In Situ Fabrication of Mn-Doped NiMoO4 Rod-like Arrays as High Performance OER Electrocatalyst
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of Precursors NiMoO4/NF
2.3. Preparation of Mn-Doped-NiMoO4/NF
2.4. Preparation of RuO2/NF
2.5. Characterization
2.6. Electrochemical Measurement
3. Results and Discussion
3.1. XRD and Raman Analysis
3.2. Raman Analysis
3.3. SEM and TEM Analysis
3.4. XPS Analysis
3.5. OER Performance Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, Y.; Li, F.; Chen, W.; Xiang, Q.; Ma, Y.; Zhu, H.; Tao, P.; Song, C.; Shang, W.; Deng, T.; et al. Coupling Interface Constructions of MoS2/Fe5Ni4S8 Heterostructures for Efficient Electrochemical Water Splitting. Adv. Mater. 2018, 30, e1803151. [Google Scholar] [CrossRef]
- Seh, Z.W.; Kibsgaard, J.; Dickens, C.F.; Chorkendorff, I.; Norskov, J.K.; Jaramillo, T.F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Y.; Zhang, Z.; Chhowalla, M.; Liu, B. Recent Advances in Design of Electrocatalysts for High-Current-Density Water Splitting. Adv. Mater. 2022, 34, 2108133. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Kim, B.; Kim, H.; Kang, K. Recent Progress on Multimetal Oxide Catalysts for the Oxygen Evolution Reaction. Adv. Energy Mater. 2018, 8, 1702774. [Google Scholar] [CrossRef]
- Zhao, S.; Yang, Y.; Tang, Z. Insight into Structural Evolution, Active Sites, and Stability of Heterogeneous Electrocatalysts. Angew. Chem. Int. Ed. Engl. 2022, 61, e202110186. [Google Scholar]
- Li, X.; Kou, Z.; Xi, S.; Zang, W.; Yang, T.; Zhang, L.; Wang, J. Porous NiCo2S4/FeOOH nanowire arrays with rich sulfide/hydroxide interfaces enable high OER activity. Nano Energy 2020, 78, 105230. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Zhang, M.; Li, S.; Liu, R.; Li, Z. Metal-organic frameworks-derived hollow-structured iron-cobalt bimetallic phosphide electrocatalysts for efficient oxygen evolution reaction. J. Alloys Compd. 2020, 821, 153463. [Google Scholar] [CrossRef]
- Yuan, H.; Wang, S.; Ma, Z.; Kundu, M.; Tang, B.; Li, J.; Wang, X. Oxygen vacancies engineered self-supported B doped Co3O4 nanowires as an efficient multifunctional catalyst for electrochemical water splitting and hydrolysis of sodium borohydride. Chem. Eng. J. 2021, 404, 126474. [Google Scholar] [CrossRef]
- Lu, J.; Wang, H.; Sun, Y.; Wang, X.; Song, X.; Wang, R. Charge state manipulation induced through cation intercalation into MnO2 sheet arrays for efficient water splitting. Chem. Eng. J. 2021, 417, 127894. [Google Scholar] [CrossRef]
- Ye, Z.; Li, T.; Ma, G.; Dong, Y.; Zhou, X. Metal-Ion (Fe, V, Co, and Ni)-Doped MnO2 Ultrathin Nanosheets Supported on Carbon Fiber Paper for the Oxygen Evolution Reaction. Adv. Funct. Mater. 2017, 27, 1704083. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Wang, M.; Li, P.; Tong, J.; Yu, F. AgO-decorated multi-dimensional chrysanthemum-like NiCo2O4 mounted on nickel foam as a highly efficient and stable electrocatalyst for the oxygen evolution reaction. Nanoscale 2020, 12, 7180–7187. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Li, D.; Zhao, T.; Wang, D.; Zhong, D.; Hao, G.; Liu, G.; Li, J.; Zhao, Q. NiFe2O4–Ni3S2 nanorod array/Ni foam composite catalyst indirectly controlled by Fe3+ immersion for an efficient oxygen evolution reaction. Int. J. Hydrogen Energy 2021, 46, 14407–14417. [Google Scholar] [CrossRef]
