Molecular Dynamics Study of Interfacial Micromechanical Behaviors of 6H-SiC/Al Composites under Uniaxial Tensile Deformation
Abstract
1. Introduction
2. Computational Models and Methods
2.1. Details of MD
2.2. Potential
3. Results and Discussion
3.1. Analysis of Stress–Strain Characteristics of the SiC(0001)/Al Interface Models
3.2. Wigner–Seitz Defect Analysis on the SiC(0001)/Al Interface Models
3.3. Analysis of Tensile Processes of Four SiC(0001)-Si/Al Models
3.4. Structure and Dislocation Analysis of Four SiC(0001)-Si/Al Models
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yan, C.; Lifeng, W.; Jianyue, R. Multi-functional SiC/Al composites for aerospace applications. Chin. J. Aeronaut. 2008, 21, 578–584. [Google Scholar] [CrossRef]
- Hirsch, J. Aluminium in Innovative Light-Weight Car Design. Mater. Trans. 2011, 52, 818–824. [Google Scholar] [CrossRef]
- Lotfian, S.; Rodríguez, M.; Yazzie, K.E.; Chawla, N.; Llorca, J.; Molina-Aldareguía, J.M. Molina-Aldareguia, High temperature micropillar compression of Al/SiC nanolaminates. Acta Mater. 2013, 61, 4439–4451. [Google Scholar] [CrossRef]
- Chandra, N.; Li, H.; Shet, C.; Ghonem, H. Some issues in the application of cohesive zone models for metal-ceramic interfaces. Int. J. Solids Struct. 2002, 39, 2827–2855. [Google Scholar] [CrossRef]
- Luo, Z. Crystallography of SiC/MgAlO/Al interfaces in a pre-oxidized SiC reinforced SiC/Al composite. Acta Mater. 2006, 54, 47–58. [Google Scholar] [CrossRef]
- Saberi, Y.; Zebarjad, S.; Akbari, G. On the role of nano-size SiC on lattice strain and grain size of Al/SiC nanocomposite. J. Alloys Compd. 2009, 484, 637–640. [Google Scholar] [CrossRef]
- Reddy, M.P.; Shakoor, R.A.; Parande, G.; Manakari, V.; Ubaid, F.; Mohamed, A.M.; Gupta, M. Enhanced performance of nano-sized SiC reinforced Al metal matrix nanocomposites synthesized through microwave sintering and hot extrusion techniques. Prog. Nat. Sci. Mater. 2017, 27, 606–614. [Google Scholar] [CrossRef]
- Gong, D.; Cao, Y.; Deng, X.; Jiang, L. Higher proportional limit of SiC/Al composites with nano-scaled stacking faults. Compos. Commun. 2022, 32, 101188. [Google Scholar] [CrossRef]
- Candan, E.; Ahlatci, H.; Çïmenoğlu, H. Abrasive wear behaviour of Al-SiC composites produced by pressure infiltration technique. Wear 2001, 247, 133–138. [Google Scholar] [CrossRef]
- Ma, T.; Yamaura, H.; Koss, D.A.; Voigt, R.C. Dry sliding wear behavior of cast SiC-reinforced Al MMCs. Mater. Sci. Eng. R 2003, 360, 116–125. [Google Scholar] [CrossRef]
- Lee, T.; Lee, J.; Lee, D.; Jo, I.; Lee, S.K.; Ryu, H.J. Effects of particle size and surface modification of SiC on the wear behavior of high volume fraction Al/SiCp composites. J. Alloys Compd. 2020, 831, 154647. [Google Scholar] [CrossRef]
- Guo, X.; Guo, Q.; Li, Z.; Fan, G.; Xiong, D.B.; Su, Y.; Zhang, J.; Gan, C.L.; Zhang, D. Interfacial strength and deformation mechanism of SiC-Al composite micro-pillars. Scripta Mater. 2016, 114, 56–59. [Google Scholar] [CrossRef]
- Gong, D.; Zhu, M.; You, Z.; Han, H.; Chao, Z.; Jiang, L. In-situ TEM study on the effect of stacking faults on micro-plasticity and proportional limit in SiC/Al composites. Compos. Part B Eng. 2022, 244, 110180. [Google Scholar] [CrossRef]
