Continuous Flow Photocatalytic Hydrogen Production from Water Synergistically Activated by TiO2, Gold Nanoparticles, and Carbon Nanotubes
Abstract
:1. Introduction
2. Materials and Methods
2.1. General
2.2. Assembly of Gold Nanoparticles on Carbon Nanotubes (AuCNT)
2.3. Characterization of the Hybrids
2.4. Microfluidic Device Fabrication
2.5. Photocatalytic Reactions in Batch
2.6. Photocatalytic Reactions under Microfluidic Conditions
2.6.1. Loading of the TiO2/CNT or TiO2/AuCNT Catalyst
2.6.2. Typical Experimental Procedure for the Hydrogen Production Reaction
3. Results
3.1. Photocatalytic Hydrogen Production in Batch with TiO2 and TiO2/CNT
3.2. Microfluidic Reactions with TiO2/Carbon Nanotubes
3.2.1. Design of the Microfluidic Photoreactor
3.2.2. Loading of the Microreactor with the TiO2/CNT Nanohybrid
3.2.3. TiO2/CNT Nanohybrid-Photocatalyzed Continuous Flow Production of Hydrogen
3.3. Photocatalyzed Hydrogen Production with TiO2/Gold/Carbon Nanotubes
3.3.1. Assembly of Gold Nanoparticles on Carbon Nanotubes
3.3.2. Photocatalyzed Hydrogen Production in a Batch Reactor with TiO2/Gold/Carbon Nanotubes
3.3.3. Flow Reaction with TiO2/AuCNT
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mazloomi, K.; Gomes, C. Hydrogen as an energy carrier: Prospects and challenges. Renew. Sustain. Energy Rev. 2012, 16, 3024–3033. [Google Scholar] [CrossRef]
- Ishaq, H.; Dincer, I.; Crawford, C. A review on hydrogen production and utilization: Challenges and opportunities. Int. J. Hydrogen Energy 2022, 47, 26238–26264. [Google Scholar] [CrossRef]
- Acar, C.; Dincer, I.; Naterer, G.F. Review of photocatalytic water-splitting methods for sustainable hydrogen production. Int. J. Energy Res. 2016, 40, 1449–1473. [Google Scholar] [CrossRef]
- Villa, K.; Galán-Mascarós, J.R.; López, N.; Palomares, E. Photocatalytic water splitting: Advantages and challenges. Sustain. Energy Fuels 2021, 5, 4560–4569. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Jafari, T.; Moharreri, E.; Shirazi Amin, A.; Miao, R.; Song, W.; Suib, S.L. Photocatalytic water splitting—The untamed dream: A review of recent advances. Molecules 2016, 21, 900. [Google Scholar] [CrossRef]
- Linsebigler, A.L.; Lu, G.; Yates, J.T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735–758. [Google Scholar] [CrossRef]
- Yu, H.; Quan, X.; Chen, S.; Zhao, H. TiO2−multiwalled carbon nanotube heterojunction arrays and their charge separation capability. J. Phys. Chem. C 2007, 111, 12987–12991. [Google Scholar] [CrossRef]
- Li, Z.; Gao, B.; Chen, G.Z.; Mokaya, R.; Sotiropoulos, S.; Li Puma, G. Carbon nanotube/titanium dioxide (CNT/TiO2) core–shell nanocomposites with tailored shell thickness, CNT content and photocatalytic/photoelectrocatalytic properties. Appl. Catal. B Environ. 2011, 110, 50–57. [Google Scholar] [CrossRef]
- Chatterjee, D.; Dasgupta, S. Visible light induced photocatalytic degradation of organic pollutants. J. Photochem. Photobiol. C Photochem. Rev. 2005, 6, 186–205. [Google Scholar] [CrossRef]
- Kowalska, E.; Abe, R.; Ohtani, B. Visible light-induced photocatalytic reaction of gold-modified titanium(IV) oxide particles: Action spectrum analysis. Chem. Commun. 2009, 241–243. [Google Scholar] [CrossRef]
- Clarisse, D.; Prakash, P.; Geertsen, V.; Miserque, F.; Gravel, E.; Doris, E. Aqueous 1,3-dipolar cycloadditions promoted by copper nanoparticles in polydiacetylene micelles. Green Chem. 2017, 19, 3112–3115. [Google Scholar] [CrossRef]
