Topological Defects Created by Gamma Rays in a Carbon Nanotube Bilayer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Methods
2.2.1. Exposure to Radiation
2.2.2. Radiation Spectroscopy
2.2.3. Response Functions and Photoelectron Statistics
2.2.4. The Langmuir–Blodgett Technique and Ultrathin Absorber Materials
2.2.5. Structural and Diffraction Methods
2.2.6. Raman Spectroscopy
3. Physicochemical and Structural Characterizations of Aligned CNT LB Assemblies
4. Graphene Interaction with Photons: Model
4.1. Pseudo-Majorana Fermion Graphene Model
4.2. Avalanche Binding of Pseudo-Majorana Fermions
5. Analysis of Radiation Spectra
5.1. Escaping Absorber-Scattered Gamma Rays
5.2. CNT-Enhanced Deposition of Energy in Detector
6. Discussion
6.1. Interaction of 661.7-keV Gamma Rays with Graphene Sheet
6.2. Klein Tunneling through Electrostatic Barrier Generated by Scattering on Vortical Radiation-Induced Defects in the Rolled-Up Graphene Sheets
6.2.1. Doping Effect of Pseudo-Majorana Mode Creation in Laser Fields
6.2.2. Scattering of Charge Carriers on Electron Beam Induces Defects of Pseudo-Majorana Type
6.3. -Ray Diffraction on Radiation-Induced Vacancy Clusters in Single-Layer Graphene
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ćosić, M.; Petrović, S.; Nešković, N. Quantum rainbows in positron transmission through Carbon Nanotubes. Atoms 2019, 7, 16. [Google Scholar] [CrossRef] [Green Version]
- Grushevskaya, H.V.; Krylov, G.G.; Kruchinin, S.P.; Vlahovic, B.; Bellucci, S. Electronic properties and quasi-zero-energy states of graphene quantum dots. Phys. Rev. B 2021, 103, 235102. [Google Scholar] [CrossRef]
- Repetsky, S.P.; Vyshyvana, I.G.; Nakazawa, Y.; Kruchinin, S.P.; Bellucci, S. Electron transport in carbon nanotubes with adsorbed chromium impurities. Materials 2019, 12, 524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.-H.; Chang, Y.-C.; Norris, T.B.; Zhong, Z. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 2014, 9, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Chai, G.; Heinrich, H.; Chow, L.; Schenkel, T. Electron transport through single carbon nanotubes. Appl. Phys. Lett. 2007, 91, 103101. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Feng, Y.; Ding, K.; Qian, G.; Zhang, X.; Zhang, J. The effect of gamma ray irradiation on the structure of graphite and multiwalled carbon nanotubes. Carbon 2013, 60, 186–192. [Google Scholar] [CrossRef]
- Navarro, M.; Zamiri, M.; Jacobson, R.B.; Doerner, R.; Santarius, J.; Schmitz, O.; Lagally, M.; Kulcinski, G. High-quality graphene as a coating for polycrystalline tungsten in low-energy helium and deuterium plasma exposures. J. Nucl. Mater. 2021, 552, 152979. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Diaz-Moreno, S.; Iliffe, W.; Linden, Y.; Mousavi, T.; Aramini, M.; Danaie, M.; Grovenor, C.R.M.; Speller, S.C. Understanding irradiation damage in high-temperature superconductors for fusion reactors using high resolution X-ray absorption spectroscopy. Commun. Mater. 2022, 3, 52. [Google Scholar] [CrossRef]
- Mao, J.; Jiang, Y.; Moldovan, D.; Li, G.; Watanabe, K.; Taniguchi, T.; Masir, M.R.; Peeters, F.M.; Andrei, E.Y. Realization of a tunable artificial atom at a supercritical charged vacancy in graphene. Nat. Phys. 2016, 12, 545–549. [Google Scholar] [CrossRef] [Green Version]
