Novel Electrically Conductive Cellulose Nanocrystals with a Core-Shell Nanostructure Towards Biodegradable Electronics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Carbamation of Cellulose Nanocrystals Using 2,4-Toluene Diisocyanate
2.3. Hydrolysis and Quantification of Free Isocyanates on the CNC Surface (DSNCO)
2.4. Polymerization of the o-Toluidine Grafted on the CNC Surface
2.5. Determination of the Degree of Substitution of TDI (DSTDI)
2.6. Structural Characterization Using Fourier Transform Infrared (FT-IR)
2.7. Morphological Characterization Using X-ray Diffraction (XRD)
2.8. Morphological Characterization Using Atomic Force Microscopy
2.9. Electrical Conductivity Measurements
3. Results and Discussion
4. Conclusions
5. Patents
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ghulam, S.T.; Abushammala, H. Challenges and Opportunities in the Management of Electronic Waste and Its Impact on Human Health and Environment. Sustainability 2023, 15, 1837. [Google Scholar] [CrossRef]
- Sepúlveda, A.; Schluep, M.; Renaud, F.G.; Streicher, M.; Kuehr, R.; Hagelüken, C.; Gerecke, A.C. A review of the environmental fate and effects of hazardous substances released from electrical and electronic equipments during recycling: Examples from China and India. Environ. Impact Assess. Rev. 2010, 30, 28–41. [Google Scholar] [CrossRef]
- Sthiannopkao, S.; Wong, M.H. Handling e-waste in developed and developing countries: Initiatives, practices, and consequences. Sci. Total Environ. 2013, 463, 1147–1153. [Google Scholar] [CrossRef] [PubMed]
- Irimia-Vladu, M.; Głowacki, E.D.; Voss, G.; Bauer, S.; Sariciftci, N.S. Green and biodegradable electronics. Mater. Today 2012, 15, 340–346. [Google Scholar] [CrossRef]
- Szycher, M. High Performance Biomaterials: A Complete Guide to Medical and Pharmceutical Applications; CRC Press: Boca Raton, FL, USA, 1991. [Google Scholar]
- Dhand, C.; Dwivedi, N.; Mishra, S.; Solanki, P.; Mayandi, V.; Beuerman, R.; Ramakrishna, S.; Lakshminarayanan, R.; Malhotra, B. Polyaniline-based biosensors. Nanobiosens. Dis. Diagn. 2015, 4, 25–46. [Google Scholar]
- Zheng, G.; Cui, Y.; Karabulut, E.; Wågberg, L.; Zhu, H.; Hu, L. Nanostructured paper for flexible energy and electronic devices. MRS Bull. 2013, 38, 320–325. [Google Scholar] [CrossRef]
- Cicoira, F.; Santato, C. Organic Electronics: Emerging Concepts and Technologies; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- TAPPI. Standard Terms and Their Definitions for Cellulose Nanomaterial; TAPPI: Peachtree Corners, GA, USA, 2012. [Google Scholar]
- Abushammala, H.; Krossing, I.; Laborie, M.-P. Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Carbohydr. Polym. 2015, 134, 609–616. [Google Scholar] [CrossRef]
- Abushammala, H.; Goldsztayn, R.; Leao, A.; Laborie, M.-P. Combining steam explosion with 1-ethyl-3-methylimidazlium acetate treatment of wood yields lignin-coated cellulose nanocrystals of high aspect ratio. Cellulose 2016, 23, 1813–1823. [Google Scholar] [CrossRef] [Green Version]