- Wu, Q.; Xie, J.; Wang, A.; Ma, D.; Wang, C. First-principle calculations on the structure of 6H-SiC/Al interface. Mater. Res. Express 2019, 6, 065015. [Google Scholar] [CrossRef]
- Wu, Q.; Xie, J.; Wang, A.; Wang, C.; Mao, A. Effects of vacancies at Al(111)/6H-SiC(0001) interfaces on deformation behavior: A first-principle study. Comput. Mater. Sci. 2019, 158, 110–116. [Google Scholar] [CrossRef]
- Liu, B.; Yang, J. Mg on adhesion of Al(111)/3C-SiC(111) interfaces from first principles study. J. Alloys Compd. 2019, 791, 530–539. [Google Scholar] [CrossRef]
- Luo, X.; Qian, G.; Wang, E.G.; Chen, C. Molecular-dynamics simulation of Al/SiC interface structures. Phys. Rev. B 1999, 59, 10125–10131. [Google Scholar] [CrossRef]
- Huo, S.; Xie, L.; Xiang, J.; Pang, S.; Hu, F.; Umer, U. Atomic-level study on mechanical properties and strengthening mechanisms of Al/SiC nano-composites. Appl. Phys. A 2018, 124, 209. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar]
- Xu, H.; Liu, C.; Silberschmidt, V.V.; Pramana, S.S.; White, T.J.; Chen, Z.; Acoff, V.L. Behavior of aluminum oxide, intermetallics and voids in Cu-Al wire bonds. Acta Mater. 2011, 59, 5661–5673. [Google Scholar] [CrossRef]
- Huang, Y.H.; Jiang, D.L.; Zhang, H.; Chen, Z.M.; Huang, Z.R. Ferromagnetism of Al-doped 6H-SiC and theoretical calculation. Acta Phys. Sin. 2017, 66, 017501. [Google Scholar]
- Zhou, X.; Zimmerman, J.; Reedy, E.; Moody, N. Molecular dynamics simulation based cohesive surface representation of mixed mode fracture. Mech. Mater. 2008, 40, 832–845. [Google Scholar] [CrossRef]
- Zhou, X.; Moody, N.; Jones, R.; Zimmerman, J.; Reedy, E. Molecular-dynamics-based cohesive zone law for brittle interfacial fracture under mixed loading conditions: Effects of elastic constant mismatch. Acta Mater. 2009, 57, 4671–4686. [Google Scholar] [CrossRef]
- McLellan, A.G. Virial Theorem Generalized. Am. J. Phys. 1974, 42, 239–243. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–The Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2010, 18, 015012. [Google Scholar] [CrossRef]
- Stukowski, A.; Sadigh, B.; Erhart, P.; Caro, A. Efficient implementation of the concentration-dependent embedded atom method for molecular-dynamics and Monte-Carlo simulations. Model. Simul. Mater. Sci. Eng. 2009, 17, 075005. [Google Scholar] [CrossRef]
- Stukowski, A.; Bulatov, V.V.; Arsenlis, A. Automated identification and indexing of dislocations in crystal interfaces. Model. Simulat. Mater. Sci. Eng. 2012, 20, 085007. [Google Scholar] [CrossRef]
- Cassone, G.; Kruse, H.; Sponer, J. Interactions between cyclic nucleotides and common cations: An ab initio molecular dynamics study. Phys. Chem. Chem. Phys. 2019, 21, 8121. [Google Scholar] [CrossRef]
- Cassone, G. Nuclear Quantum Effects Largely Influence Molecular Dissociation and Proton Transfer in Liquid Water under an Electric Field. J. Phys. Chem. Lett. 2020, 11, 8983–8988. [Google Scholar] [CrossRef]
- Mishin, Y.; Farkas, D.; Mehl, M.J.; Papaconstantopoulos, D.A. Papaconstantopoulos, Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B 1999, 59, 3393–3407. [Google Scholar] [CrossRef]
- Tersoff, J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys. Rev. B 1989, 39, 5566–5568. [Google Scholar] [CrossRef] [PubMed]
