Modification of Liquid Separation Membranes Using Multidimensional Nanomaterials: Revealing the Roles of Dimension Based on Classical Titanium Dioxide
Abstract
1. Introduction
2. Features of Multidimensional TiO2 for Liquid Separation Membrane
3. Strategies to Introduce TiO2 into Liquid Separation Membranes
4. Liquid Separation Membranes with Multidimensional TiO2: Performance Evaluation
4.1. One-Dimensional TiO2
4.2. Two-Dimensional TiO2
4.3. Hybridized TiO2
4.4. Discussion
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarbatly, R.; Chiam, C.-K. An Overview of Recent Progress in Nanofiber Membranes for Oily Wastewater Treatment. Nanomaterials 2022, 12, 2919. [Google Scholar] [CrossRef]
 - Nazir, A.; Khan, K.; Maan, A.; Zia, R.; Giorno, L.; Schroën, K. Membrane separation technology for the recovery of nutraceuticals from food industrial streams. Trends Food Sci. Technol. 2019, 86, 426–438. [Google Scholar] [CrossRef]
 - Zhang, K.; Wu, H.-H.; Huo, H.-Q.; Ji, Y.-L.; Zhou, Y.; Gao, C.-J. Recent advances in nanofiltration, reverse osmosis membranes and their applications in biomedical separation field. Chin. J. Chem. Eng. 2022, 49, 76–99. [Google Scholar] [CrossRef]
 - Pervez, N.; Mahboubi, A.; Uwineza, C.; Zarra, T.; Belgiorno, V.; Naddeo, V.; Taherzadeh, M.J. Factors influencing pressure-driven membrane-assisted volatile fatty acids recovery and purification—A review. Sci. Total. Environ. 2022, 817, 152993. [Google Scholar] [CrossRef]
 - Liang, T.; Lu, H.; Ma, J.; Sun, L.; Wang, J. Progress on membrane technology for separating bioactive peptides. J. Food Eng. 2023, 340, 111321. [Google Scholar] [CrossRef]
 - Mansi, A.; El-Marsafy, S.; Elhenawy, Y.; Bassyouni, M. Assessing the potential and limitations of membrane-based technologies for the treatment of oilfield produced water. Alex. Eng. J. 2022. [Google Scholar] [CrossRef]
 - Xiang, H.; Min, X.; Tang, C.-J.; Sillanpää, M.; Zhao, F. Recent advances in membrane filtration for heavy metal removal from wastewater: A mini review. J. Water Process. Eng. 2022, 49, 103023. [Google Scholar] [CrossRef]
 - Philipp, M.; Reich, J.; Geißen, S.-U. Non-Biological Slaughterhouse Wastewater Treatment with Membrane Processes—An Opportunity for Water Recycling. Nanomaterials 2022, 12, 2314. [Google Scholar] [CrossRef]
 - Goh, P.; Wong, K.; Ismail, A. Membrane technology: A versatile tool for saline wastewater treatment and resource recovery. Desalination 2021, 521, 115377. [Google Scholar] [CrossRef]
 - Alfonso-Muniozguren, P.; Serna-Galvis, E.A.; Bussemaker, M.; Torres-Palma, R.A.; Lee, J. A review on pharmaceuticals removal from waters by single and combined biological, membrane filtration and ultrasound systems. Ultrason. Sonochem. 2021, 76, 105656. [Google Scholar] [CrossRef]
 - Suhalim, N.S.; Kasim, N.; Mahmoudi, E.; Shamsudin, I.J.; Mohammad, A.W.; Zuki, F.M.; Jamari, N.L.-A. Rejection Mechanism of Ionic Solute Removal by Nanofiltration Membranes: An Overview. Nanomaterials 2022, 12, 437. [Google Scholar] [CrossRef]
 - Verma, B.; Balomajumder, C.; Sabapathy, M.; Gumfekar, S. Pressure-Driven Membrane Process: A Review of Advanced Technique for Heavy Metals Remediation. Processes 2021, 9, 752. [Google Scholar] [CrossRef]
 - Jain, H.; Garg, M.C. Fabrication of polymeric nanocomposite forward osmosis membranes for water desalination—A review. Environ. Technol. Innov. 2021, 23, 101561. [Google Scholar] [CrossRef]
 - Altaee, A.; Hilal, N. Dual-stage forward osmosis/pressure retarded osmosis process for hypersaline solutions and fracking wastewater treatment. Desalination 2014, 350, 79–85. [Google Scholar] [CrossRef]
 - Ang, W.L.; Mohammad, A.W.; Johnson, D.; Hilal, N. Forward osmosis research trends in desalination and wastewater treatment: A review of research trends over the past decade. J. Water Process. Eng. 2019, 31, 100886. [Google Scholar] [CrossRef]
 - Liu, S.; Zhou, G.; Cheng, G.; Wang, X.; Liu, G.; Jin, W. Emerging membranes for separation of organic solvent mixtures by pervaporation or vapor permeation. Sep. Purif. Technol. 2022, 299, 121729. [Google Scholar] [CrossRef]
 - Jiang, M.; Fang, Z.; Liu, Z.; Huang, X.; Wei, H.; Yu, C.-Y. Application of membrane distillation for purification of radioactive liquid. Clean. Eng. Technol. 2023, 12, 100589. [Google Scholar] [CrossRef]
 - Mohammadi, R.; Tang, W.; Sillanpää, M. A systematic review and statistical analysis of nutrient recovery from municipal wastewater by electrodialysis. Desalination 2021, 498, 114626. [Google Scholar] [CrossRef]
 - Farahbakhsh, J.; Vatanpour, V.; Khoshnam, M.; Zargar, M. Recent advancements in the application of new monomers and membrane modification techniques for the fabrication of thin film composite membranes: A review. React. Funct. Polym. 2021, 166, 105015. [Google Scholar] [CrossRef]
