Numerical Study on Overcoming the Light-Harvesting Limitation of Lead-Free Cs2AgBiBr6 Double Perovskite Solar Cell Using Moth-Eye Broadband Antireflection Layer
Abstract
:1. Introduction
2. Simulation Procedure
3. Mathematical Background
3.1. Fresnel Equation
3.2. Finite-Difference Time-Domain Modeling Algorithm
4. Result and Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, R.; Huang, T.; Xue, J.; Tong, J.; Zhu, K.; Yang, Y. Prospects for metal halide perovskite-based tandem solar cells. Nat. Photonics 2021, 15, 411–425. [Google Scholar] [CrossRef]
- York, R. Do alternative energy sources displace fossil fuels? Nat. Clim. Chang. 2012, 2, 441. [Google Scholar] [CrossRef]
- Seo, K.-H.; Biswas, S.; Jeon, S.H.; Kim, H.; Bae, J.-H. Optical modeling and active layer design of MASnI3 perovskite photovoltaics using finite-difference time-domain simulation: From the sun to indoor light. Jpn. J. Appl. Phys. 2023, 62, SE1003. [Google Scholar] [CrossRef]
- Kannan, N.; Vakeesan, D. Solar energy for future world: A review. Renew. Sust. Energy Rev. 2016, 62, 1092. [Google Scholar] [CrossRef]
- Hernandez, R.R.; Armstrong, A.; Burney, J.; Ryan, G.; O’Leary, K.M.; Diédhiou, I.; Grodsky, S.M.; Saul-Gershenz, L.; Davis, R.; Macknick, J.; et al. Techno-ecological synergies of solar energy for global sustainability. Nat. Sustain. 2019, 2, 560. [Google Scholar] [CrossRef]
- Al-Shahri, O.A.; Ismail, F.B.; Hannan, M.A.; Lipu, M.S.H.; Al-Shetwi, A.Q.; Begum, R.A.; Al-Muhsen, N.F.O.; Soujeri, E. Solar photovoltaic energy optimization methods, challenges and issues: A comprehensive review. J. Clean. Prod. 2021, 284, 125465. [Google Scholar] [CrossRef]
- Park, N.-G. Perovskite solar cells: An emerging photovoltaic technology. Mater. Today 2015, 18, 65–72. [Google Scholar] [CrossRef]
- Sajid, S.; Elseman, A.M.; Huang, H.; Ji, J.; Dou, S.; Jiang, H.; Liu, X.; Wei, D.; Cui, P.; Li, M. Breakthroughs in NiOx-HTMs towards stable, low-cost and efficient perovskite solar cells. Nano Energy 2018, 51, 408–424. [Google Scholar] [CrossRef]
- Zhang, H.; Ji, X.; Yao, H.; Fan, Q.; Yu, B.; Li, J. Review on efficiency improvement effort of perovskite solar cell. Sol. Energy 2022, 233, 421–434. [Google Scholar] [CrossRef]
- Assadi, M.K.; Bakhoda, S.; Saidur, R.; Hanaei, H. Recent progress in perovskite solar cells. Renew. Sustain. Energy Rev. 2018, 81, 2812–2822. [Google Scholar] [CrossRef]
- Kang, S.M.; Jang, S.; Lee, J.-K.; Yoon, J.; Yoo, D.-E.; Lee, J.-W.; Choi, M.; Park, N.-G. Moth-Eye TiO2 Layer for Improving Light Harvesting Efficiency in Perovskite Solar Cells. Small 2016, 12, 2443–2449. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, J.; Yun, H.-S.; Paik, M.J.; Noh, E.; Mun, H.J.; Kim, M.G.; Shin, T.J.; Seok, S.I. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 2023, 616, 724–730. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Zhang, Q.; Liu, Y.; Luo, W.; Guo, X.; Huang, Z.; Ting, H.; Sun, W.; Zhong, X.; Wei, S.; et al. The Dawn of Lead-Free Perovskite Solar Cell: Highly Stable Double Perovskite Cs2AgBiBr6 Film. Adv. Sci. 2017, 5, 1700759. [Google Scholar] [CrossRef]