- Lozada-Hidalgo, M.; Hu, S.; Marshall, O.; Mishchenko, A.; Grigorenko, A.N.; Dryfe, R.A.W.; Radha, B.; Grigorieva, I.V.; Geim, A.K. Sieving hydrogen isotopes through two-dimensional crystals. Science 2016, 351, 68–70. [Google Scholar] [CrossRef]
- Schleberger, M.; Kotakoski, J. 2D Material Science: Defect Engineering by Particle Irradiation. Materials 2018, 11, 1885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Wang, S.; Zhang, S.; Wang, W.; Ji, X.; Li, C. Effects of substrates on proton irradiation damage of graphene. RSC Adv. 2020, 10, 12060–12067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zan, R.; Ramasse, Q.; Bangert, U.; Novoselov, K. Graphene reknits its holes. Nano Lett. 2012, 12, 3936–3940. [Google Scholar] [CrossRef] [Green Version]
- Gruber, E.; Wilhelm, R.A.; Pétuya, R.; Smejkal, V.; Kozubek, R.; Hierzenberger, A.; Bayer, B.C.; Aldazabal, I.; Kazansky, A.K.; Libisch, F.; et al. Ultrafast electronic response of graphene to a strong and localized electric field. Nat. Commun. 2016, 7, 13948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, C.; Tripathi, M.; Yan, Q.-B.; Wang, Z.; Zhang, Z.; Hofer, C.; Wang, H.; Basile, L.; Su, G.; Dong, M.; et al. Engineering single-atom dynamics with electron irradiation. Sci. Adv. 2019, 5, eaav2252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogl, T.; Sripathy, K.; Sharma, A.; Reddy, P.; Sullivan, J.; Machacek, J.R.; Zhang, L.; Karouta, F.; Buchler, B.C.; Doherty, M.W.; et al. Radiation tolerance of two-dimensional material-based devices for space applications. Nat. Commun. 2019, 10, 1202. [Google Scholar] [CrossRef] [Green Version]
- Evora, M.C.; Hiremath, N.; Lu, X.; Kang, N.-G.; de Andrada e Silva, L.G.; Bhat, G.; Mays, J. Effect of electron beam and gamma rays on carbon nanotube yarn structure. Mater. Res. 2017, 20 (Suppl. 2), 386–392. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Baek, J.; Kim, S.; Kim, S.; Ryu, S.; Jeon, S.; Han, S.M. Radiation resistant vanadium-graphene nanolayered composite. Sci. Rep. 2016, 6, 24785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novikov, L.S.; Voronina, E.N. Prospect of Nanomaterials Applying in Cosmic Technics; University Book: Moscow, Russia, 2008. (In Russian) [Google Scholar]
- Shul’ga, S.N.; Shul’ga, N.F.; Barsuk, S.; Chaikovska, I.; Chehab, R. On classical and quantum effects at scattering of ultrarelativistic electrons in ultrathin crystal. Nucl. Instrum. Methods Phys. Res. Sect. B 2017, 402, 16–20. [Google Scholar] [CrossRef]
- Takabayashi, Y.; Pivovarov, Y.L.; Tukhfatullin, T.A. First observation of scattering of sub-GeV electrons in ultrathin Si crystal at planar alignment and its relevance to crystal-assisted 1D rainbow scattering. Phys. Lett. B 2018, 785, 347–353. [Google Scholar] [CrossRef]
- Zhang, P.; Perry, C.; Luu, T.T.; Matselyukh, D.; Wörner, H.J. Observation of intermolecular Coulombic decay in liquid water. Phys. Rev. Lett. 2022, 128, 133001. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, Y.; Meigo, S.-I.; Hashimoto, S. Estimation of reliable displacements-per-atom based on athermal-recombination-corrected model in radiation environments at nuclear fission, fusion, and accelerator facilities. J. Nucl. Mater. 2020, 538, 152261. [Google Scholar] [CrossRef]
- Debroy, S.; Sivasubramani, S.; Vaidya, G.; Acharyya, S.G.; Acharyya, A. Electrical properties of monolayer graphene based interconnects for Next Generation MQCA based nanoelectronics. Sci. Rep. 2020, 10, 6240. [Google Scholar] [CrossRef] [Green Version]