 - Li, S.-L.; Wu, P.; Wang, J.; Wang, J.; Hu, Y. Fabrication of high performance polyamide reverse osmosis membrane from monomer 4-morpholino-m-phenylenediamine and tailoring with zwitterions. Desalination 2020, 473, 114169. [Google Scholar] [CrossRef]
 - He, H.; Wu, Y.; Wang, Y.; Zhang, T.-J.; Zhang, T.C.; Yuan, S. Constructing A Janus membrane with extremely asymmetric wettability for water unidirectional permeation and switchable emulsion separation. Sep. Purif. Technol. 2022, 303, 122254. [Google Scholar] [CrossRef]
 - Zhang, Y.; Wei, S.; Hu, Y.; Sun, S. Membrane technology in wastewater treatment enhanced by functional nanomaterials. J. Clean. Prod. 2018, 197, 339–348. [Google Scholar] [CrossRef]
 - Anis, S.F.; Hashaikeh, R.; Hilal, N. Reverse osmosis pretreatment technologies and future trends: A comprehensive review. Desalination 2019, 452, 159–195. [Google Scholar] [CrossRef]
 - Goh, P.; Ismail, A.; Hilal, N. Nano-enabled membranes technology: Sustainable and revolutionary solutions for membrane desalination? Desalination 2016, 380, 100–104. [Google Scholar] [CrossRef]
 - Anis, S.F.; Hashaikeh, R.; Hilal, N. Functional materials in desalination: A review. Desalination 2019, 468, 114077. [Google Scholar] [CrossRef]
 - Yashas, S.R.; Shahmoradi, B.; Wantala, K.; Shivaraju, H.P. Potentiality of polymer nanocomposites for sustainable environmental applications: A review of recent advances. Polymer 2021, 233, 124184. [Google Scholar] [CrossRef]
 - Nain, A.; Sangili, A.; Hu, S.-R.; Chen, C.-H.; Chen, Y.-L.; Chang, H.-T. iScience Recent progress in nanomaterial-functionalized membranes for removal of pollutants, (n.d.). Iscience 2022, 25, 104616. [Google Scholar] [CrossRef] [PubMed]
 - Agrawal, A.; Sharma, A.; Awasthi, K.K.; Awasthi, A. Metal oxides nanocomposite membrane for biofouling mitigation in wastewater treatment. Mater. Today Chem. 2021, 21, 100532. [Google Scholar] [CrossRef]
 - Ng, L.Y.; Chua, H.S.; Ng, C.Y. Incorporation of graphene oxide-based nanocomposite in the polymeric membrane for water and wastewater treatment: A review on recent development. J. Environ. Chem. Eng. 2021, 9, 105994. [Google Scholar] [CrossRef]
 - Chen, M.; Li, M.; Lee, S.L.J.; Zhao, X.; Lin, S. Constructing novel graphitic carbon nitride-based nanocomposites—From the perspective of material dimensions and interfacial characteristics. Chemosphere 2022, 302, 134889. [Google Scholar] [CrossRef] [PubMed]
 - Zhao, D.L.; Feng, F.; Shen, L.; Huang, Z.; Zhao, Q.; Lin, H.; Chung, T.-S. Engineering metal–organic frameworks (MOFs) based thin-film nanocomposite (TFN) membranes for molecular separation. Chem. Eng. J. 2023, 454, 140447. [Google Scholar] [CrossRef]
 - Lu, P.; Liu, Y.; Zhou, T.; Wang, Q.; Li, Y. Recent advances in layered double hydroxides (LDHs) as two-dimensional membrane materials for gas and liquid separations. J. Membr. Sci. 2018, 567, 89–103. [Google Scholar] [CrossRef]
 - Falentin-Daudré, C.; Baumann, J.-S.; Migonney, V.; Spadavecchia, J. Highly crystalline sphere and rod-shaped TiO2 nanoparticles: A facile route to bio-polymer grafting. Front. Lab. Med. 2017, 1, 217–223. [Google Scholar] [CrossRef]
 - Johnson, D.J.; Hilal, N. Nanocomposite nanofiltration membranes: State of play and recent advances. Desalination 2022, 524, 115480. [Google Scholar] [CrossRef]
 - Arora, B.; Attri, P. Carbon Nanotubes (CNTs): A Potential Nanomaterial for Water Purification. J. Compos. Sci. 2020, 4, 135. [Google Scholar] [CrossRef]
 - Zeng, M.; Chen, M.; Huang, D.; Lei, S.; Zhang, X.; Wang, L.; Cheng, Z. Engineered two-dimensional nanomaterials: An emerging paradigm for water purification and monitoring. Mater. Horizons 2021, 8, 758–802. [Google Scholar] [CrossRef] [PubMed]
 - Wang, C.; Park, M.J.; Seo, D.H.; Drioli, E.; Matsuyama, H.; Shon, H. Recent advances in nanomaterial-incorporated nanocomposite membranes for organic solvent nanofiltration. Sep. Purif. Technol. 2021, 268, 118657. [Google Scholar] [CrossRef]
 - Rajlaxmi; Gupta, N.; Behere, R.P.; Layek, R.K.; Kuila, B.K. Polymer nanocomposite membranes and their application for flow catalysis and photocatalytic degradation of organic pollutants. Mater. Today Chem. 2021, 22, 100600. [Google Scholar] [CrossRef]
 - Kim, A.; Moon, S.J.; Kim, J.H.; Patel, R. Review on thin-film nanocomposite membranes with various quantum dots for water treatments. J. Ind. Eng. Chem. 2022, 118, 19–32. [Google Scholar] [CrossRef]
 - Mansourpanah, Y. MXenes and other 2D nanosheets for modification of polyamide thin film nanocomposite membranes for desalination. Sep. Purif. Technol. 2022, 289, 120777. [Google Scholar] [CrossRef]
 - Al Harby, N.F.; El-Batouti, M.; Elewa, M.M. Prospects of Polymeric Nanocomposite Membranes for Water Purification and Scalability and their Health and Environmental Impacts: A Review. Nanomaterials 2022, 12, 3637. [Google Scholar] [CrossRef]