- Zhang, W.; Cai, Y.; Liu, H.; Xia, Y.; Cui, J.; Shi, Y.; Chen, R.; Shi, T.; Wang, H.-L. Organic-Free and Lead-Free Perovskite Solar Cells with Efficiency over 11%. Adv. Energy Mater. 2022, 12, 2202491. [Google Scholar] [CrossRef]
- Liu, Y.; Nag, A.; Manna, L.; Xia, Z. Lead-Free Double Perovskite Cs2AgInCl6. Angew. Chem. 2020, 133, 11696–11707. [Google Scholar] [CrossRef]
- Li, B.; Wu, X.; Zhang, S.; Li, Z.; Gao, D.; Chen, X.; Xiao, S.; Chueh, C.-C.; Jen, A.K.-Y.; Zhu, Z. Efficient and stable Cs2AgBiBr6 double perovskite solar cells through in-situ surface modulation. Chem. Eng. J. 2022, 446, 137144. [Google Scholar] [CrossRef]
- Lei, H.; Hardy, D.; Gao, F. Lead-Free Double Perovskite Cs2AgBiBr6: Fundamentals, Applications, and Perspectives. Adv. Funct. Mater. 2021, 31, 2105898. [Google Scholar] [CrossRef]
- Seo, K.-H.; Zhang, X.; Park, J.; Bae, J.-H. Numerical Approach to the Plasmonic Enhancement of Cs2AgBiBr6 Perovskite-Based Solar Cell by Embedding Metallic Nanosphere. Nanomaterials 2023, 13, 1918. [Google Scholar] [CrossRef]
- Fan, P.; Peng, H.-X.; Zheng, Z.-H.; Chen, Z.-H.; Tan, S.-J.; Chen, X.-Y.; Luo, Y.-D.; Su, Z.-H.; Luo, J.-T.; Liang, G.-X. Single-Source Vapor-Deposited Cs2AgBiBr6 Thin Films for Lead-Free Perovskite Solar Cells. Nanomaterials 2019, 9, 1760. [Google Scholar] [CrossRef]
- Shin, B.-K.; Lee, T.-I.; Xiong, J.; Hwang, C.; Noh, G.; Cho, J.-H.; Myoung, J.-M. Bottom-up grown ZnO nanorods for an antireflective moth-eye structure on CuInGaSe2 solar cells. Sol. Energy Mater. Sol. Cells 2011, 95, 2650–2654. [Google Scholar] [CrossRef]
- Xi, J.-Q.; Schubert, M.F.; Kim, J.K.; Schubert, E.F.; Chen, M.; Lin, S.-Y.; Liu, W.; Smart, J.A. Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nat. Photonics 2007, 1, 176–179. [Google Scholar] [CrossRef]
- Maezawa, H.; Miyauchi, H. Rigorous expressions for the Fresnel equations at interfaces between absorbing media. J. Opt. Soc. Am. 2009, 26, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Liu, Q.; Tian, H.; Li, B.; Zhou, H.; Li, C.; Hu, A.; He, X. Optimization of broadband omnidirectional antireflection coatings for solar cells. J. Semicond. 2019, 40, 032702. [Google Scholar] [CrossRef]
- Diedenhofen, S.L.; Grzela, G.; Haverkamp, E.; Bauhuis, G.; Schermer, J.; Rivas, J.G. Broadband and omnidirectional anti-reflection layer for III/V multi-junction solar cells. Sol. Energy Mater. Sol. Cells 2012, 101, 308–314. [Google Scholar] [CrossRef]
- Yamada, N.; Kim, O.N.; Tokimitsu, T.; Nakai, Y.; Masuda, H. Optimization of anti-reflection moth-eye structures for use in crystalline silicon solar cell. Prog. Photovolt. Res. Appl. 2011, 19, 134–140. [Google Scholar] [CrossRef]
- Ju, S.; Byun, M.; Kim, M.; Jun, J.; Huh, D.; Kim, D.S.; Jo, Y.; Lee, H. Fabrication of perovskite solar cell with high short-circuit current density (JSC) using moth-eye structure of SiOX. Nano Res. 2020, 13, 1156–1161. [Google Scholar] [CrossRef]