- Prakash, P.; Kumar, R.A.; Miserque, F.; Geertsen, V.; Gravel, E.; Doris, E. Carbon nanotube–copper ferrite-catalyzed aqueous 1,3-dipolar cycloaddition of in situ-generated organic azides with alkynes. Chem. Commun. 2018, 54, 3644–3647. [Google Scholar] [CrossRef]
- Gopi, E.; Gravel, E.; Doris, E. Direct aerobic oxidation of alcohols into esters catalyzed by carbon nanotube–gold nanohybrids. Nanoscale Adv. 2019, 1, 1181–1185. [Google Scholar] [CrossRef] [Green Version]
- Gopi, E.; Geertsen, V.; Gravel, E.; Doris, E. Catalytic dehydrosulfurization of thioamides to nitriles by gold nanoparticles supported on carbon nanotubes. ChemCatChem 2019, 11, 5758–5761. [Google Scholar] [CrossRef]
- Hoang, M.D.; Kumar, R.A.; Buisson, D.A.; Ling, W.L.; Gravel, E.; Doris, E. Self-assembled polydiacetylene nanoribbons for semi-heterogeneous and enantioselective organocatalysis of aldol reactions in water. ChemCatChem 2020, 12, 1156–1160. [Google Scholar] [CrossRef]
- Kumar, R.A.; Jawale, D.V.; Oheix, E.; Geertsen, V.; Gravel, E.; Doris, E. Tailor-made polydiacetylene micelles for the catalysis of 1,3-dipolar cycloadditions in water. Adv. Synth. Catal. 2020, 362, 4425–4431. [Google Scholar] [CrossRef]
- Jawale, D.V.; Geertsen, V.; Miserque, F.; Berthault, P.; Gravel, E.; Doris, E. Solvent-free hydrosilylation of alkenes and alkynes using recyclable platinum on carbon nanotubes. Green. Chem. 2021, 23, 815–820. [Google Scholar] [CrossRef]
- Jawale, D.V.; Tchuiteng Kouatchou, J.A.; Fossard, F.; Miserque, F.; Geertsen, V.; Gravel, E.; Doris, E. Catalytic hydrothiolation of alkenes and alkynes using bimetallic RuRh nanoparticles on carbon nanotubes. Green Chem. 2022, 24, 1231–1237. [Google Scholar] [CrossRef]
- Gravel, E.; Doris, E. Fullerenes make copper catalysis better. Science 2022, 376, 242–243. [Google Scholar] [CrossRef]
- Jawale, D.V.; Fossard, F.; Miserque, F.; Geertsen, V.; Doris, E.; Gravel, E. Bimetallic ruthenium–rhodium particles supported on carbon nanotubes for the hydrophosphinylation of alkenes and alkynes. Catal. Sci. Technol. 2022, 12, 4983–4987. [Google Scholar] [CrossRef]
- Mackiewicz, N.; Surendran, G.; Remita, H.; Keita, B.; Zhang, G.; Nadjo, L.; Hagège, A.; Doris, E.; Mioskowski, C. Supramolecular self-assembly of amphiphiles on carbon nanotubes: A versatile strategy for the construction of CNT/metal nanohybrids; Application to electrocatalysis. J. Am. Chem. Soc. 2008, 130, 8110–8111. [Google Scholar] [CrossRef] [PubMed]
- Morozan, A.; Donck, S.; Artero, V.; Gravel, E.; Doris, E. Carbon nanotubes-gold nanohybrid as potent electrocatalyst for oxygen reduction in alkaline media. Nanoscale 2015, 7, 17274–17277. [Google Scholar] [CrossRef]
- Huan, T.N.; Prakash, P.; Simon, P.; Rousse, G.; Xu, X.; Artero, V.; Gravel, E.; Doris, E.; Fontecave, M. CO2 reduction to CO in water: Carbon nanotube–gold nanohybrid as a selective and efficient electrocatalyst. ChemSusChem 2016, 9, 2317–2320. [Google Scholar] [CrossRef]
- Donck, S.; Fize, J.; Gravel, E.; Doris, E.; Artero, V. Supramolecular assembly of cobaloxime on nanoring-coated carbon nanotubes: Addressing the stability of the pyridine–cobalt linkage under hydrogen evolution turnover conditions. Chem. Commun. 2016, 52, 11783–11786. [Google Scholar] [CrossRef]