 - Kumar, S.; Bhawna; Sharma, R.; Gupta, A.; Dubey, K.K.; Khan, A.; Singhal, R.; Kumar, R.; Bharti, A.; Singh, P.; et al. TiO2 based Photocatalysis membranes: An efficient strategy for pharmaceutical mineralization. Sci. Total. Environ. 2022, 845, 157221. [Google Scholar] [CrossRef] [PubMed]
 - Zhang, Y.; Fang, Z.Z.; Sun, P.; Huang, Z.; Zheng, S. A study on the synthesis of coarse TiO2 powder with controlled particle sizes and morphology via hydrolysis. Powder Technol. 2021, 393, 650–658. [Google Scholar] [CrossRef]
 - Kumar, A.; Raorane, C.J.; Syed, A.; Bahkali, A.H.; Elgorban, A.M.; Raj, V.; Kim, S.C. Synthesis of TiO2, TiO2/PAni, TiO2/PAni/GO nanocomposites and photodegradation of anionic dyes Rose Bengal and thymol blue in visible light. Environ. Res. 2023, 216, 114741. [Google Scholar] [CrossRef] [PubMed]
 - Ramakrishnan, V.M.; Natarajan, M.; Santhanam, A.; Asokan, V.; Velauthapillai, D. Size controlled synthesis of TiO2 nanoparticles by modified solvothermal method towards effective photo catalytic and photovoltaic applications. Mater. Res. Bull. 2018, 97, 351–360. [Google Scholar] [CrossRef]
 - Palmas, S.; Mais, L.; Mascia, M.; Vacca, A. Trend in using TiO2 nanotubes as photoelectrodes in PEC processes for wastewater treatment. Curr. Opin. Electrochem. 2021, 28, 100699. [Google Scholar] [CrossRef]
 - Fattakhova-Rohlfing, D.; Zaleska, A.; Bein, T. Three-Dimensional Titanium Dioxide Nanomaterials. Chem. Rev. 2014, 114, 9487–9558. [Google Scholar] [CrossRef]
 - Irshad, M.A.; Nawaz, R.; Rehman, M.Z.U.; Adrees, M.; Rizwan, M.; Ali, S.; Ahmad, S.; Tasleem, S. Synthesis, characterization and advanced sustainable applications of titanium dioxide nanoparticles: A review. Ecotoxicol. Environ. Saf. 2021, 212, 111978. [Google Scholar] [CrossRef] [PubMed]
 - Lee, K.; Mazare, A.; Schmuki, P. One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes. Chem. Rev. 2014, 114, 9385–9454. [Google Scholar] [CrossRef]
 - Wang, J.; Wang, Z.; Wang, W.; Wang, Y.; Hu, X.; Liu, J.; Gong, X.; Miao, W.; Ding, L.; Li, X.; et al. Synthesis, modification and application of titanium dioxide nanoparticles: A review. Nanoscale 2022, 14, 6709–6734. [Google Scholar] [CrossRef]
 - Reghunath, S.; Pinheiro, D.; Kr, S.D. A review of hierarchical nanostructures of TiO2: Advances and applications. Appl. Surf. Sci. Adv. 2021, 3, 100063. [Google Scholar] [CrossRef]
 - Hu, Y.-C.; Dai, C.-L.; Hsu, C.-C. Titanium Dioxide Nanoparticle Humidity Microsensors Integrated with Circuitry on-a-Chip. Sensors 2014, 14, 4177–4188. [Google Scholar] [CrossRef]
 - Raut, N.C.; Mathews, T.; Panda, K.; Sundaravel, B.; Dash, S.; Tyagi, A.K. Enhancement of electron field emission properties of TiO2−xnanoplatelets by N-doping. RSC Adv. 2012, 2, 812–815. [Google Scholar] [CrossRef]
 - Rodríguez, D.; Perillo, P. Ultra-fast TiO2 nanopores broadband photodetector. Opt. Mater. 2023, 135, 113315. [Google Scholar] [CrossRef]
 - Ahmed, F.; Awada, C.; Ansari, S.A.; Aljaafari, A.; Alshoaibi, A. Photocatalytic inactivation of Escherichia coliunder UV light irradiation using large surface area anatase TiO2quantum dots. R. Soc. Open Sci. 2019, 6, 191444. [Google Scholar] [CrossRef] [PubMed]
 - Kambhampati, P. Nanoparticles, Nanocrystals, and Quantum Dots: What are the Implications of Size in Colloidal Nanoscale Materials? J. Phys. Chem. Lett. 2021, 12, 4769–4779. [Google Scholar] [CrossRef]
 - Alosfur, F.K.M.; Ouda, A.A.; Ridha, N.J.; Abud, S.H. High photocatalytic activity of TiO2 nanorods prepared by simple method. Mater. Res. Express 2019, 6, 065028. [Google Scholar] [CrossRef]
 - Moradi, A.; Abrari, M.; Ahmadi, M. Efficiency enhancement in dye-sensitized solar cells through the decoration of electro-spun TiO2 nanofibers with Ag nanoparticles. J. Mater. Sci. Mater. Electron. 2020, 31, 16759–16768. [Google Scholar] [CrossRef]
 - Wang, C.; Wu, L.; Wang, H.; Zuo, W.; Li, Y.; Liu, J. Fabrication and Shell Optimization of Synergistic TiO2-MoO3Core-Shell Nanowire Array Anode for High Energy and Power Density Lithium-Ion Batteries. Adv. Funct. Mater. 2015, 25, 3524–3533. [Google Scholar] [CrossRef]
 - Naidu, K.C.B.; Kumar, N.S.; Banerjee, P.; Reddy, B.V.S. A review on the origin of nanofibers/nanorods structures and applications. J. Mater. Sci. Mater. Med. 2021, 32, 68. [Google Scholar] [CrossRef]
 - Abraham, J.; Arunima, R.; Nimitha, K.; George, S.C.; Thomas, S. One-dimensional (1D) nanomaterials: Nanorods and nanowires; nanoscale processing. In Nanoscale Processing; Elsevier: Amsterdam, The Netherlands, 2021; pp. 71–101. [Google Scholar] [CrossRef]