- Murali, R.; Yang, Y.; Brenner, K.; Beck, T.; Meindl, J.D. Breakdown current density of graphene nanoribbons. Appl. Phys. Lett. 2009, 94, 243115. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, M.; Mittelberger, A.; Pike, N.A.; Mangler, C.; Meyer, J.C.; Verstraete, M.J.; Kotakoski, J.; Susi, T. Electron-Beam Manipulation of Silicon Dopants in Graphene. Nano Lett. 2018, 18, 5319–5323. [Google Scholar] [CrossRef] [PubMed]
- Lindhard, J. Influence of crystal lattice on motion of energetic charged particles. Mat. Fys. Medd . Dan. Vid . Selsk. 1965, 34, 1–65. [Google Scholar]
- Huang, H.; Tang, X.; Chen, F.; Liu, J.; Li, H.; Chen, D. Graphene damage effects on radiation-resistance and configuration of copper-graphene nanocomposite under irradiation: A molecular dynamics study. Sci. Rep. 2016, 6, 39391. [Google Scholar] [CrossRef] [Green Version]
- Ghorbani-Asl, M.; Kretschmer, S.; Krasheninnikov, A.V. Two-dimensional materials under ion irradiation: From defect production to structure and property engineering. In Defects in Two-Dimensional Materials; Addou, R., Colombo, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 259–301. [Google Scholar]
- Wilhelm, R.A.; Gruber, E.; Schwestka, J.; Kozubek, R.; Madeira, T.I.; Marques, J.P.; Kobus, J.; Krasheninnikov, A.V.; Schleberger, M.; Aumayr, F. Interatomic coulombic decay: The mechanism for rapid deexcitation of hollow atoms. Phys. Rev. Lett. 2017, 119, 103401. [Google Scholar] [CrossRef] [Green Version]
- Niggas, A.; Creutzburg, S.; Schwestka, J.; Wöckinger, B.; Gupta, T.; Grande, P.; Eder, D.; Marques, J.; Bayer, B.; Aumayr, F.; et al. Peeling graphite layer by layer reveals the charge exchange dynamics of ions inside a solid. Commun. Phys. 2021, 4, 180. [Google Scholar] [CrossRef]
- Cederbaum, L.S.; Kuleff, A.I. Impact of cavity on interatomic Coulombic decay. Nat. Commun. 2021, 12, 4083. [Google Scholar] [CrossRef]
- Bonitz, M.; Balzer, K.; Schlünzen, N.; Rasmussen, M.R.; Joost, J.-P. Ion impact induced ultrafast electron dynamics in correlated materials and finite graphene clusters. Physica Status Solidi B 2019, 256, 1970028. [Google Scholar] [CrossRef]
- Jahnke, T.; Hergenhahn, U.; Winter, B.; Dörner, R.; Frühling, U.; Demekhin, P.V.; Gokhberg, K.; Cederbaum, L.S.; Ehresmann, A.; Knie, A.; et al. Interatomic and intermolecular coulombic decay. Chem. Rev. 2020, 120, 11295–11369. [Google Scholar] [CrossRef] [PubMed]
- Borkowski, L.; Schlünzen, N.; Joost, J.P.; Reiser, F.; Bonitz, M. Doublon production in correlated materials by multiple ion impacts. Phys. Status Solidi B 2022, 259, 2100511. [Google Scholar] [CrossRef]
- Balzer, K.; Bonitz, M. Neutralization dynamics for slow highly charged ions passing through graphene nanoflakes-an embedding self-energy approach. Contrib. Plasma Phys. 2022, 62, e202100041. [Google Scholar] [CrossRef]
- Grushevskaya, H.; Krylov, G. Polarization in Quasirelativistic Graphene Model with Topologically Non-Trivial Charge Carriers. Quantum Rep. 2022, 4, 1–15. [Google Scholar] [CrossRef]
- Creutzburg, S.; Schwestka, J.; Niggas, A.; Inani, H.; Tripathi, M.; George, A.; Heller, R.; Kozubek, R.; Madauß, L.; McEvoy, N.; et al. Vanishing influence of the band gap on the charge exchange of slow highly charged ions in freestanding single-layer MoS2. Phys. Rev. B 2020, 102, 045408. [Google Scholar] [CrossRef]