- Mao, J.; Abushammala, H.; Brown, N.; Laborie, M.-P. Comparative assessment of methods for producing cellulose I nanocrystals from cellulosic sources. In Nanocelluloses: Their Preparation, Properties, and Applications; ACS Symposium Series; American Chemical Society: New York, NY, USA, 2017. [Google Scholar]
- Mao, J.; Abushammala, H.; Hettegger, H.; Rosenau, T.; Laborie, M.-P. Imidazole, a New Tunable Reagent for Producing Nanocellulose, Part I: Xylan-Coated CNCs and CNFs. Polymers 2017, 9, 473. [Google Scholar] [CrossRef] [Green Version]
- Mao, J.; Abushammala, H.; Pereira, L.B.; Laborie, M.-P. Swelling and hydrolysis kinetics of Kraft pulp fibers in aqueous 1-butyl-3-methylimidazolium hydrogen sulfate solutions. Carbohydr. Polym. 2016, 153, 284–291. [Google Scholar] [CrossRef]
- Fürtauer, S.; Hassan, M.; Elsherbiny, A.; Gabal, S.A.; Mehanny, S.; Abushammala, H. Current Status of Cellulosic and Nanocellulosic Materials for Oil Spill Cleanup. Polymers 2021, 13, 2739. [Google Scholar] [CrossRef]
- Abushammala, H.; Hashaikeh, R. Enzymatic hydrolysis of cellulose and the use of TiO2 nanoparticles to open up the cellulose structure. Biomass Bioenergy 2011, 35, 3970–3975. [Google Scholar] [CrossRef]
- Abushammala, H.; Mao, J. A Review on the Partial and Complete Dissolution and Fractionation of Wood and Lignocelluloses Using Imidazolium Ionic Liquids. Polymers 2020, 12, 195. [Google Scholar] [CrossRef] [Green Version]
- Pirani, S.; Abushammala, H.M.N.; Hashaikeh, R. Preparation and characterization of electrospun PLA/nanocrystalline cellulose-based composites. J. Appl. Polym. Sci. 2013, 130, 3345–3354. [Google Scholar] [CrossRef]
- Abushammala, H.; Hashaikeh, R.; Cooney, C. Microcrystalline cellulose powder tableting via networked cellulose-based gel material. Powder Technol. 2012, 217, 16–20. [Google Scholar] [CrossRef]
- Abushammala, H. Nano-Brushes of Alcohols Grafted onto Cellulose Nanocrystals for Reinforcing Poly(Butylene Succinate): Impact of Alcohol Chain Length on Interfacial Adhesion. Polymers 2020, 12, 95. [Google Scholar] [CrossRef] [Green Version]
- Abushammala, H.; Mao, J. Impact of the Surface Properties of Cellulose Nanocrystals on the Crystallization Kinetics of Poly(Butylene Succinate). Crystals 2020, 10, 196. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Wang, P.; Gao, W.; Zeng, J.; Wang, B.; Xu, J.; Wang, Z. Fabrication of conductive polyaniline nanomaterials based on redispersed cellulose nanofibrils. Cellulose 2023, 30, 857–870. [Google Scholar] [CrossRef]
- Li, S.; Chen, H.; Liu, X.; Li, P.; Wu, W. Nanocellulose as a promising substrate for advanced sensors and their applications. Int. J. Biol. Macromol. 2022, 218, 473–487. [Google Scholar] [CrossRef]
- Sapurina, I.Y.; Shishov, M. Oxidative polymerization of aniline: Molecular synthesis of polyaniline and the formation of supramolecular structures. New Polym. Spec. Appl. 2012, 740, 272. [Google Scholar]
- Letheby, H. XXIX.—On the production of a blue substance by the electrolysis of sulphate of aniline. J. Chem. Soc. 1862, 15, 161–163. [Google Scholar] [CrossRef] [Green Version]
- Rimbu, G.; Stamatin, I.; Jackson, C.; Scott, K. The morphology control of polyaniline as conducting polymer in fuel cell technology. J. Optoelectron. Adv. Mater. 2006, 8, 670. [Google Scholar]