- Dandekar, C.R.; Shin, Y.C. Molecular dynamics based cohesive zone law for describing Al-SiC interface mechanics. Compos. Part A Appl. S. 2011, 42, 355–363. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, N. An inverse adhesion problem for extracting interfacial pair potentials for the Al(001)/3C-SiC(001) interface. Inverse Probl. 2008, 24, 035019. [Google Scholar] [CrossRef]
- Qiu, C.; Su, Y.; Chen, B.; Yang, J.; Li, Z.; Ouyang, Q.; Guo, Q.; Xiong, D.; Zhang, D. First-principles investigation of interfacial stability, mechanical behavior and failure mechanism of β-SiC(111)/Al(111) interfaces. Comp. Mater. Sci. 2020, 175, 109608. [Google Scholar] [CrossRef]
- Wang, C.; Chen, W.; Jia, Y.; Xie, J. Calculating Study on Properties of Al(111)/6H-SiC(0001) Interfaces. Metals 2020, 10, 1197. [Google Scholar] [CrossRef]
- Arsenault, R.; Pande, C. Interfaces in metal matrix composites. Scr. Met. 1984, 18, 1131–1134. [Google Scholar] [CrossRef]
- Yan, Z.; Lin, Y. Lomer-Cottrell locks with multiple stair-rod dislocations in a nanostructured Al alloy processed by severe plastic deformation. Mater. Sci. Eng. A 2019, 747, 177–184. [Google Scholar] [CrossRef]
Element Name | Crystal Structure | Space Group | Lattice Parameters (nm) |
---|---|---|---|
Al | FCC | Fm-3m | a = b = c = 0.4049 |
6H-SiC | Hexagonal | P63mc | a = b = 0.3095; c = 1.5185 |
6H-SiC | Al | Orientation Relationship | Dimensions X × Y × Z (Å) |
---|---|---|---|
(0001) | (001) | 40 × 120 × 110 | |
(0001) | (110) | 40 × 121 × 110 | |
(0001) | (111) | 40 × 120 × 110 | |
(0001) | (112) | 40 × 126 × 110 |
System | Parameters | Morse Potential |
---|---|---|
Al-Si | Do (eV) | 0.4824 |
α (1/Å) | 1.322 | |
ro (Å) | 2.92 | |
Al-C | Do (eV) | 0.4691 |
α (1/Å) | 1.738 | |
ro (Å) | 2.246 |
Si | Al | Elongations | Tensile Strength (GPa) | Young’s Modulus (GPa) |
---|---|---|---|---|
(0001)-Si | (001) | 0.080 | 7.614 | 119.24 |
(0001)-Si | (110) | 0.141 | 6.671 | 91.03 |
(0001)-Si | (111) | 0.120 | 5.866 | 103.81 |
(0001)-Si | (112) | 0.109 | 6.727 | 112.39 |
(0001)-C | (001) | 0.081 | 7.641 | 119.08 |
(0001)-C | (110) | 0.135 | 6.539 | 99.15 |
(0001)-C | (111) | 0.124 | 6.079 | 101.39 |
(0001)-C | (112) | 0.105 | 6.670 | 110.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, K.; Wang, J.; Hao, S.; Xie, J. Molecular Dynamics Study of Interfacial Micromechanical Behaviors of 6H-SiC/Al Composites under Uniaxial Tensile Deformation. Nanomaterials 2023, 13, 404. https://doi.org/10.3390/nano13030404
Feng K, Wang J, Hao S, Xie J. Molecular Dynamics Study of Interfacial Micromechanical Behaviors of 6H-SiC/Al Composites under Uniaxial Tensile Deformation. Nanomaterials. 2023; 13(3):404. https://doi.org/10.3390/nano13030404
Chicago/Turabian StyleFeng, Kai, Jiefang Wang, Shiming Hao, and Jingpei Xie. 2023. "Molecular Dynamics Study of Interfacial Micromechanical Behaviors of 6H-SiC/Al Composites under Uniaxial Tensile Deformation" Nanomaterials 13, no. 3: 404. https://doi.org/10.3390/nano13030404
APA StyleFeng, K., Wang, J., Hao, S., & Xie, J. (2023). Molecular Dynamics Study of Interfacial Micromechanical Behaviors of 6H-SiC/Al Composites under Uniaxial Tensile Deformation. Nanomaterials, 13(3), 404. https://doi.org/10.3390/nano13030404