- Ji, Y.; Yang, L.; Ren, X.; Cui, G.; Xiong, X.; Sun, X. Full Water Splitting Electrocatalyzed by NiWO4 Nanowire Array. ACS Sustain. Chem. Eng. 2018, 6, 9555–9559. [Google Scholar] [CrossRef]
- Tian, H.; Zhang, K.; Feng, X.; Chen, J.; Lou, Y. Self-supported CoMoO4/NiFe-LDH core-shell nanorods grown on nickel foam for enhanced electrocatalysis of oxygen evolution. Dalton Trans. 2022, 51, 36. [Google Scholar] [CrossRef]
- Rajput, A.; Adak, M.K.; Chakraborty, B. Intrinsic Lability of NiMoO4 to Excel the Oxygen Evolution Reaction. Inorg. Chem. 2022, 61, 11189–11206. [Google Scholar] [CrossRef] [PubMed]
- An, L.; Feng, J.; Zhang, Y.; Wang, R.; Liu, H.; Wang, G.-C.; Cheng, F.; Xi, P. Epitaxial Heterogeneous Interfaces on N-NiMoO4/NiS2 Nanowires/Nanosheets to Boost Hydrogen and Oxygen Production for Overall Water Splitting. Adv. Funct. Mater. 2019, 29, 1805298. [Google Scholar] [CrossRef] [Green Version]
- Solomon, G.; Landström, A.; Mazzaro, R.; Jugovac, M.; Moras, P.; Cattaruzza, E.; Morandi, V.; Concina, I.; Vomiero, A. NiMoO4@Co3O4 Core–Shell Nanorods: In Situ Catalyst Reconstruction toward High Efficiency Oxygen Evolution Reaction. Adv. Energy Mater. 2021, 11, 2101324. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Z.; Zhang, K.; Zha, Q.; Ni, Y. Ce-Doped Ni-S nanosheets on Ni foam supported NiMoO4 micropillars: Fast electrodeposition, improved electrocatalytic activity and ultralong durability for the oxygen evolution reaction in various electrolytes. Dalton Trans. 2021, 50, 17774–17784. [Google Scholar] [CrossRef]
- Zheng, B.; Fan, J.; Chen, B.; Qin, X.; Wang, J.; Wang, F.; Deng, R.; Liu, X. Rare-Earth Doping in Nanostructured Inorganic Materials. Chem. Rev. 2022, 122, 5519–5603. [Google Scholar] [CrossRef]
- Trotochaud, L.; Young, S.L.; Ranney, J.K.; Boettcher, S.W. Nickel-Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753. [Google Scholar] [CrossRef]
- Yin, Z.; Liang, J.; Xu, H.; Luo, H.; Deng, D.; Lu, W.; Long, S. MoO42− doped Ni-Fe-Se nanospheres electrodeposited on nickel foam as effective electrocatalysts for oxygen evolution reaction. J. Electroanal. Chem. 2021, 895, 115501. [Google Scholar] [CrossRef]
- Tong, Y.; Chen, P.; Zhang, M.; Zhou, T.; Zhang, L.; Chu, W.; Wu, C.; Xie, Y. Oxygen Vacancies Confined in Nickel Molybdenum Oxide Porous Nanosheets for Promoted Electrocatalytic Urea Oxidation. ACS Catal. 2017, 8, 1–7. [Google Scholar] [CrossRef]
- Tian, L.; Li, Z.; Xu, X.; Zhang, C. Advances in noble metal (Ru, Rh, and Ir) doping for boosting water splitting electrocatalysis. J. Mater. Chem. A 2021, 9, 13459–13470. [Google Scholar] [CrossRef]
- Luo, L.; Li, W.; Kang, Y.; Wang, Z.; Cheng, X.; Ruan, M.; Wu, Q. Se and Fe co-doping in Ni2P/Ni12P5/NF: Highly active and ultra-long stability of the oxygen evolution reaction. Appl. Surf. Sci. 2022, 606, 154950. [Google Scholar] [CrossRef]
- Tajik, S.; Askari, M.B.; Ahmadi, S.A.; Nejad, F.G.; Dourandish, Z.; Razavi, R.; Beitollahi, H.; Di Bartolomeo, A. Electrochemical Sensor Based on ZnFe2O4/RGO Nanocomposite for Ultrasensitive Detection of Hydrazine in Real Samples. Nanomaterials 2022, 12, 491. [Google Scholar] [CrossRef]
- Askari, M.B.; Salarizadeh, P.; Di Bartolomeo, A.; Şen, F. Enhanced electrochemical performance of MnNi2O4/rGO nanocomposite as pseudocapacitor electrode material and methanol electro-oxidation catalyst. Nanotechnology 2021, 32, 325707. [Google Scholar] [CrossRef]