- Gelder, E.A.; Jackson, S.D.; Lok, C.M. The hydrogenation of nitrobenzene to aniline: A new mechanism. Chem. Commun. 2005, 4, 522–524. [Google Scholar] [CrossRef] [PubMed]
- Gospodinova, N.; Terlemezyan, L. Conducting polymers prepared by oxidative polymerization: Polyaniline. Prog. Polym. Sci. 1998, 23, 1443–1484. [Google Scholar] [CrossRef]
- Sapurina, I.; Stejskal, J. The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polym. Int. 2008, 57, 1295–1325. [Google Scholar] [CrossRef]
- Bhadra, S.; Khastgir, D.; Singha, N.K.; Lee, J.H. Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci. 2009, 34, 783–810. [Google Scholar] [CrossRef]
- Mohamed, N.I.; Hassan, S.M.; Khalil, K.J. Preparation, Characterization, and Antimicrobial Activity of Polyaniline and Fe2O3/Polyaniline Composite Nanoparticle. Iraqi J. Phys. 2022, 20, 48–56. [Google Scholar] [CrossRef]
- Zeng, X.-R.; Gong, K.-C.; Weng, K.-N.; Xiao, W.-S.; Gan, W.-H.; Ko, T.-M. Effects of ultra-high pressures (>3.6 GPa) on the electrical resistance of polyaniline by in situ FT-IR studies. Chem. Phys. Lett. 1997, 280, 469–474. [Google Scholar] [CrossRef]
- Feng, H.X.; Chen, J.; Tan, L.; Zhang, J.Q. Polyaniline-Attapulgite Composites Based on Ionic Liquid: Preparation and Characterization. Adv. Mater. Res. 2013, 803, 153–156. [Google Scholar] [CrossRef]
- Stejskal, J.; Riede, A.; Hlavatá, D.; Prokeš, J.; Helmstedt, M.; Holler, P. The effect of polymerization temperature on molecular weight, crystallinity, and electrical conductivity of polyaniline. Synth. Met. 1998, 96, 55–61. [Google Scholar] [CrossRef]
- Ding, C.; Qian, X.; Yu, G.; An, X. Dopant effect and characterization of polypyrrole-cellulose composites prepared by in situ polymerization process. Cellulose 2010, 17, 1067–1077. [Google Scholar] [CrossRef]
- Tran, H.D.; D’Arcy, J.M.; Wang, Y.; Beltramo, P.J.; Strong, V.A.; Kaner, R.B. The oxidation of aniline to produce “polyaniline”: A process yielding many different nanoscale structures. J. Mater. Chem. 2011, 21, 3534–3550. [Google Scholar] [CrossRef]
- Molapo, K.M.; Ndangili, P.M.; Ajayi, R.F.; Mbambisa, G.; Mailu, S.M.; Njomo, N.; Masikini, M.; Baker, P.; Iwuoha, E.I. Electronics of conjugated polymers (I): Polyaniline. Int. J. Electrochem. Sci. 2012, 7, 11859–11875. [Google Scholar]
- Yumaguzin, Y.M.; Salikhov, T.R.; Shayakhmetov, R.U. Emission and conductive properties of polyaniline thin films. Lett. Mater. 2015, 5, 482–484. [Google Scholar] [CrossRef] [Green Version]
- Saini, P.; Choudhary, V. Electrostatic charge dissipation and electromagnetic interference shielding response of polyaniline based conducting fabrics. Indian J. Pure Appl. Phys. 2013, 51, 112–117. [Google Scholar]
- Alber, C.; Shi, Z.; Johns, V.K.; Lafave, S.; Liao, Y. Photo-induced protonation and conductivity of polyaniline/poly (ethylene glycol) and polyaniline/[poly (ethylene glycol)-grafted polyaniline] composites. J. Appl. Polym. Sci. 2013, 129, 3546–3550. [Google Scholar] [CrossRef]
