.; Caggiano, N.; De Bonis, A.; Teghil, R.; Dolce, P.; Mollica, D.; Orlando, S.; Santagata, A.; et al. LIPSS Applied to Wide Bandgap Semiconductors and Dielectrics: Assessment and Future Perspectives. Materials 2022, 15, 1378. [Google Scholar] [CrossRef]
- Bonse, J. Quo Vadis LIPSS?—Recent and Future Trends on Laser-Induced Periodic Surface Structures. Nanomaterials 2020, 10, 1950. [Google Scholar] [CrossRef]
- Bonse, J.; Krüger, J.; Höhm, S.; Rosenfeld, A. Femtosecond laser-induced periodic surface structures. J. Laser Appl. 2012, 24, 042006. [Google Scholar] [CrossRef]
- Han, W.; Jiang, L.; Li, X.; Liu, P.; Xu, L.; Lu, Y. Continuous modulations of femtosecond laser-induced periodic surface structures and scanned line-widths on silicon by polarization changes. Opt. Express 2013, 21, 15505–15513. [Google Scholar] [CrossRef]
- Han, W.; Jiang, L.; Li, X.; Liu, Y.; Lu, Y. Femtosecond laser induced tunable surface transformations on (111) Si aided by square grids diffraction. Appl. Phys. Lett. 2015, 107, 251601. [Google Scholar] [CrossRef]
- Kim, K.-H.; Park, Q.-H. Perfect anti-reflection from first principles. Sci. Rep. 2013, 3, srep01062. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, M.; Liu, H. Effective strategy to achieve a metal surface with ultralow reflectivity by femtosecond laser fabrication. Chin. Opt. Lett. 2021, 19, 051401. [Google Scholar] [CrossRef]
- Calvani, P.; Bellucci, A.; Girolami, M.; Orlando, S.; Valentini, V.; Polini, R.; Mezzetti, A.; Di Fonzo, F.; Trucchi, D.M. Infrared absorption of fs-laser textured CVD diamond. Appl. Phys. A 2016, 122, 211. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Li, M. Broadband Antireflective Hybrid Micro/Nanostructure on Zinc Sulfide Fabricated by Optimal Bessel Femtosecond Laser. Nanomaterials 2023, 13, 1225. https://doi.org/10.3390/nano13071225
Li X, Li M. Broadband Antireflective Hybrid Micro/Nanostructure on Zinc Sulfide Fabricated by Optimal Bessel Femtosecond Laser. Nanomaterials. 2023; 13(7):1225. https://doi.org/10.3390/nano13071225
Chicago/Turabian StyleLi, Xun, and Ming Li. 2023. "Broadband Antireflective Hybrid Micro/Nanostructure on Zinc Sulfide Fabricated by Optimal Bessel Femtosecond Laser" Nanomaterials 13, no. 7: 1225. https://doi.org/10.3390/nano13071225
APA StyleLi, X., & Li, M. (2023). Broadband Antireflective Hybrid Micro/Nanostructure on Zinc Sulfide Fabricated by Optimal Bessel Femtosecond Laser. Nanomaterials, 13(7), 1225. https://doi.org/10.3390/nano13071225