 - Hajjaji, A.; Elabidi, M.; Trabelsi, K.; Assadi, A.; Bessais, B.; Rtimi, S. Bacterial adhesion and inactivation on Ag decorated TiO2-nanotubes under visible light: Effect of the nanotubes geometry on the photocatalytic activity. Colloids Surf. B Biointerfaces 2018, 170, 92–98. [Google Scholar] [CrossRef]
 - Tian, J.; Zhao, Z.; Kumar, A.; Boughton, R.I.; Liu, H. Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: A review. Chem. Soc. Rev. 2014, 43, 6920–6937. [Google Scholar] [CrossRef]
 - Xu, H.-M.; Wang, H.-C.; Shen, Y.; Lin, Y.-H.; Nan, C.-W. Low-dimensional nanostructured photocatalysts. J. Adv. Ceram. 2015, 4, 159–182. [Google Scholar] [CrossRef]
 - Xue, C.; Huang, R.; Xue, R.; Chang, Q.; Li, N.; Zhang, J.; Hu, S.; Yang, J. Design of ultrathin TiO2 nanosheets coated Ti plate for enhanced interfacial solar driven water evaporation performance. J. Alloys Compd. 2022, 909, 164843. [Google Scholar] [CrossRef]
 - Wang, W.; Liu, F.; Wang, B.; Wang, Y. Effect of defects in TiO2 nanoplates with exposed {001} facets on the gas sensing properties. Chin. Chem. Lett. 2019, 30, 1261–1265. [Google Scholar] [CrossRef]
 - Chen, L.; Tian, J.; Qiu, H.; Yin, Y.; Wang, X.; Dai, J.; Wu, P.; Wang, A.; Chu, L. Preparation of TiO2 nanofilm via sol–gel process and its photocatalytic activity for degradation of methyl orange. Ceram. Int. 2009, 35, 3275–3280. [Google Scholar] [CrossRef]
 - Chimene, D.; Alge, D.L.; Gaharwar, A.K. Two-Dimensional Nanomaterials for Biomedical Applications: Emerging Trends and Future Prospects. Adv. Mater. 2015, 27, 7261–7284. [Google Scholar] [CrossRef]
 - Yang, C.-C.; Chen, K.-Y.; Su, Y.-K. TiO2 Nano Flowers Based EGFET Sensor for pH Sensing. Coatings 2019, 9, 251. [Google Scholar] [CrossRef]
 - Shao, F.; Sun, J.; Gao, L.; Yang, S.; Luo, J. Forest-like TiO2 hierarchical structures for efficient dye-sensitized solar cells. J. Mater. Chem. 2012, 22, 6824–6830. [Google Scholar] [CrossRef]
 - Yu, Z.; Xun, S.; Jing, M.; Chen, H.; Song, W.; Chao, Y.; Rahmani, M.; Ding, Y.; Hua, M.; Liu, J.; et al. Construction of 3D TiO2 nanoflower for deep catalytic oxidative desulfurization in diesel: Role of oxygen vacancy and Ti3+. J. Hazard. Mater. 2022, 440, 129859. [Google Scholar] [CrossRef]
 - Zhou, J.; Zhao, G.; Han, G.; Song, B. Solvothermal growth of three-dimensional TiO2 nanostructures and their optical and photocatalytic properties. Ceram. Int. 2013, 39, 8347–8354. [Google Scholar] [CrossRef]
 - Paul, K.K.; Giri, P.K. Shape Tailored TiO2 Nanostructures and Their Hybrids for Advanced Energy and Environmental Applications: A Review. J. Nanosci. Nanotechnol. 2019, 19, 307–331. [Google Scholar] [CrossRef] [PubMed]
 - Özdemir, A.O.; Caglar, B.; Çubuk, O.; Coldur, F.; Kuzucu, M.; Guner, E.K.; Doğan, B.; Caglar, S.; Özdokur, K.V. Facile synthesis of TiO2-coated cotton fabric and its versatile applications in photocatalysis, pH sensor and antibacterial activities. Mater. Chem. Phys. 2022, 287, 126342. [Google Scholar] [CrossRef]
 - Murad, H.I.; Kafi, D.A. Laser-ablated synthesis of Ag@TiO2 NPs on Si nanostructure as humidity sensor. Optik 2022, 267, 169644. [Google Scholar] [CrossRef]
 - Salari, M.; Aboutalebi, S.H.; Ekladious, I.; Jalili, R.; Konstantinov, K.; Liu, H.K.; Grinstaff, M.W. Tubular TiO2 Nanostructures: Toward Safer Microsupercapacitors. Adv. Mater. Technol. 2018, 3, 1700194. [Google Scholar] [CrossRef]
 - Sajan, C.P.; Swelm, W.; Al-Ghamdi, A.A.; Yu, J.; Cao, S. TiO2 nanosheets with exposed {001} facets for photocatalytic applications. Nano Res. 2016, 9, 3–27. [Google Scholar] [CrossRef]
 - Edy, R.; Zhao, Y.; Huang, G.S.; Shi, J.J.; Zhang, J.; Solovev, A.A.; Mei, Y. TiO2 nanosheets synthesized by atomic layer deposition for photocatalysis. Prog. Nat. Sci. 2016, 26, 493–497. [Google Scholar] [CrossRef]
 - Sonker, R.K.; Hitkari, G.; Sabhajeet, S.; Sikarwar, S.; Rahul; Singh, S. Green synthesis of TiO2 nanosheet by chemical method for the removal of Rhodamin B from industrial waste. Mater. Sci. Eng. B 2020, 258, 114577. [Google Scholar] [CrossRef]
 - Zhang, Z.; Du, J.; Li, J.; Huang, X.; Kang, T.; Zhang, C.; Wang, S.; Ajao, O.O.; Wang, W.-J.; Liu, P. Polymer nanocomposites with aligned two-dimensional materials. Prog. Polym. Sci. 2021, 114, 101360. [Google Scholar] [CrossRef]
 - Dorothy, A.A.; Panigrahi, P. Tuning optical properties of TiO2 by dimension reduction: From 3D bulk to 2D sheets along {001} and {101} plane. Mater. Res. Express 2019, 6, 1250f1. [Google Scholar] [CrossRef]
 - Wang, H.; Gao, Q.; Li, H.; Wang, G.; Han, B.; Xia, K.; Zhou, C. Hydrous titania nanosheets constructed hierarchical hollow microspheres as a highly efficient dual-use decontaminant for elimination of heavy metal ions and organic pollutants. Chem. Eng. J. 2019, 381, 122638. [Google Scholar] [CrossRef]
 - Kanjana, N.; Maiaugree, W.; Poolcharuansin, P.; Laokul, P. Size controllable synthesis and photocatalytic performance of mesoporous TiO2 hollow spheres. J. Mater. Sci. Technol. 2020, 48, 105–113. [Google Scholar] [CrossRef]