- Saboktakin, M.R.; Maharramov, A.; Ramazanov, M.A. Synthesis and Characterization of Superparamagnetic Polyaniline Nanocomposites as Conductive Shields. J. Elastomers Plast. 2011, 43, 155–166. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, Y.; Tong, W.; Shang, J.; Lv, F.; Chu, P.K.; Guo, W. Hierarchical composites of conductivity controllable polyaniline layers on the exfoliated graphite for dielectric application. Compos. Part A Appl. Sci. Manuf. 2012, 43, 2039–2045. [Google Scholar] [CrossRef]
- Neelgund, G.M.; Hrehorova, E.; Joyce, M.; Bliznyuk, V. Synthesis and characterization of polyaniline derivative and silver nanoparticle composites. Polym. Int. 2008, 57, 1083–1089. [Google Scholar] [CrossRef]
- Ziadan, K.M.; Hussein, H.F.; Ajeel, K. Study of the electrical characteristics of poly (o-toluidine) and application in solar cell. Energy Procedia 2012, 18, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Andriianova, A.N.; Latypova, L.R.; Vasilova, L.Y.; Kiseleva, S.V.; Zorin, V.V.; Abdrakhmanov, I.B.; Mustafin, A.G. Antibacterial properties of polyaniline derivatives. J. Appl. Polym. Sci. 2021, 138, 51397. [Google Scholar] [CrossRef]
- Tabasum, A.; Razzaq, H.; Razzaque, S.; Bibi, A.; Farooq, S.; Yaqub, A.; Siddique, A.; Amir, T.; Rehman, S.-U. Protonated polyaniline and its derivatives as potential adsorbents for simultaneous reclamation of textile dyes and oil/water separation. Mater. Chem. Phys. 2023, 293, 126913. [Google Scholar] [CrossRef]
- Habibi, Y.; Dufresne, A. Highly filled bionanocomposites from functionalized polysaccharide nanocrystals. Biomacromolecules 2008, 9, 1974–1980. [Google Scholar] [CrossRef] [PubMed]
- Abushammala, H. On the Para/Ortho Reactivity of Isocyanate Groups during the Carbamation of Cellulose Nanocrystals Using 2,4-Toluene Diisocyanate. Polymers 2019, 11, 1164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abushammala, H. A Simple Method for the Quantification of Free Isocyanates on the Surface of Cellulose Nanocrystals upon Carbamation using Toluene Diisocyanate. Surfaces 2019, 2, 444–454. [Google Scholar] [CrossRef] [Green Version]
- Terinte, N.; Ibbett, R.; Schuster, K.C. Overview on native cellulose and microcrystalline cellulose I structure studied by X-ray diffraction (WAXD): Comparison between measurement techniques. Lenzing. Ber. 2011, 89, 118. [Google Scholar]
- Belgacem, M.N.; Quillerou, J.; Gandini, A. Urethanes and polyurethanes bearing furan moieties—3. Synthesis, characterization and comparative kinetics of the formation of diurethanes. Eur. Polym. J. 1993, 29, 1217–1224. [Google Scholar] [CrossRef]
- Semsarzadeh, M.; Navarchian, A. Kinetic study of the bulk reaction between TDI and PPG in prescence of DBTDL and FEAA catalysts using quantitative FTIR spectroscopy. J. Polym. Eng. 2003, 23, 225–240. [Google Scholar] [CrossRef]
- Abushammala, H.; Mao, J. A Review of the Surface Modification of Cellulose and Nanocellulose Using Aliphatic and Aromatic Mono- and Di-Isocyanates. Molecules 2019, 24, 2782. [Google Scholar] [CrossRef] [Green Version]
- Nishiyama, Y.; Langan, P.; Chanzy, H. Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 2002, 124, 9074–9082. [Google Scholar] [CrossRef]
