Suppression of SnS2 Secondary Phase on Cu2ZnSnS4 Solar Cells Using Multi-Metallic Stacked Nanolayers
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.; Adachi, D.; Kanematsu, M.; Uzu, H.; et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2017, 2, 17032. [Google Scholar] [CrossRef]
- Jackson, P.; Wuerz, R.; Hariskos, D.; Lotter, E.; Witte, W.; Powalla, M. Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%. Phys. Status Solidi-R 2016, 10, 583–586. [Google Scholar] [CrossRef]
- Metzger, W.K.; Grover, S.; Lu, D.; Colegrove, E.; Moseley, J.; Perkins, C.L.; Li, X.; Mallick, R.; Zhang, W.; Malik, R.; et al. Exceeding 20% efficiency with in situ group V doping in polycrystalline CdTe solar cells. Nat. Energy 2019, 4, 837–845. [Google Scholar] [CrossRef]
- Rajeshmon, V.G.; Sudha Kartha, C.; Vijayakumar, K.P.; Sanjeeviraja, C.; Abe, T.; Kashiwaba, Y. Role of precursor solution in controlling the opto-electronic properties of spray pyrolysed Cu2ZnSnS4 thin films. Sol. Energy 2011, 85, 249–255. [Google Scholar] [CrossRef]
- Sharmin, A.; Bashar, M.S.; Sultana, M.; Mostafa Al Mamun, S.M. Sputtered single-phase kesterite Cu2ZnSnS4 (CZTS) thin film for photovoltaic applications: Post annealing parameter optimization and property analysis. AIP Adv. 2020, 10, 015230. [Google Scholar] [CrossRef]
- Khemiri, N.; Chamekh, S.; Kanzari, M. Properties of thermally evaporated CZTS thin films and numerical simulation of earth abundant and non toxic CZTS/Zn(S,O) based solar cells. Sol. Energy 2020, 207, 496–502. [Google Scholar] [CrossRef]
- Tsai, H.W.; Chen, C.W.; Thomas, S.R.; Hsu, C.H.; Tsai, W.C.; Chen, Y.Z.; Wang, Y.C.; Wang, Z.M.; Hong, H.F.; Chueh, Y.L. Facile Growth of Cu2ZnSnS4 Thin-Film by One-Step Pulsed Hybrid Electrophoretic and Electroplating Deposition. Sci. Rep. 2016, 6, 19102. [Google Scholar] [CrossRef]
- Diwate, K.; Mohite, K.; Shinde, M.; Rondiya, S.; Pawbake, A.; Date, A.; Pathan, H.; Jadkar, S. Synthesis and Characterization of Chemical Spray Pyrolysed CZTS Thin Films for Solar Cell Applications. Energy Procedia 2017, 110, 180–187. [Google Scholar] [CrossRef]
- Su, Z.; Sun, K.; Han, Z.; Cui, H.; Liu, F.; Lai, Y.; Li, J.; Hao, X.; Liu, Y.; Green, A.M. Fabrication of Cu2ZnSnS4 solar cells with 5.1% efficiency via thermal decomposition and reaction using a non-toxic sol–gel route. J. Mater. Chem. A 2014, 2, 500–509. [Google Scholar] [CrossRef]
- Ghosh, S.; Yasmin, S.; Ferdous, J.; Saha, B.B. Numerical Analysis of a CZTS Solar Cell with MoS2 as a Buffer Layer and Graphene as a Transparent Conducting Oxide Layer for Enhanced Cell Performance. Micromachines 2022, 13, 1249. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, X.; Duan, B.; Wu, H.; Shi, J.; Luo, Y.; Li, D.; Meng, Q. Regulating crystal growth via organic lithium salt additive for efficient Kesterite solar cells. Nano Energy 2021, 89, 106405. [Google Scholar] [CrossRef]
- Wang, W.; Winkler, M.T.; Gunawan, O.; Gokmen, T.; Todorov, T.K.; Zhu, Y.; Mitz, D.B. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 2014, 4, 1–5. [Google Scholar] [CrossRef]
- Son, D.H.; Kim, S.H.; Kim, S.Y.; Kim, Y.I.; Sim, J.H.; Park, S.N.; Jeon, D.H.; Hwang, D.K.; Sung, S.J.; Kang, J.K.; et al. Effect of solid-H2S gas reactions on CZTSSe thin film growth and photovoltaic properties of a 12.62% efficiency device. J. Mater. Chem. A 2019, 7, 25279–25289. [Google Scholar] [CrossRef]
- Mali, S.S.; Patil, B.M.; Betty, C.A.; Bhosale, P.N.; Oh, Y.W.; Jadkar, S.R.; Devan, R.S.; Ma, Y.R.; Patil, P.S. Novel synthesis of kesterite Cu2ZnSnS4 nanoflakes by successive ionic layer adsorption and reaction technique: Characterization and application. Electrochim. Acta 2012, 66, 216–221. [Google Scholar] [CrossRef]