 - Badgujar, H.F.; Kumar, U. Green Approach Towards Morphology-Controlled Synthesis of Zein-Functionalized TiO2 Nanoparticles for Cosmeceutical Application. Eur. J. Pharm. Sci. 2021, 167, 106010. [Google Scholar] [CrossRef]
 - Zhou, Q.; Fang, Z.; Li, J.; Wang, M. Applications of TiO2 nanotube arrays in environmental and energy fields: A review. Microporous Mesoporous Mater. 2015, 202, 22–35. [Google Scholar] [CrossRef]
 - Ahmad, A.L.; Pang, W.Y.; Shafie, Z.M.H.M.; Zaulkiflee, N.D. PES/PVP/TiO2 mixed matrix hollow fiber membrane with antifouling properties for humic acid removal. J. Water Process. Eng. 2019, 31, 100827. [Google Scholar] [CrossRef]
 - Yu, Y.; Wu, Y.; Xie, C.; Sun, X.; Wang, Y.; Liu, P.; Wang, Y.; Liu, C.; Wan, Y.; Pan, W.; et al. High-flux, antifouling and highly hydrophilic tight ultrafiltration membranes based on crosslinked PEEKWC/PEI containing positively charged water channel for dyes removal. Chem. Eng. Res. Des. 2022, 188, 1–14. [Google Scholar] [CrossRef]
 - Al-Amoudi, A.S. Factors affecting natural organic matter (NOM) and scaling fouling in NF membranes: A review. Desalination 2010, 259, 1–10. [Google Scholar] [CrossRef]
 - Tanudjaja, H.J.; Anantharaman, A.; Ng, A.Q.Q.; Ma, Y.; Tanis-Kanbur, M.B.; Zydney, A.L.; Chew, J.W. A review of membrane fouling by proteins in ultrafiltration and microfiltration. J. Water Process. Eng. 2022, 50, 103294. [Google Scholar] [CrossRef]
 - Mao, C.; Wang, X.; Zhang, W.; Hu, B.; Deng, H. Super-hydrophilic TiO2-based coating of anion exchange membranes with improved antifouling performance. Colloids Surf. A Physicochem. Eng. Asp. 2021, 614, 126136. [Google Scholar] [CrossRef]
 - Matindi, C.N.; Kadanyo, S.; Liu, G.; Hu, M.; Hu, Y.; Cui, Z.; Ma, X.; Yan, F.; He, B.; Li, J. Hydrophilic polyethyleneimine-TiO2 hybrid layer on polyethersulfone/sulfonated polysulfone blend membrane with antifouling characteristics for the effective separation of oil-in-water emulsions. J. Water Process. Eng. 2022, 49, 102982. [Google Scholar] [CrossRef]
 - Kubacka, A.; Suarez-Diez, M.; Rojo, D.; Bargiela, R.; Ciordia, S.; Zapico, I.; Albar, J.P.; Barbas, C.; Dos Santos, V.A.P.M.; Fernández-García, M.; et al. Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium. Sci. Rep. 2014, 4, 4134. [Google Scholar] [CrossRef] [PubMed]
 - Priyanka, K.P.; Sukirtha, T.H.; Balakrishna, K.M.; Varghese, T. Microbicidal activity of TiO2 nanoparticles synthesised by sol–gel method. IET Nanobiotechnol. 2016, 10, 81–86. [Google Scholar] [CrossRef] [PubMed]
 - Nesic, J.; Rtimi, S.; Laub, D.; Roglic, G.M.; Pulgarin, C.; Kiwi, J. New evidence for TiO2 uniform surfaces leading to complete bacterial reduction in the dark: Critical issues. Colloids Surf. B Biointerfaces 2014, 123, 593–599. [Google Scholar] [CrossRef]
 - Khashan, K.; Sulaiman, G.; Abdulameer, F.; Albukhaty, S.; Ibrahem, M.; Al-Muhimeed, T.; AlObaid, A. Antibacterial Activity of TiO2 Nanoparticles Prepared by One-Step Laser Ablation in Liquid. Appl. Sci. 2021, 11, 4623. [Google Scholar] [CrossRef]
 - Li, H.; Cui, Q.; Feng, B.; Wang, J.; Lu, X.; Weng, J. Antibacterial activity of TiO2 nanotubes: Influence of crystal phase, morphology and Ag deposition. Appl. Surf. Sci. 2013, 284, 179–183. [Google Scholar] [CrossRef]
 - Ji, X.-W.; Liu, P.-T.; Tang, J.-C.; Wan, C.-J.; Yang, Y.; Zhao, Z.-L.; Zhao, D.-P. Different antibacterial mechanisms of titania nanotube arrays at various growth phases of E. coli. Trans. Nonferrous Met. Soc. China 2021, 31, 3821–3830. [Google Scholar] [CrossRef]
 - Wu, J.; Yi, S.; Wang, Y.; Yao, J.; Gao, W. Polymer-based TiO2 nanocomposite membrane: Synthesis and organic pollutant removal. Int. J. Smart Nano Mater. 2021, 12, 129–145. [Google Scholar] [CrossRef]
 - Subramaniam, M.N.; Goh, P.S.; Kanakaraju, D.; Lim, J.W.; Lau, W.J.; Ismail, A.F. Photocatalytic membranes: A new perspective for persistent organic pollutants removal. Environ. Sci. Pollut. Res. 2022, 29, 12506–12530. [Google Scholar] [CrossRef] [PubMed]
 - Argurio, P.; Fontananova, E.; Molinari, R.; Drioli, E. Photocatalytic Membranes in Photocatalytic Membrane Reactors. Processes 2018, 6, 162. [Google Scholar] [CrossRef]
 - Mangayayam, M.; Kiwi, J.; Giannakis, S.; Pulgarin, C.; Zivkovic, I.; Magrez, A.; Rtimi, S. FeOx magnetization enhancing E. coli inactivation by orders of magnitude on Ag-TiO2 nanotubes under sunlight. Appl. Catal. B Environ. 2017, 202, 438–445. [Google Scholar] [CrossRef]
 - Zenteno, A.; Lieberwirth, I.; Catalina, F.; Corrales, T.; Guerrero, S.; Vasco, D.A.; Zapata, P.A. Study of the effect of the incorporation of TiO2 nanotubes on the mechanical and photodegradation properties of polyethylenes. Compos. Part B Eng. 2017, 112, 66–73. [Google Scholar] [CrossRef]