- Crossno, J.; Shi, J.K.; Wang, K.; Liu, X.; Harzheim, A.; Lucas, A.; Sachdev, S.; Kim, P.; Taniguchi, T.; Watanabe, K.; et al. Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene. Science 2016, 351, 1058–1061. [Google Scholar] [CrossRef] [Green Version]
- Beenakker, C.W.J. Search for non-Abelian Majorana braiding statistics in superconductors. In SciPost Phys. Lect. Notes 15; SciPost Foundation: Amsterdam, The Netherlands, 2020; pp. 1–29. [Google Scholar]
- Grushevskaya, H.V.; Krylov, G.G. Non-Abelian Majorana-Like Quasi-Excitation in Dirac Materials. Int. J. Nonlin. Phenom. Complex Syst. 2017, 20, 153–169. [Google Scholar]
- Grushevskaya, H.V.; Krylov, G. Two-Dimensional Braiding of Two-Dimensional Majorana Fermions: Manifestation in Band Structure of Graphene. Int. J. Nonlinear Phenom. Complex Syst. 2019, 22, 41–54. [Google Scholar]
- Rosenzweig, P.; Karakachian, H.; Marchenko, D.; Kü, K.; Starke, U. Overdoping graphene beyond the van Hove singularity. Phys. Rev. Lett. 2020, 125, 176403. [Google Scholar] [CrossRef]
- Ichinokura, S.; Toyoda, M.; Hashizume, M.; Horii, K.; Kusaka, S.; Ideta, S.; Tanaka, K.; Shimizu, R.; Hitosugi, T.; Saito, S.; et al. Van Hove singularity and Lifshitz transition in thickness-controlled Li-intercalated graphene. Phys. Rev. B 2022, 105, 235307. [Google Scholar] [CrossRef]
- Zhou, A.; Sheng, W. Van Hove singularities in graphene nanoflakes. J. Appl. Phys. 2012, 112, 094313. [Google Scholar] [CrossRef]
- Sahin, H.; Torun, E.; Bacaksiz, C.; Horzum, S.; Kang, J.; Senger, R.T.; Peeters, F.M. Computing optical properties of ultra-thin crystals. WIRes Comput. Mol. Sci. 2016, 6, 351–368. [Google Scholar] [CrossRef]
- Majek, P.; Wójcik, K.P.; Weymann, I. Spin-resolved thermal signatures of Majorana-Kondo interplay in double quantum dots. Phys. Rev. B 2022, 105, 075418. [Google Scholar] [CrossRef]
- Grushevskaya, H.; Timoshchenko, A.; Avdanina, E.; Lipnevich, I. Clustering artificial atoms induced by high-frequency electromagnetic radiation in graphene monolayers of multiwalled carbon nanotubes. Int. J. Nonlin. Phenom. Complex Syst. 2020, 23, 342–356. [Google Scholar] [CrossRef]
- Grushevskaya, H.V.; Timoshchenko, A.I.; Lipnevich, I.V. Emergence of topological defects in a bilayer of multiwalled carbon nanotubes irradiated by gamma-rays. Mater. Phys. Mech. 2022, 49, 145–152. [Google Scholar]
- Ma, L.-P.; Wu, Z.; Yin, L.; Zhang, D.; Dong, S.; Zhang, Q.; Chen, M.-L.; Ma, W.; Zhang, Z.; Du, J.; et al. Pushing the conductance and transparency limit of monolayer graphene electrodes for flexible organic light-emitting diodes. Proc. Natl. Acad. Sci. USA 2020, 117, 25991–25998. [Google Scholar] [CrossRef]
- San-Jose, P.; Lado, J.L.; Aguado, R.; Guinea, F.; Fernández-Rossier, J. Fernández-Rossier. Majorana zero modes in graphene. Phys. Rev. X 2015, 5, 041042. [Google Scholar]
- Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Jorio, A.; Saito, R. Raman spectroscopy for carbon nanotube applications. J. Appl. Phys. 2021, 129, 021102. [Google Scholar] [CrossRef]
- Bobrinetskii, I.I.; Nevolin, V.K.; Petrik, V.I.; Stroganov, A.A.; Chaplygin, Y.A. The atomic structure of nanotubes synthesized from a carbon mix of high reaction ability. Tech. Phys. Lett. 2003, 29, 347–349. [Google Scholar] [CrossRef]