- Schild, J.; Reuillard, B.; Morozan, A.; Chenevier, P.; Gravel, E.; Doris, E.; Artero, V. Approaching industrially relevant current densities for hydrogen oxidation with a bioinspired molecular catalytic material. J. Am. Chem. Soc. 2021, 143, 18150–18158. [Google Scholar] [CrossRef]
- Jawale, D.V.; Fossard, F.; Miserque, F.; Geertsen, V.; Teillout, A.L.; de Oliveira, P.; Mbomekallé, I.M.; Gravel, E.; Doris, E. Carbon nanotube-polyoxometalate nanohybrids as efficient electro-catalysts for the hydrogen evolution reaction. Carbon 2022, 188, 523–532. [Google Scholar] [CrossRef]
- Huang, X.; Wang, J.; Li, T.; Wang, J.; Xu, M.; Yu, W.; El Abed, A.; Zhang, X. Review on optofluidic microreactors for artificial photosynthesis. Beilstein. J. Nanotechnol. 2018, 9, 30–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jawale, D.V.; Gravel, E.; Boudet, C.; Shah, N.; Geertsen, V.; Li, H.; Namboothiri, I.N.N.; Doris, E. Selective conversion of nitroarenes using a carbon nanotube–ruthenium nanohybrid. Chem. Commun. 2015, 51, 1739–1742. [Google Scholar] [CrossRef] [Green Version]
- Duff, D.G.; Baiker, A.; Edwards, P.P. A new hydrosol of gold clusters. 1. Formation and particle size variation. Langmuir 1993, 9, 2301–2309. [Google Scholar] [CrossRef]
- John, J.; Gravel, E.; Hagège, A.; Li, H.; Gacoin, T.; Doris, E. Catalytic oxidation of silanes by carbon nanotube–gold nanohybrids. Angew. Chem. Int. Ed. 2011, 50, 7533–7536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christoforidis, K.C.; Fornasiero, P. Photocatalytic hydrogen production: A rift into the future energy supply. ChemCatChem 2017, 9, 1523–1544. [Google Scholar] [CrossRef] [Green Version]
- Melián, E.P.; Díaz, O.G.; Méndez, A.O.; López, C.R.; Suárez, M.N.; Rodríguez, J.D.; Navío, J.; Hevia, D.F.; Peña, J.P. Efficient and affordable hydrogen production by water photo-splitting using TiO2-based photocatalysts. Int. J. Hydrogen Energy 2013, 38, 2144–2155. [Google Scholar] [CrossRef]
- Reza, M.S.; Ahmad, N.B.H.; Afroze, S.; Taweekun, J.; Sharifpur, M.; Azad, A.K. Hydrogen production from water splitting through photocatalytic activity of carbon-based materials. Chem. Eng. Technol. 2023, 46, 420–434. [Google Scholar] [CrossRef]
- Farah, J.; Gravel, E.; Doris, E.; Malloggi, F. Direct integration of gold-carbon nanotube hybrids in continuous-flow microfluidic chips: A versatile approach for nanocatalysis. J. Colloid Interface Sci. 2022, 613, 359–367. [Google Scholar] [CrossRef]
- Yu, Y.; Yu, J.C.; Chan, C.-Y.; Che, Y.-K.; Zhao, J.-C.; Ding, L.; Ge, W.-K.; Wong, P.-K. Enhancement of adsorption and photocatalytic activity of TiO2 by using carbon nanotubes for the treatment of azo dye. Appl. Catal. B Environ. 2005, 61, 1–11. [Google Scholar] [CrossRef]
- Saha, A.; Moya, A.; Kahnt, A.; Iglesias, D.; Marchesan, S.; Wannemacher, R.; Prato, M.; Vilatela, J.J.; Guldi, D.M. Interfacial charge transfer in functionalized multi-walled carbon nanotube@TiO2 nanofibres. Nanoscale 2017, 9, 7911–7921. [Google Scholar] [CrossRef] [Green Version]
- Bouazza, N.; Ouzzine, M.; Lillo-Ródenas, M.A.; Eder, D.; Linares-Solano, A. TiO2 nanotubes and CNT–TiO2 hybrid materials for the photocatalytic oxidation of propene at low concentration. Appl. Catal. B Environ. 2009, 92, 377–383. [Google Scholar] [CrossRef]