 - Zhang, G.; Yu, Y.; Tu, Y.; Liu, Y.; Huang, J.; Yin, X.; Feng, Y. Preparation of reusable UHMWPE/TiO2 photocatalytic microporous membrane reactors for efficient degradation of organic pollutants in water. Sep. Purif. Technol. 2023, 305, 122515. [Google Scholar] [CrossRef]
 - Song, C.; Jiao, Y.; Tian, Z.; Qin, Q.; Qin, S.; Zhang, J.; Li, J.; Cui, Z. Fabrication of hollow-fiber nanofiltration membrane with negative-positive dual-charged separation layer to remove low concentration CuSO4. Sep. Purif. Technol. 2022, 296, 121352. [Google Scholar] [CrossRef]
 - Wang, Z.-Y.; Wang, Y.-C.; Wang, W.-J.; Tao, S.-N.; Chen, Y.-F.; Tang, M.; Shao, D.-D.; Xing, W.; Sun, S.-P. Designing scalable dual-layer composite hollow fiber nanofiltration membranes with fully cross-linked ultrathin functional layer. J. Membr. Sci. 2021, 628, 119243. [Google Scholar] [CrossRef]
 - Ahmad, A.; Sabir, A.; Iqbal, S.S.; Felemban, B.F.; Riaz, T.; Bahadar, A.; Hossain, N.; Khan, R.U.; Inam, F. Novel antibacterial polyurethane and cellulose acetate mixed matrix membrane modified with functionalized TiO2 nanoparticles for water treatment applications. Chemosphere 2022, 301, 134711. [Google Scholar] [CrossRef]
 - Otitoju, T.A.; Ouyang, Y.; Jiang, D.; Shoparwe, N.F.; Jansen, J.C.; Wang, S.; Zhang, A.; Sun, T.; Li, S. Efficient removal of chemical oxygen demand from lye wastewater by APTES-TIO2/GO mixed matrix membrane: Optimization using Box-Behnken Design. J. Clean. Prod. 2022, 336, 130379. [Google Scholar] [CrossRef]
 - Peyravi, M.; Jahanshahi, M.; Rahimpour, A.; Javadi, A.; Hajavi, S. Novel thin film nanocomposite membranes incorporated with functionalized TiO2 nanoparticles for organic solvent nanofiltration. Chem. Eng. J. 2014, 241, 155–166. [Google Scholar] [CrossRef]
 - Zou, D.; Kim, H.W.; Jeon, S.M.; Lee, Y.M. Robust PVDF/PSF hollow-fiber membranes modified with inorganic TiO2 particles for enhanced oil-water separation. J. Membr. Sci. 2022, 652, 120470. [Google Scholar] [CrossRef]
 - Zhang, W.; Hu, B.; Wang, Z.; Li, B. Fabrication of omniphobic PVDF composite membrane with dual-scale hierarchical structure via chemical bonding for robust membrane distillation. J. Membr. Sci. 2021, 622, 119038. [Google Scholar] [CrossRef]
 - Kallem, P.; Pandey, R.P.; Hegab, H.M.; Gaur, R.; Hasan, S.W.; Banat, F. High-performance thin-film composite forward osmosis membranes with hydrophilic PDA@TiO2 nanocomposite substrate for the treatment of oily wastewater under PRO mode. J. Environ. Chem. Eng. 2022, 10, 107454. [Google Scholar] [CrossRef]
 - Cazan, C.; Enesca, A.; Andronic, L. Synergic Effect of TiO2 Filler on the Mechanical Properties of Polymer Nanocomposites. Polymers 2021, 13, 2017. [Google Scholar] [CrossRef]
 - Cheng, X.; Ding, S.; Guo, J.; Zhang, C.; Guo, Z.; Shao, L. In-situ interfacial formation of TiO2/polypyrrole selective layer for improving the separation efficiency towards molecular separation. J. Membr. Sci. 2017, 536, 19–27. [Google Scholar] [CrossRef]
 - Zhang, J.; Maurer, F.H.J.; Yang, M. In situ Formation of TiO2 in Electrospun Poly(methyl methacrylate) Nanohybrids. J. Phys. Chem. C 2011, 115, 10431–10441. [Google Scholar] [CrossRef]
 - Besançon, M.; Wang, Y.; Alauzun, J.G.; Mutin, H.; Espuche, E.; Bounor-Legaré, V. Tuning Polymer/TiO2 Nanocomposites Morphology by In Situ Non-Hydrolytic Sol-Gel Syntheses in Viscous Polymer Medium: Influence of the Polymer Nature and Oxygen Donor. Polymers 2022, 14, 2273. [Google Scholar] [CrossRef]
 - Ma, Y.; Chen, X.; Wang, S.; Dong, H.; Zhai, X.; Shi, X.; Wang, J.; Ma, R.; Zhang, W. Significantly enhanced antifouling and separation capabilities of PVDF membrane by synergy of semi-interpenetrating polymer and TiO2 gel nanoparticles. J. Ind. Eng. Chem. 2022, 108, 15–27. [Google Scholar] [CrossRef]
 - Cruz, N.K.O.; Semblante, G.U.; Senoro, D.B.; You, S.-J.; Lu, S.-C. Dye degradation and antifouling properties of polyvinylidene fluoride/titanium oxide membrane prepared by sol–gel method. J. Taiwan Inst. Chem. Eng. 2014, 45, 192–201. [Google Scholar] [CrossRef]
 - Dekkouche, S.; Morales-Torres, S.; Ribeiro, A.R.; Faria, J.L.; Fontàs, C.; Kebiche-Senhadji, O.; Silva, A.M. In situ growth and crystallization of TiO2 on polymeric membranes for the photocatalytic degradation of diclofenac and 17α-ethinylestradiol. Chem. Eng. J. 2022, 427, 131476. [Google Scholar] [CrossRef]
 - Park, M.; Ko, Y.T.; Ji, M.; Cho, J.S.; Wang, D.H.; Lee, Y.-I. Facile self-assembly-based fabrication of a polyvinylidene fluoride nanofiber membrane with immobilized titanium dioxide nanoparticles for dye wastewater treatment. J. Clean. Prod. 2022, 378, 134506. [Google Scholar] [CrossRef]