- Tang, T.; Jiang, W.J.; Niu, S.; Liu, N.; Luo, H.; Chen, Y.Y.; Jin, S.F.; Gao, F.; Wan, L.J.; Hu, J.S. Electronic and Morphological Dual Modulation of Cobalt Carbonate Hydroxides by Mn Doping toward Highly Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting. J. Am. Chem. Soc. 2017, 139, 8320–8328. [Google Scholar] [CrossRef]
- Shi, L.; Fang, H.; Yang, X.; Xue, J.; Li, C.; Hou, S.; Hu, C. Fe-cation Doping in NiSe2 as an Effective Method of Electronic Structure Modulation towards High-Performance Lithium-Sulfur Batteries. ChemSusChem 2021, 14, 1710–1719. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.P.; Guo, C.; Zheng, Y.; Qiao, S.Z. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes. Acc. Chem. Res. 2017, 50, 915–923. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Yu, X.; Liu, X.; Teng, C.; Du, Y.; Wu, Q. Contrallable synthesis of peony-like porous Mn-CoP nanorod electrocatalyst for highly efficient hydrogen evolution in acid and alkaline. J. Colloid Interface Sci. 2020, 577, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Du, Y.; Liu, X.; Yu, X.; Teng, C.; Cheng, X.; Chen, Y.; Wu, Q. Three-dimensional (3D) hierarchical coral-like Mn-doped Ni2P–Ni5P4/NF catalyst for efficient oxygen evolution. J. Alloys Compd. 2020, 826, 154210. [Google Scholar] [CrossRef]
- Duan, J.J.; Han, Z.; Zhang, R.L.; Feng, J.J.; Zhang, L.; Zhang, Q.L.; Wang, A.J. Iron, manganese co-doped Ni3S2 nanoflowers in situ assembled by ultrathin nanosheets as a robust electrocatalyst for oxygen evolution reaction. J. Colloid Interface Sci. 2021, 588, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Yan, Z.; Liu, F.; Xu, W.; Cheng, F.; Chen, J. Self-Supported Transition-Metal-Based Electrocatalysts for Hydrogen and Oxygen Evolution. Adv. Mater. 2020, 32, 1806326. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lian, R.; Wang, J.; He, S.; Jiang, S.P.; Rui, Z. Oxygen vacancy defects modulated electrocatalytic activity of iron-nickel layered double hydroxide on Ni foam as highly active electrodes for oxygen evolution reaction. Electrochim. Acta 2020, 331, 135395. [Google Scholar] [CrossRef]
- Gong, Y.; Lin, Y.; Yang, Z.; Jiao, F.; Li, J.; Wang, W. High-performance bifunctional flower-like Mn-doped Cu7.2S4@NiS2@NiS/NF catalyst for overall water splitting. Appl. Surf. Sci. 2019, 476, 840–849. [Google Scholar] [CrossRef]
- Yu, X.; Xu, S.; Liu, X.; Cheng, X.; Du, Y.; Wu, Q. Mn-doped NiCo2S4 nanosheet array as an efficient and durable electrocatalyst for oxygen evolution reaction. J. Alloys Compd. 2021, 878, 160388. [Google Scholar] [CrossRef]
- Jin, C.; Hou, M.; Li, X.; Liu, D.; Qu, D.; Dong, Y.; Xie, Z.; Zhang, C. Rapid electrodeposition of Fe-doped nickel selenides on Ni foam as a bi-functional electrocatalyst for water splitting in alkaline solution. J. Electroanal. Chem. 2022, 906, 116014. [Google Scholar] [CrossRef]
- Liu, S.; Lv, X.; Liu, G.; Li, C.; Thummavichaia, K.; Li, Z.; Zhang, L.; Bin, Z.; Wang, N.; Zhu, Y. In-situ fabrication of NixSey/MoSe2 hollow rod array for enhanced catalysts for efficient hydrogen evolution reaction. J. Colloid Interface Sci. 2022, 617, 611–619. [Google Scholar] [CrossRef]