- Mahajan, S.; Stathatos, E.; Huse, N.; Birajdar, R.; Kalarakis, A.; Sharma, R. Low cost nanostructure kesterite CZTS thin films for solar cells application. Mater. Lett. 2018, 210, 92–96. [Google Scholar] [CrossRef]
- Ge, J.; Chu, J.; Jiang, J.; Yan, Y.; Yang, P. Characteristics of In-Substituted CZTS Thin Film and Bifacial Solar Cell. ACS Appl. Mater. Interfaces 2014, 6, 21118–21130. [Google Scholar] [CrossRef]
- Wang, Z.; Tao, J.; Xiao, W.; Xu, T.; Zhang, X.; Hu, D.; Ma, Z. Influence of deposition potential on Cu2ZnSnS4 thin–film solar cells co–electrodeposited on fluorine–doped tin oxide substrates. J. Alloys Compd. 2017, 701, 465–473. [Google Scholar] [CrossRef]
- Ge, J.; Yu, Y.; Ke, W.; Li, J.; Tan, X.; Wang, Z.; Chu, J.; Yan, Y. Improved Performance of Electroplated CZTS Thin-Film Solar Cells with Bifacial Configuration. ChemSusChem 2016, 9, 2149–2158. [Google Scholar] [CrossRef]
- Kim, H.T.; Kim, D.; Park, C. Temperature Effects on Cu2ZnSnS4(CZTS) Films De-posited by Spraying Method, Molecular Crystals and Liquid. Crystals 2012, 564, 155–161. [Google Scholar] [CrossRef]
- Olgar, M.A. Optimization of sulfurization time and temperature for fabrication of Cu2ZnSnS4 (CZTS) thin films. Superlattice Microst 2019, 126, 32–41. [Google Scholar] [CrossRef]
- Olgar, M.A.; Klaer, J.; Mainz, R.; Levcenco, S.; Just, J.; Bacaksiz, E.; Unold, T. Effect of precursor stacking order and sulfurization temperature on compositional homogeneity of CZTS thin films. Thin Solid Film. 2016, 615, 402–408. [Google Scholar] [CrossRef]
- Yoo, H.; Kim, J. Growth of Cu2ZnSnS4 thin films using sulfurization of stacked metallic films. Thin Solid Film. 2010, 518, 6567–6572. [Google Scholar] [CrossRef]
- Babichuk, I.S.; Semenenko, M.O.; Golovynskyi, S.; Caballero, R.; Datsenko, O.I.; Babichuk, I.V.; Li, J.; Xu, G.; Qiu, R.; Huang, C.; et al. Control of secondary phases and disorder degree in Cu2ZnSnS4 films by sulfurization at varied subatmospheric pressures. Sol. Energy Mater. Sol. Cells 2019, 200, 109915. [Google Scholar] [CrossRef]
- Mendis, B.G.; Goodman, M.C.J.; Major, J.D.; Taylor, A.A.; Durose, K.; Halliday, D.P. The role of secondary phase precipitation on grain boundary electrical activity in Cu2ZnSnS4 (CZTS) photovoltaic absorber layer material. J. Appl. Phys. 2012, 112, 124508. [Google Scholar] [CrossRef]
- Xie, H.; Sánchez, Y.; López-Marino, S.; Espíndola-Rodríguez, M.; Neuschitzer, M.; Sylla, D.; Fairbrother, A.; Izquierdo-Roca, V.; Pérez-Rodríguez, A.; Saucedo, E. Impact of Sn(S,Se) Secondary Phases in Cu2ZnSn(S,Se)4 Solar Cells: A Chemical Route for Their Selective Removal and Absorber Surface Passivation. ACS Appl. Mater. Interfaces 2014, 6, 12744–12751. [Google Scholar] [CrossRef]
- Wang, W.; Chen, G.; Cai, H.; Chen, B.; Yao, L.; Yang, M.; Chen, S.; Huang, Z. The effects of SnS2 secondary phases on Cu2ZnSnS4 solar cells: A promising mechanical exfoliation method for its removal. J. Mater. Chem. A 2018, 6, 2995–3004. [Google Scholar] [CrossRef]
- Chen, W.C.; Chen, C.Y.; Tunuguntlaa, V. Enhanced solar cell performance of Cu2ZnSn(S,Se)4 thin films through structural control by using multi-metallic stacked nanolayers and fast ramping process for sulfo-selenization. Nano Energy 2016, 30, 762–770. [Google Scholar] [CrossRef]
- Shi, S.; He, G.; Zhang, M.; Song, X.; Li, J.; Wang, X.; Cui, J.; Chen, X.; Sun, Z. Microstructural, optical and electrical properties of molybdenum doped ZnO films deposited by magnetron sputtering. Sci. Adv. Mater. 2012, 4, 193–198. [Google Scholar] [CrossRef]