 - Tian, Z.; Wang, S.; Wu, Y.; Yan, F.; Qin, S.; Yang, J.; Li, J.; Cui, Z. Fabrication of polymer@TiO2 NPs hybrid membrane based on covalent bonding and coordination and its mechanism of enhancing photocatalytic performance. J. Alloy. Compd. 2022, 910, 164887. [Google Scholar] [CrossRef]
 - Ahmad, N.A.; Goh, P.S.; Wong, K.C.; Mamah, S.C.; Ismail, A.F.; Zulhairun, A.K. Accelerated spraying-assisted layer by layer assembly of polyethyleneimine/titania nanosheet on thin film composite membrane for reverse osmosis desalination. Desalination 2022, 529, 115645. [Google Scholar] [CrossRef]
 - Saffar, A.; Carreau, P.J.; Kamal, M.R.; Ajji, A. Hydrophilic modification of polypropylene microporous membranes by grafting TiO2 nanoparticles with acrylic acid groups on the surface. Polymer 2014, 55, 6069–6075. [Google Scholar] [CrossRef]
 - Zhang, L.; Guan, H.; Zhang, N.; Jiang, B.; Sun, Y.; Yang, N. A loose NF membrane by grafting TiO2-HMDI nanoparticles on PES/β-CD substrate for dye/salt separation. Sep. Purif. Technol. 2019, 218, 8–19. [Google Scholar] [CrossRef]
 - Damavandi, F.; Aroujalian, A.; Salimi, P. TiO2 nanoparticle stability via polyacrylic acid-binding on the surface of polyethersulfone membrane: Long-term evaluation. J. Ind. Eng. Chem. 2023, 117, 307–318. [Google Scholar] [CrossRef]
 - Heng, Z.W.; Chong, W.C.; Pang, Y.L.; Koo, C.H. Self-assembling of NCQDs-TiO2 nanocomposite on poly(acrylic acid)-grafted polyethersulfone membrane for photocatalytic removal and membrane filtration. Mater. Today: Proc. 2021, 46, 1901–1907. [Google Scholar] [CrossRef]
 - Yang, C.; Han, N.; Zhang, W.; Wang, W.; Li, W.; Xia, B.; Han, C.; Cui, Z.; Zhang, X. Adhesive-free in situ synthesis of a coral-like titanium dioxide@poly(phenylene sulfide) microporous membrane for visible-light photocatalysis. Chem. Eng. J. 2019, 374, 1382–1393. [Google Scholar] [CrossRef]
 - Ahmad, N.A.; Goh, P.S.; Azman, N.; Ismail, A.F.; Hasbullah, H.; Hashim, N.; Kerisnan@krishnan, N.D.; Yahaya, N.K.E.M.; Mohamed, A.; Yusoff, M.A.M.; et al. Enhanced Removal of Endocrine-Disrupting Compounds from Wastewater Using Reverse Osmosis Membrane with Titania Nanotube-Constructed Nanochannels. Membranes 2022, 12, 958. [Google Scholar] [CrossRef]
 - Khoo, Y.S.; Seah, M.Q.; Lau, W.J.; Liang, Y.Y.; Karaman, M.; Gürsoy, M.; Meng, J.; Gao, H.; Ismail, A.F. Environmentally friendly approach for the fabrication of polyamide thin film nanocomposite membrane with enhanced antifouling and antibacterial properties. Sep. Purif. Technol. 2021, 260, 118249. [Google Scholar] [CrossRef]
 - Ahmad, N.; Goh, P.; Zulhairun, A.; Ismail, A. Antifouling Property of Oppositely Charged Titania Nanosheet Assembled on Thin Film Composite Reverse Osmosis Membrane for Highly Concentrated Oily Saline Water Treatment. Membranes 2020, 10, 237. [Google Scholar] [CrossRef] [PubMed]
 - Ahmad, N.A.; Goh, P.S.; Wong, K.C.; Zulhairun, A.K.; Ismail, A.F. Enhancing desalination performance of thin film composite membrane through layer by layer assembly of oppositely charged titania nanosheet. Desalination 2020, 476, 114167. [Google Scholar] [CrossRef]
 - Sendão, R.M.; da Silva, J.C.E.; da Silva, L.P. Photocatalytic removal of pharmaceutical water pollutants by TiO2—Carbon dots nanocomposites: A review. Chemosphere 2022, 301, 134731. [Google Scholar] [CrossRef] [PubMed]
 - Mishra, J.R.; Samal, S.K.; Mohanty, S.; Nayak, S.K. Polyvinylidene fluoride (PVDF)/Ag@TiO2 nanocomposite membrane with enhanced fouling resistance and antibacterial performance. Mater. Chem. Phys. 2021, 268, 124723. [Google Scholar] [CrossRef]
 - Kusworo, T.D.; Irvan; Kumoro, A.C.; Nabilah, Y.; Rasendriya, A.; Utomo, D.P.; Hasbullah, H. Advanced method for clean water recovery from batik wastewater via sequential adsorption, ozonation and photocatalytic membrane PVDF-TiO2/rGO processes. J. Environ. Chem. Eng. 2022, 10, 108708. [Google Scholar] [CrossRef]
 - Wu, L.-G.; Zhang, X.-Y.; Wang, T.; Du, C.-H.; Yang, C.-H. Enhanced performance of polyvinylidene fluoride ultrafiltration membranes by incorporating TiO2/graphene oxide. Chem. Eng. Res. Des. 2019, 141, 492–501. [Google Scholar] [CrossRef]
 - Tran, M.L.; Fu, C.-C.; Chiang, L.-Y.; Hsieh, C.-T.; Liu, S.-H.; Juang, R.-S. Immobilization of TiO2 and TiO2-GO hybrids onto the surface of acrylic acid-grafted polymeric membranes for pollutant removal: Analysis of photocatalytic activity. J. Environ. Chem. Eng. 2020, 8, 104422. [Google Scholar] [CrossRef]
 - Hazaraimi, M.H.; Goh, P.S.; Subramaniam, M.N.; Pandiyan, M.; Suzaimi, N.D.; Lau, W.J.; Ismail, A.F. Silver doped titania nanotubes incorporated photocatalytic dual layer antibiofouling hollow fiber membrane for palm oil wastewater treatment. J. Environ. Chem. Eng. 2021, 9, 106192. [Google Scholar] [CrossRef]