- He, Y.; Zhang, X.; Zhang, X.; Huang, H.; Chang, J.; Chen, H. Structural investigations of toluene diisocyanate (TDI) and trimethylolpropane (TMP)-based polyurethane prepolymer. J. Ind. Eng. Chem. 2012, 18, 1620–1627. [Google Scholar] [CrossRef]
- Mao, J.; Heck, B.; Abushammala, H.; Reiter, G.; Laborie, M.-P. A structural fibrillation parameter from small angle X-ray scattering to quantify pulp refining. Cellulose 2019, 26, 4265–4277. [Google Scholar] [CrossRef]
- Elkais, A.R.; Gvozdenović, M.M.; Jugović, B.Z.; Stevanović, J.S.; Nikolić, N.D.; Grgur, B.N. Electrochemical synthesis and characterization of polyaniline thin film and polyaniline powder. Prog. Org. Coat. 2011, 71, 32–35. [Google Scholar] [CrossRef]
- Stejskal, J.; Trchová, M. Aniline oligomers versus polyaniline. Polym. Int. 2012, 61, 240–251. [Google Scholar] [CrossRef]
- Cortés, M.T.; Sierra, E.V. Effect of synthesis parameters in polyaniline: Influence on yield and thermal behavior. Polym. Bull. 2006, 56, 37–45. [Google Scholar] [CrossRef]
- Zheng, X.; Ali Mohsin, M.E.; Arsad, A.; Hassan, A. Polymerization of polyaniline under various concentrations of ammonium peroxydisulfate and hydrochloric acid by ultrasonic irradiation. J. Appl. Polym. Sci. 2021, 138, 50637. [Google Scholar] [CrossRef]
- Abushammala, H. Process for Preparing Individual Cellulose Nanocrystals, and Cellulose Nanocrystals and Use Thereof; Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV: München, Germany, 2022. [Google Scholar]
Sample | Elemental Composition (%) | Mass Yield (g) | |||||
---|---|---|---|---|---|---|---|
%C | %O | %N | %S | %Na | %Cl | ||
Original CNCs | 45.9% | 52.1% | 0.0% | 1.2% | 0.8% | 0.0% | 1.0 |
CNCs-TDI | 54.1% | 40.1% | 4.2% | 0.8% | 0.6% | 0.0% | 1.25 |
CNCs-TDN | 51.3% | 38.1% | 4.0% | 0.7% | 0.7% | 5.3% | 1.31 |
E-CNCs | 52.3% | 39.2% | 4.1% | 0.8% | 0.6% | 3.0% | 1.27 |
Sample | mmol TDN (mmol) | APS/TDN Molar Ratio | Used Mass of APS (mg) | Color | Electrical Conductivity (S/cm) |
---|---|---|---|---|---|
E-CNCs-1 | 1.33 ± 0.07 | 1.00 | 304 | Yellow | 1.0 × 10−4 |
E-CNCs-2 | 1.33 ± 0.07 | 1.25 | 379 | Dark Green | 0.46 |
E-CNCs-3 | 1.33 ± 0.07 | 1.35 | 410 | Green/Brown | 4.9 × 10−3 |
E-CNCs-4 | 1.33 ± 0.07 | 1.50 | 455 | Light Brown | 7.3 × 10−5 |
E-CNCs-5 | 1.33 ± 0.07 | 1.75 | 531 | Brown | 1.8 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abushammala, H.; Mao, J. Novel Electrically Conductive Cellulose Nanocrystals with a Core-Shell Nanostructure Towards Biodegradable Electronics. Nanomaterials 2023, 13, 782. https://doi.org/10.3390/nano13040782
Abushammala H, Mao J. Novel Electrically Conductive Cellulose Nanocrystals with a Core-Shell Nanostructure Towards Biodegradable Electronics. Nanomaterials. 2023; 13(4):782. https://doi.org/10.3390/nano13040782
Chicago/Turabian StyleAbushammala, Hatem, and Jia Mao. 2023. "Novel Electrically Conductive Cellulose Nanocrystals with a Core-Shell Nanostructure Towards Biodegradable Electronics" Nanomaterials 13, no. 4: 782. https://doi.org/10.3390/nano13040782
APA StyleAbushammala, H., & Mao, J. (2023). Novel Electrically Conductive Cellulose Nanocrystals with a Core-Shell Nanostructure Towards Biodegradable Electronics. Nanomaterials, 13(4), 782. https://doi.org/10.3390/nano13040782