- González-Castillo, J.R.; Vigil-Galán, O.; Rodríguez, E.; Jiménez-Olarte, D.; Leal, J.J. Cu6Sn5 binary phase as a precursor material of the CZTSe compound: Optimization of the synthesis process, physical properties and its performance as an absorbing material in a solar cell. Mater. Sci. Semicond. Process. 2021, 134, 106016. [Google Scholar] [CrossRef]
- Pandey, K.; Mohanty, B.C. Influencing mechanism of post-sulfurization with sulfur flakes on phase evolution and Schottky diode characteristic of Cu2ZnSnS4 thin films sputter deposited from a single target. Sol. Energy 2021, 228, 333–338. [Google Scholar] [CrossRef]
- Nagaoka, A.; Yoshino, K.; Taniguchi, H.; Taniyama, T.; Miyake, H. Preparation of Cu2ZnSnS4 single crystals from Sn solutions. J. Cryst. Growth 2012, 341, 38–41. [Google Scholar] [CrossRef]
- Ma, D.; Zhou, H.; Zhang, J.; Qian, Y. Controlled synthesis and possible formation mechanism of leaf-shaped SnS2 Nanocrystals. Mater. Chem. Phys. 2008, 111, 391–395. [Google Scholar] [CrossRef]
- Pankove, J.I. Optical Processes in Semiconductors; Dover Inc.: New York, NY, USA, 1975; p. 33+93. [Google Scholar]
- Wibowo, R.A.; Kim, W.S.; Lee, E.S.; Munir, B.; Kim, K.H. Single step preparation of quaternary image thin films by RF magnetron sputtering from binary chalco-genide targets. J. Phys. Chem. Solids 2007, 68, 1908–1913. [Google Scholar] [CrossRef]
- Gayen, R.N.; Chakrabarti, T. Effect of series and shunt resistance on the photovoltaic properties of solution-processed zinc oxide nanowire based CZTS solar cell in superstrate configuration. Mater. Sci. Semicond. Process. 2019, 100, 1–7. [Google Scholar] [CrossRef]
- Bhattacharya, R.N.; Batchelor, W.; Hiltner, J.F.; Sites, J.R. Thin film CuIn1−xGaxSe2 photovoltaic cells from solution-based precursor layers. Appl. Phys. Lett. 1999, 75, 1431–1433. [Google Scholar]
Sample | Cu | Zn | Sn | S |
---|---|---|---|---|
1 | 22.18 | 14.46 | 11.46 | 51.90 |
2 | 22.21 | 14.35 | 11.73 | 51.71 |
3 | 22.28 | 14.34 | 11.84 | 51.54 |
4 | 22.35 | 14.32 | 12.16 | 51.17 |
Sample | Voc (V) | Jsc (mA/cm2) | FF (%) | Efficiency (%) | Junction Rectifying Characters | n | Rsh (KΩ˙cm2) | Rs (Ω˙cm2) |
---|---|---|---|---|---|---|---|---|
CZTS−1 | Not applicable | Not applicable | Not applicable | Not applicable | 1.3 | 9.65 | 0.09 | 560 |
CZTS−2 | 0.12 | 2.07 | 24.15 | 0.06 | 1.35 | 6.46 | 0.1 | 400 |
CZTS−3 | 0.49 | 5.6 | 33.89 | 0.93 | 6.22 | 5.34 | 1.17 | 310 |
CZTS−4 | 0.51 | 7.15 | 43.6 | 1.59 | 45.84 | 2.3 | 10.68 | 34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, F.-I.; Yang, J.-F.; Li, J.-E.; Hsu, Y.-C.; Kuo, S.-Y. Suppression of SnS2 Secondary Phase on Cu2ZnSnS4 Solar Cells Using Multi-Metallic Stacked Nanolayers. Nanomaterials 2023, 13, 432. https://doi.org/10.3390/nano13030432
Lai F-I, Yang J-F, Li J-E, Hsu Y-C, Kuo S-Y. Suppression of SnS2 Secondary Phase on Cu2ZnSnS4 Solar Cells Using Multi-Metallic Stacked Nanolayers. Nanomaterials. 2023; 13(3):432. https://doi.org/10.3390/nano13030432
Chicago/Turabian StyleLai, Fang-I, Jui-Fu Yang, Jia-En Li, Yu-Chao Hsu, and Shou-Yi Kuo. 2023. "Suppression of SnS2 Secondary Phase on Cu2ZnSnS4 Solar Cells Using Multi-Metallic Stacked Nanolayers" Nanomaterials 13, no. 3: 432. https://doi.org/10.3390/nano13030432
APA StyleLai, F.-I., Yang, J.-F., Li, J.-E., Hsu, Y.-C., & Kuo, S.-Y. (2023). Suppression of SnS2 Secondary Phase on Cu2ZnSnS4 Solar Cells Using Multi-Metallic Stacked Nanolayers. Nanomaterials, 13(3), 432. https://doi.org/10.3390/nano13030432