 - Nawaz, H.; Umar, M.; Nawaz, I.; Zia, Q.; Tabassum, M.; Razzaq, H.; Gong, H.; Zhao, X.; Liu, X. Photodegradation of textile pollutants by nanocomposite membranes of polyvinylidene fluoride integrated with polyaniline–titanium dioxide nanotubes. Chem. Eng. J. 2021, 419, 129542. [Google Scholar] [CrossRef]
 - Subramaniam, M.; Goh, P.; Lau, W.; Abidin, M.; Mansur, S.; Ng, B.; Ismail, A. Optimizing the spinning parameter of titania nanotube-boron incorporated PVDF dual-layered hollow fiber membrane for synthetic AT-POME treatment. J. Water Process. Eng. 2020, 36, 101372. [Google Scholar] [CrossRef]
 - Subramaniam, M.; Goh, P.; Lau, W.; Ismail, A. Exploring the potential of photocatalytic dual layered hollow fiber membranes incorporated with hybrid titania nanotube-boron for agricultural wastewater reclamation. Sep. Purif. Technol. 2021, 275, 119136. [Google Scholar] [CrossRef]
 - Kennedy, A.J.; McQueen, A.D.; Ballentine, M.L.; May, L.R.; Fernando, B.M.; Das, A.; Klaus, K.L.; Williams, C.B.; Bortner, M.J. Degradation of microcystin algal toxin by 3D printable polymer immobilized photocatalytic TiO2. Chem. Eng. J. 2023, 455, 140866. [Google Scholar] [CrossRef]
 - Suzaimi, N.D.; Goh, P.S.; Wong, K.C.; Malek, N.A.N.N.; Ismail, A.F.; Lim, J.W. Tailoring the substrate of thin film reverse osmosis membrane through a novel β-FeOOH nanorods templating strategy: An insight into the effects on interfacial polymerization of polyamide. J. Membr. Sci. 2022, 657, 120706. [Google Scholar] [CrossRef]
 





| Base  Polymer  | TiO2 Geometry | Technique | Application | Membrane  Process  | Improved Parameters | Ref. | 
|---|---|---|---|---|---|---|
| PVDF/PAA | Spherical | In situ surface growth | Protein, oil/water separation | UF | Water flux, antifouling | [116] | 
| PES | Spherical | Surface deposition | Dye/salt separation | NF | Water flux, dye removal, antifouling | [123] | 
| PVDF | Spherical | Surface deposition | Dye removal | Photocatalytic [119] | Dye removal | [119] | 
| PVDF | Spherical | Surface deposition | Dye removal | Photocatalytic | Dye adsorption–degradation | [120] | 
| Polyurethane/cellulose acetate | Spherical | Ex situ blending | - | Photocatalytic | Antimicrobial | [106] | 
| PVDF | Spherical | Surface deposition | Protein separation | UF | Water flux, BSA rejection, antimicrobial (E. coli) | [132] | 
| PVDF | Spherical | Ex situ blending | Dye separation | Photocatalytic | Water flux, COD removal, self-cleaning | [133] | 
| PVDF | Spherical | Surface deposition | Phenol removal | Photocatalytic | Phenol removal | |
| PA TFC | Nanotube | Ex situ blending during IP | EDC removal | RO | Water flux, antifouling | [127] | 
| PA TFC | Nanotube | Ex situ blending during IP | Desalination | NF | Water flux, antifouling, antimicrobial (E. coli, S. aureus) | [128] | 
| PVDF | Nanotube | Ex situ blending | Dye separation | Photocatalytic | Water flux, antifouling | [137] | 
| PVDF | Nanotube | Ex situ blending | Color removal | Photocatalytic | Water flux, antifouling | [138] | 
| PVDF | Nanotube | Ex situ blending | Color removal | Photocatalytic | Water flux, antifouling, antimicrobial (P. aeruginosa) | [136] | 
| PA TFC | Nanosheet | Surface deposition | Desalination | RO | Water flux, antifouling, NaCl rejection | [121] | 
| PA TFC | Nanosheet | Surface deposition | Oil/water separation | RO | Water flux, antifouling, oil rejection | [129] | 
| PA TFC | Nanosheet | Surface deposition | Desalination | RO | Water flux, antifouling, NaCl rejection | [130] | 
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.  | 
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goh, P.S.; Samavati, Z.; Ismail, A.F.; Ng, B.C.; Abdullah, M.S.; Hilal, N. Modification of Liquid Separation Membranes Using Multidimensional Nanomaterials: Revealing the Roles of Dimension Based on Classical Titanium Dioxide. Nanomaterials 2023, 13, 448. https://doi.org/10.3390/nano13030448
Goh PS, Samavati Z, Ismail AF, Ng BC, Abdullah MS, Hilal N. Modification of Liquid Separation Membranes Using Multidimensional Nanomaterials: Revealing the Roles of Dimension Based on Classical Titanium Dioxide. Nanomaterials. 2023; 13(3):448. https://doi.org/10.3390/nano13030448
Chicago/Turabian StyleGoh, Pei Sean, Zahra Samavati, Ahmad Fauzi Ismail, Be Cheer Ng, Mohd Sohaimi Abdullah, and Nidal Hilal. 2023. "Modification of Liquid Separation Membranes Using Multidimensional Nanomaterials: Revealing the Roles of Dimension Based on Classical Titanium Dioxide" Nanomaterials 13, no. 3: 448. https://doi.org/10.3390/nano13030448
APA StyleGoh, P. S., Samavati, Z., Ismail, A. F., Ng, B. C., Abdullah, M. S., & Hilal, N. (2023). Modification of Liquid Separation Membranes Using Multidimensional Nanomaterials: Revealing the Roles of Dimension Based on Classical Titanium Dioxide. Nanomaterials, 13(3), 448. https://doi.org/10.3390/nano13030448
        