- Watcharatharapong, T.; Minakshi Sundaram, M.; Chakraborty, S.; Li, D.; Shafiullah, G.M.; Aughterson, R.D.; Ahuja, R. Effect of Transition Metal Cations on Stability Enhancement for Molybdate-Based Hybrid Supercapacitor. ACS Appl. Mater. Interfaces 2017, 9, 17977–17991. [Google Scholar] [CrossRef]
- Zhuang, S.; Tong, S.; Wang, H.; Xiong, H.; Gong, Y.; Tang, Y.; Liu, J.; Chen, Y.; Wan, P. The P/NiFe doped NiMoO4 micro-pillars arrays for highly active and durable hydrogen/oxygen evolution reaction towards overall water splitting. Int. J. Hydrogen Energy 2019, 44, 24546–24558. [Google Scholar] [CrossRef]
- Bankar, P.K.; Ratha, S.; More, M.A.; Late, D.J.; Rout, C.S. Enhanced field emission performance of NiMoO4 nanosheets by tuning the phase. Appl. Surf. Sci. 2017, 418, 270–274. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Zhang, Y.; Zhang, X.; Tang, T.; Luo, H.; Niu, S.; Dai, Z.H.; Wan, L.J.; Hu, J.S. Self-Templated Fabrication of MoNi4 /MoO3-x Nanorod Arrays with Dual Active Components for Highly Efficient Hydrogen Evolution. Adv. Energy Mater. 2017, 29, 1703311. [Google Scholar]
- Ghosh, D.; Giri, S.; Das, C.K. Synthesis, characterization and electrochemical performance of graphene decorated with 1D NiMoO4·nH2O nanorods. Nanoscale 2013, 5, 10428–10437. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.T.; Duan, J.J.; Feng, J.J.; Mei, L.P.; Jiao, Y.; Zhang, L.; Wang, A.J. Iron, rhodium-codoped Ni2P nanosheets arrays supported on nickel foam as an efficient bifunctional electrocatalyst for overall water splitting. J. Colloid Interface Sci. 2022, 605, 888–896. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Y.; Liu, G.; Li, Z.; Liu, S.; Tiwari, S.K.; Ola, O.; Pang, B.; Wang, N.; Zhu, Y. Construction of CoP/Co2P Coexisting Bifunctional Self-Supporting Electrocatalysts for High-Efficiency Oxygen Evolution and Hydrogen Evolution. ACS Omega 2022, 7, 12846–12855. [Google Scholar] [CrossRef]
- Gong, Y.; Yang, Z.; Zhi, Y.; Lin, Y.; Zhou, T.; Li, J.; Jiao, F.; Wang, W. Controlled synthesis of bifunctional particle-like Mo/Mn-NixSy/NF electrocatalyst for highly efficient overall water splitting. Dalton Trans. 2019, 48, 6718–6729. [Google Scholar] [CrossRef]
- Chen, C.X.; He, S.Q.; Dastafkan, K.; Zou, Z.H.; Wang, Q.X.; Zhao, C.A. Sea urchin-like NiMoO4 nanorod arrays as highly efficient bifunctional catalysts for electrocatalytic/photovoltage-driven urea electrolysis. Chin. J. Catal. 2022, 43, 1267–1276. [Google Scholar] [CrossRef]
- Xie, C.; Wang, Y.; Hu, K.; Tao, L.; Huang, X.; Huo, J.; Wang, S. In situ confined synthesis of molybdenum oxide decorated nickel–iron alloy nanosheets from MoO42− intercalated layered double hydroxides for the oxygen evolution reaction. J. Mater. Chem. A 2017, 5, 87–91. [Google Scholar] [CrossRef]
- Hai, G.J.; Huang, J.F.; Cao, L.Y.; Kajiyoshi, K.; Wang, L.; Feng, L.L. Hierarchical W18O49/NiWO4/NF heterojunction with tuned composition and charge transfer for efficient water splitting. Appl. Surf. Sci. 2021, 562, 150145. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Zhao, S.; She, S.; Zhang, F.; Chen, Y.; Williams, T.; Gengenbach, T.; Zu, L.; Mao, H.; et al. Anion Etching for Accessing Rapid and Deep Self-Reconstruction of Precatalysts for Water Oxidation. Matter 2020, 3, 2124–2137. [Google Scholar] [CrossRef]
- Zhu, J.; Qian, J.; Peng, X.; Xia, B.; Gao, D. Etching-Induced Surface Reconstruction of NiMoO4 for Oxygen Evolution Reaction. Nano-Micro Lett. 2023, 15, 30. [Google Scholar] [CrossRef] [PubMed]