- Kanamori, Y.; Roy, E.; Chen, Y. Antireflection sub-wavelength gratings fabricated by spin-coating replication. Microelectron. Eng. 2005, 78–79, 287–293. [Google Scholar] [CrossRef]
- Jiao, F.; Huang, Q.; Ren, W.; Zhou, W.; Qi, F.; Zheng, Y.; Xie, J. Enhanced performance for solar cells with moth-eye structure fabricated by UV nanoimprint lithography. Microelectron. Eng. 2013, 103, 2013. [Google Scholar] [CrossRef]
- Leem, J.W.; Guan, X.-Y.; Choi, M.; Yu, J.S. Broadband and omnidirectional highly-transparent coverglasses coated with biomimetic moth-eye nanopatterned polymer films for solar photovoltaic system applications. Sol. Energy Mater. Sol. Cells 2015, 134, 45–53. [Google Scholar] [CrossRef]
- Sun, J.; Wang, X.; Wu, J.; Jiang, C.; Shen, J.; Cooper, M.A.; Zheng, X.; Liu, Y.; Yang, Z.; Wu, D. Biomimetic Moth-eye Nanofabrication: Enhanced Antireflection with Superior Self-cleaning Characteristic. Sci. Rep. 2018, 8, 5438. [Google Scholar] [CrossRef]
- Tommila, J.; Aho, A.; Tukiainen, A.; Polojärvi, V.; Salmi, J.; Niemi, T.; Guina, M. Moth-eye antireflection coating fabricated by nanoimprint lithography on 1 eV dilute nitride solar cell. Prog. Photovolt. Res. Appl. 2012, 21, 1158–1162. [Google Scholar] [CrossRef]
- Gao, Z.; Lin, G.; Chen, Y.; Zheng, Y.; Sang, N.; Li, Y.; Chen, L.; Li, M. Moth-eye nanostructure PDMS films for reducing reflection and retaining flexibility in ultra-thin c-Si solar cells. Sol. Energy 2020, 205, 275–281. [Google Scholar] [CrossRef]
- Vincent, P.; Shin, S.-C.; Goo, J.S.; You, Y.-J.; Cho, B.; Lee, S.; Lee, D.-W.; Kwon, S.R.; Chung, K.-B.; Lee, J.-J.; et al. Indoor-type photovoltaics with organic solar cells through optimal design. Dyes Pigment. 2018, 159, 306–313. [Google Scholar] [CrossRef]
- Sagar, R.; Rao, A. Increasing the silicon solar cell efficiency with transition metal oxide nano-thin films as anti-reflection coatings. Mater. Res. Express 2020, 7, 016433. [Google Scholar] [CrossRef]
- Yoo, G.Y.; Nurrosyid, N.; Lee, S.; Jeong, Y.; Yoon, I.; Kim, C.; Kim, W.; Jang, S.-Y.; Do, Y.R. Newly Developed Broadband Antireflective Nanostructures by Coating a Low-Index MgF2 Film onto a SiO2 Moth-Eye Nanopattern. ACS Appl. Mater. Interfaces 2020, 12, 10626–10636. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.-H.; Kim, Y.-D.; Choi, H.-J.; Ryu, S.-W.; Lee, H. Multi-functional SiO2 moth-eye pattern for photovoltaic applications. Sol. Energy Mater. Sol. Cells 2014, 126, 1–5. [Google Scholar] [CrossRef]
- Zeng, Y.; Chen, X.; Yi, Z.; Yi, Y.; Xu, X. Fabrication of p-n heterostructure ZnO/Si moth-eye structures: Antireflection, enhanced charge separation and photocatalytic properties. Appl. Surf. Sci. 2018, 441, 40–48. [Google Scholar] [CrossRef]
- Gupta, P.; Pandey, A.; Vairagi, K.; Mondal, S.K. Solving Fresnel equation for refractive index using reflected optical power obtained from Bessel beam interferometry. Rev. Sci. Instrum. 2019, 90, 015110. [Google Scholar] [CrossRef]
- Cai, J.; Qi, L. Recent advances in antireflective surfaces based on nanostructure arrays. Mater. Horiz. 2015, 2, 37–53. [Google Scholar] [CrossRef]