- Xu, Y.-J.; Zhuang, Y.; Fu, X. New insight for enhanced photocatalytic activity of TiO2 by doping carbon nanotubes: A case study on degradation of benzene and methyl orange. J. Phys. Chem. C 2010, 114, 2669–2676. [Google Scholar] [CrossRef]
- Koli, V.B.; Dhodamani, A.G.; Raut, A.V.; Thorat, N.D.; Pawar, S.H.; Delekar, S.D. Visible light photo-induced antibacterial activity of TiO2-MWCNTs nanocomposites with varying the contents of MWCNTs. J. Photochem. Photobiol. A Chem. 2016, 328, 50–58. [Google Scholar] [CrossRef]
- Chinh, V.D.; Hung, L.X.; Di Palma, L.; Hanh, V.T.H.; Vilardi, G. Effect of carbon nanotubes and carbon nanotubes/gold nanoparticles composite on the photocatalytic activity of TiO2 and TiO2-SiO2. Chem. Eng. Technol. 2019, 42, 308–315. [Google Scholar] [CrossRef]
- Wang, H.; Dong, S.; Chang, Y.; Faria, J.L. Enhancing the photocatalytic properties of TiO2 by coupling with carbon nanotubes and supporting gold. J. Hazard. Mater. 2012, 235–236, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Catalá, J.; Navlani-García, M.; Verma, P.; Berenguer-Murcia, Á.; Mori, K.; Kuwahara, Y.; Yamashita, H.; Cazorla-Amorós, D. Photocatalytically-driven H2 production over Cu/TiO2 catalysts decorated with multi-walled carbon nanotubes. Catal. Today 2021, 364, 182–189. [Google Scholar] [CrossRef]
- Gupta, B.; Melvin, A.A.; Matthews, T.; Dash, S.; Tyagi, A.K. TiO2 modification by gold (Au) for photocatalytic hydrogen (H2) production. Renew. Sust. Energ. Rev. 2016, 58, 1366–1375. [Google Scholar] [CrossRef]
- Pala, L.P.R.; Peela, N.R. Green hydrogen production in an optofluidic planar microreactor via photocatalytic water splitting under visible/simulated sunlight irradiation. Energy Fuels 2021, 35, 19737–19747. [Google Scholar] [CrossRef]
- Ahsan, S.S.; Gumus, A.; Erickson, D. Redox mediated photocatalytic water-splitting in optofluidic microreactors. Lab. Chip 2013, 13, 409–414. [Google Scholar] [CrossRef]
- Li, L.; Chen, R.; Liao, Q.; Zhu, X.; Wang, G.; Wang, D. High surface area optofluidic microreactor for redox mediated photocatalytic water splitting. Int. J. Hydrogen Energy 2014, 39, 19270–19276. [Google Scholar] [CrossRef]
Entry | Catalyst | Batch 1 | Flow 2 | ||
---|---|---|---|---|---|
Time (min) | H2 Production (µmol g−1 h−1) | Contact Time (s) | H2 Production (µmol g−1 h−1) | ||
1 | TiO2 | 45 | 1497 | N/A | N/A |
2 | TiO2/CNT | 45 | 12,273 | 6 | 2192 |
3 | TiO2/AuCNT | 45 | 30,430 | 6 | 5462 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farah, J.; Malloggi, F.; Miserque, F.; Kim, J.; Gravel, E.; Doris, E. Continuous Flow Photocatalytic Hydrogen Production from Water Synergistically Activated by TiO2, Gold Nanoparticles, and Carbon Nanotubes. Nanomaterials 2023, 13, 1184. https://doi.org/10.3390/nano13071184
Farah J, Malloggi F, Miserque F, Kim J, Gravel E, Doris E. Continuous Flow Photocatalytic Hydrogen Production from Water Synergistically Activated by TiO2, Gold Nanoparticles, and Carbon Nanotubes. Nanomaterials. 2023; 13(7):1184. https://doi.org/10.3390/nano13071184
Chicago/Turabian StyleFarah, Joseph, Florent Malloggi, Frédéric Miserque, Jongwook Kim, Edmond Gravel, and Eric Doris. 2023. "Continuous Flow Photocatalytic Hydrogen Production from Water Synergistically Activated by TiO2, Gold Nanoparticles, and Carbon Nanotubes" Nanomaterials 13, no. 7: 1184. https://doi.org/10.3390/nano13071184