- Suen, N.T.; Hung, S.F.; Quan, Q.; Zhang, N.; Xu, Y.J.; Chen, H.M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365. [Google Scholar] [CrossRef]
- Gou, W.; Chen, Y.; Zhong, Y.; Xue, Q.; Li, J.; Ma, Y. Phytate-coordinated nickel foam with enriched NiOOH intermediates for 5-hydroxymethylfurfural electrooxidation. Chem. Commun. 2022, 58, 7626–7629. [Google Scholar] [CrossRef]
- Xu, H.; Shang, H.; Di, J.; Du, Y. Geometric and Electronic Engineering of Mn-Doped Cu(OH)2 Hexagonal Nanorings for Superior Oxygen Evolution Reaction Electrocatalysis. Inorg. Chem. 2019, 58, 15433–15442. [Google Scholar] [CrossRef]
- Teng, Y.; Wang, X.-D.; Liao, J.-F.; Li, W.-G.; Chen, H.-Y.; Dong, Y.-J.; Kuang, D.-B. Atomically Thin Defect-Rich Fe-Mn-O Hybrid Nanosheets as High Efficient Electrocatalyst for Water Oxidation. Adv. Funct. Mater. 2018, 28, 1802463. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, H.; Ji, S.; Wang, X.; Zhou, P.; Huo, S.; Linkov, V.; Wang, R. A High Faraday Efficiency NiMoO4 Nanosheet Array Catalyst by Adjusting the Hydrophilicity for Overall Water Splitting. Chemistry 2020, 26, 12067–12074. [Google Scholar] [CrossRef] [PubMed]
- Padmanathan, N.; Shao, H.; Razeeb, K.M. Honeycomb micro/nano-architecture of stable β-NiMoO4 electrode/catalyst for sustainable energy storage and conversion devices. Int. J. Hydrogen Energy 2020, 45, 30911–30923. [Google Scholar] [CrossRef]
- Ehsan, M.A.; Khan, A. Aerosol-Assisted Chemical Vapor Deposition Growth of NiMoO4 Nanoflowers on Nickel Foam as Effective Electrocatalysts toward Water Oxidation. ACS Omega 2021, 6, 31339–31347. [Google Scholar] [CrossRef]
- Duan, Y.; Huang, Z.; Zhao, C.; Ren, J.; Dong, X.; Jia, R.; Xu, X.; Shi, S. In-Situ Generated Trimetallic Molybdate Nanoflowers on Ni Foam Assisted with Microwave for Highly Enhanced Oxygen Evolution Reaction. Chemistry 2021, 27, 9044–9053. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hu, J.; Niu, S.; Li, S.; Du, Y.; Xu, P. Crystalline-Amorphous Ni2P4O12 /NiMoOx Nanoarrays for Alkaline Water Electrolysis: Enhanced Catalytic Activity via In Situ Surface Reconstruction. Small 2022, 18, 2105972. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Tiwari, S.K.; Zhu, Z.; Cao, D.; He, H.; Chen, Y.; Thummavichai, K.; Wang, N.; Jiang, M.; Zhu, Y. In Situ Fabrication of Mn-Doped NiMoO4 Rod-like Arrays as High Performance OER Electrocatalyst. Nanomaterials 2023, 13, 827. https://doi.org/10.3390/nano13050827
Yang S, Tiwari SK, Zhu Z, Cao D, He H, Chen Y, Thummavichai K, Wang N, Jiang M, Zhu Y. In Situ Fabrication of Mn-Doped NiMoO4 Rod-like Arrays as High Performance OER Electrocatalyst. Nanomaterials. 2023; 13(5):827. https://doi.org/10.3390/nano13050827
Chicago/Turabian StyleYang, Shiming, Santosh K. Tiwari, Zhiqi Zhu, Dehua Cao, Huan He, Yu Chen, Kunyapat Thummavichai, Nannan Wang, Mingjie Jiang, and Yanqiu Zhu. 2023. "In Situ Fabrication of Mn-Doped NiMoO4 Rod-like Arrays as High Performance OER Electrocatalyst" Nanomaterials 13, no. 5: 827. https://doi.org/10.3390/nano13050827
APA StyleYang, S., Tiwari, S. K., Zhu, Z., Cao, D., He, H., Chen, Y., Thummavichai, K., Wang, N., Jiang, M., & Zhu, Y. (2023). In Situ Fabrication of Mn-Doped NiMoO4 Rod-like Arrays as High Performance OER Electrocatalyst. Nanomaterials, 13(5), 827. https://doi.org/10.3390/nano13050827