- Mohsin, A.S.M.; Mobashera, M.; Malik, A.; Rubaiat, M.; Islam, M. Light trapping in thin-film solar cell to enhance the absorption efficiency using FDTD simulation. J. Opt. 2020, 49, 523–532. [Google Scholar] [CrossRef]
- Dewan, R.; Fischer, S.; Meyer-Rochow, V.B.; Özdemir, Y.; Hamraz, S.; Knipp, D. Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells. Bioinspir. Biomim. 2012, 7, 016003. [Google Scholar] [CrossRef] [PubMed]
- Eskandari, M.; Shamsi, A. Absorption enhancement of ultra-thin film Solar Cell using Fabry-Perot and plasmonic modes. Phys. Scr. 2023, 98, 105521. [Google Scholar] [CrossRef]
- Jin, B.; He, J. Self-Templated Fabrication of Robust Moth-Eye-Like Nanostructures with Broadband and Quasi-Omnidirectional Antireflection Properties. ACS Photonics 2017, 4, 188–196. [Google Scholar] [CrossRef]
- Dodge, M.J. Refractive properties of magnesium fluoride. Appl. Opt. 1984, 23, 1980–1985. [Google Scholar] [CrossRef]
- Malitson, I.H. Interspecimen Comparison of the Refractive Index of Fused Silica. J. Opt. Soc. Am. A 1965, 55, 1205. [Google Scholar] [CrossRef]
Parameter | Description |
---|---|
Mesh size (dx = dy) | 5 nm |
Dimension type | 2D |
Simulation time | 3000 fs |
Simulation temperature | 200 K |
Background index | 1.0 |
Mesh type | Auto non-uniform |
Mesh accuracy | 4 |
Material | Height (nm) | Jsc,max (mA/cm2) | Maximum Generation Rates (m3/s) |
---|---|---|---|
Reference | - | 14.59 | 2.7 × 1027 |
Al2O3 | 500 | 20.06 | 5.2 × 1027 |
ZnO | 450 | 21.3 | 5.56 × 1027 |
MgF2 | 350 | 16.22 | 5.28 × 1027 |
SiO2 | 250 | 16.66 | 5.56 × 1027 |
Material | Average Absorption | Average Reflection |
---|---|---|
Reference | 0.47 | 0.53 |
Al2O3 | 0.64 | 0.36 |
ZnO | 0.67 | 0.33 |
MgF2 | 0.52 | 0.48 |
SiO2 | 0.54 | 0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, K.-H.; Biswas, S.; Eun, J.; Kim, H.; Bae, J.-H. Numerical Study on Overcoming the Light-Harvesting Limitation of Lead-Free Cs2AgBiBr6 Double Perovskite Solar Cell Using Moth-Eye Broadband Antireflection Layer. Nanomaterials 2023, 13, 2991. https://doi.org/10.3390/nano13232991
Seo K-H, Biswas S, Eun J, Kim H, Bae J-H. Numerical Study on Overcoming the Light-Harvesting Limitation of Lead-Free Cs2AgBiBr6 Double Perovskite Solar Cell Using Moth-Eye Broadband Antireflection Layer. Nanomaterials. 2023; 13(23):2991. https://doi.org/10.3390/nano13232991
Chicago/Turabian StyleSeo, Kyeong-Ho, Swarup Biswas, Junsu Eun, Hyeok Kim, and Jin-Hyuk Bae. 2023. "Numerical Study on Overcoming the Light-Harvesting Limitation of Lead-Free Cs2AgBiBr6 Double Perovskite Solar Cell Using Moth-Eye Broadband Antireflection Layer" Nanomaterials 13, no. 23: 2991. https://doi.org/10.3390/nano13232991
APA StyleSeo, K.-H., Biswas, S., Eun, J., Kim, H., & Bae, J.-H. (2023). Numerical Study on Overcoming the Light-Harvesting Limitation of Lead-Free Cs2AgBiBr6 Double Perovskite Solar Cell Using Moth-Eye Broadband Antireflection Layer. Nanomaterials, 13(23), 2991. https://doi.org/10.3390/nano13232991