- Grushevskaya, H.; Krylov, G. Topologically tuned obliquity of klein-tunnelling charged currents through graphene electrostatically-confined p–n junctions. Int. J. Nonlinear Phenom. Complex Syst. 2022, 25, 21–40. [Google Scholar] [CrossRef]
- Zhang, S.; Nguyen, N.; Leonhardt, B.; Jolowsky, C.; Hao, A.; Park, J.G.; Liang, R. Carbon-nanotube-based electrical conductors: Fabrication, optimization, and applications. Adv. Electron. Mater. 2019, 5, 1800811. [Google Scholar] [CrossRef]
- Grushevskaya, H.V.; Lipnevich, I.V.; Orekhovskaya, T.I. Coordination interaction between rare earth and/or transition metal centers and thiophene series oligomer derivatives in ultrathin Langmuir-Blodgett films. J. Modern Phys. 2013, 4, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Lederer, C.M.; Shirley, V.S. Table of Isotopes, 7th ed.; Wiley-Interscience: New York, NY, USA, 1978. [Google Scholar]
- Starodubtsev, V.A.; Fursa, T.V.; Zausaeva, N.N. Charge electrification of irradiated dielectrics and its effect on incident flux. J. Electrostatics 1988, 20, 341–347. [Google Scholar] [CrossRef]
- Knoll, G.F. Radiation Detection and Measurement, 4th ed.; Wiley: Hoboken, HI, USA, 2010. [Google Scholar]
- Gurachevski, V.L. Radiation Control: Physical Foundation and Instrumental Equipment; Radiology Institute Press: Minsk, Belarus, 2014. (In Russian) [Google Scholar]
- Konstantinova, T.E.; Lyafer, E.I. Hydrostatic compaction pressure influence on sintered spodumene pyroceramics properties. In High Pressure Science and Technology; Trzeciakowski, W.T., Ed.; World Scientific Publishing: Singapore, 1996; pp. 118–120. [Google Scholar]
- Araujo, T.; Pesce, P.B.C.; Dresselhaus, M.S.; Sato, K.; Saito, R.; Jorio, A. Resonance Raman spectroscopy of the radial breathing modes in carbon nanotubes. Physica E 2010, 42, 1251–1261. [Google Scholar] [CrossRef]
- Gangoli, V.S.; Azhang, J.; Willett, T.T.; Gelwick, S.A.; Haroz, E.H.; Kono, J.; Hauge, R.H.; Wong, M.S. Using nonionic surfactants for production of semiconductor-type carbon nanotubes by gel-based affinity chromatography. Nanomater. Nanotechnol. 2014, 4, 19. [Google Scholar] [CrossRef] [Green Version]
- Grushevskaya, H.; Krylov, G. Vortex Dynamics of Charge Carriers in the Quasi-Relativistic Graphene Model: High-Energy Approximation. Symmetry 2020, 12, 261. [Google Scholar] [CrossRef] [Green Version]
- Kitaev, A.Y. Unpaired Majorana fermions in quantum wires. Phys. Uspekhi 2001, 44, 131–136. [Google Scholar] [CrossRef]
- Semenoff, G.W.; Sodano, P. Stretched quantum states emerging from a Majorana medium. J. Phys. B 2007, 40, 1479–1488. [Google Scholar] [CrossRef]
- Dumitru, S. A Survey on uncertainty relations and quantum measurements: Arguments for lucrative parsimony in approaches of matters. Prog. Phys. 2021, 17, 38–70. [Google Scholar]
- Grushevskaya, H.; Krylov, G. Massless Majorana-Like Charged Carriers in Two-Dimensional Semimetals. Symmetry 2016, 8, 60. [Google Scholar] [CrossRef] [Green Version]
- Ju, L.; Geng, B.S.; Horng, J.; Girit, C.; Martin, M.; Hao, Z.; Bechtel, H.A.; Liang, X.; Zettl, A.; Shen, Y.R.; et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 2011, 6, 630–634. [Google Scholar] [CrossRef]
- Grushevskaya, H.V.; Krylov, G. Anomalous charge transport properties and band flattening in graphene: A quasi-relativistic tight-binding study of pseudo-majorana states. In Graphene-Recent Advances, Future Perspective and Applied Applications; Ikram, M., Maqsood, A., Bashir, A., Eds.; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Krajewska, K.; Vélez, F.C.; Kamiński, J.Z. Generalized Klein-Nishina formula. Phys. Rev. A 2015, 91, 062106. [Google Scholar] [CrossRef] [Green Version]
- Shafroth, S.M. (Ed.) Scintillation Spectroscopy of Gamma Radiation; Gordon and Breach Science Publishers: London, UK, 1967. [Google Scholar]
- Egorov, A.S.; Egorova, V.P.; Grushevskaya, H.V.; Krylova, N.G.; Lipnevich, I.V.; Orekhovskaya, T.I.; Shulitsky, B.G. CNT-enhanced Raman spectroscopy and its application: DNA detection and cell visualization. Lett. Appl. Nanobiosci. 2016, 5, 346–353. [Google Scholar]
- Grushevskaya, H.V.; Krylova, N.G.; Lipnevich, I.V.; Orekhovskaja, T.I.; Egorova, V.P.; Shulitski, B.G. Enhancement of Raman light scattering in dye-labeled cell membrane on metal-containing conducting polymer film. Int. J. Modern Phys. B 2016, 30, 1642018. [Google Scholar] [CrossRef]
Name of Characteristic Peak | -Maximum Number | - Maximum Number | Assignment |
---|---|---|---|
X | 68 | 74 | Characteristic X-rays from the lead collimator |
124 | 135 | Bremsstrahlung process | |
179 | 190 | Compton backscattering in materials | |
surrounding the detector | |||
567 | 572 | Photoelectric absorption | |
– | 270 | Production of the chiral vortex pair | |
– | 475 | Production of the semichiral vortex pair | |
– | 535 | Production of the nonchiral vortex pair | |
Single Compton | 210–392 | 223–386 | Single Compton scattering |
Numbers of Primary and | Averaged Primary- | Averaged Redistributed- | Band |
---|---|---|---|
Redistributed Cs Bands | Channel Number; | Channel Number; | Shift |
1 and | 40; 12 | 36; 12 | |
2 and | 56; 7 | 63; 7 | |
3 and | 65; 9 | 67; 10 | |
4 and | 73; 22 | 82, 18 | |
5 and | 85; 14 | 88; 14 | |
6 and | 92; 7 | 93; 6 | |
7 and | 94; 15 | 102; 15 | |
8 and | 107; 19 | 112; 9 | |
9 and | 119 ; 14 | 121; 13 | |
10 and | 124; 38 | 142; 31 | |
11 and | 158; 30 | 191; 33 | |
12 and | 169; 18 | 165; 13 | |
13 and | 196; 7 | 201; 8 | |
14 and | 198; 10 | 311; 10 | +113 |
15 and | 203; 28 | 233; 25 | |
16 and | 218; 28 | 269; 19 | |
17 and | 261; 7 | 338; 6 | |
18 and | 283; 18 | 323; 10 | |
19 and | 313; 6 | 361; 7 | |
20 and | 333; 6 | 421; 6 | +88 |
21 and | 351; 24 | 446; 26 | |
22 and | 367; 13 | 395; 14 | |
23 and | 404; 10 | 559; 10 | +154 |
24 and | 548; 23 | 581; 10 | |
25 and | 563; 17 | 567; 12 | |
26 and | 573; 31 | 585; 23 | |
27 and | 597; 6 | 600; 5 | |
28 and | 602; 8 | 603; 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grushevskaya, H.; Timoshchenko, A.; Lipnevich, I. Topological Defects Created by Gamma Rays in a Carbon Nanotube Bilayer. Nanomaterials 2023, 13, 410. https://doi.org/10.3390/nano13030410
Grushevskaya H, Timoshchenko A, Lipnevich I. Topological Defects Created by Gamma Rays in a Carbon Nanotube Bilayer. Nanomaterials. 2023; 13(3):410. https://doi.org/10.3390/nano13030410
Chicago/Turabian StyleGrushevskaya, Halina, Andrey Timoshchenko, and Ihor Lipnevich. 2023. "Topological Defects Created by Gamma Rays in a Carbon Nanotube Bilayer" Nanomaterials 13, no. 3: 410. https://doi.org/10.3390/nano13030410
APA StyleGrushevskaya, H., Timoshchenko, A., & Lipnevich, I. (2023). Topological Defects Created by Gamma Rays in a Carbon Nanotube Bilayer. Nanomaterials, 13(3), 410. https://doi.org/10.3390/nano13030410