An ICP-MS-Based Analytical Strategy for Assessing Compliance with the Ban of E 171 as a Food Additive on the EU Market
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation
2.2. Reagents and Materials
2.3. E 171-Containing Samples
2.4. Microwave-Assisted Acid Digestion of Food and Food Supplements
2.5. Alkaline Extraction of Particles from Food and Food Supplements
2.6. Recovery Studies
2.7. Total Titanium Analysis
2.8. Single-Particle ICP-MS
3. Results
3.1. Total Titanium Analysis
3.1.1. Effect of Different Acid Mixtures for the Digestion of Food and Food Supplements
3.1.2. Recovery Studies
3.2. Single-Particle ICP-MS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Braun, J. Titanium Dioxide: A Review. J. Coat. Technol. 1997, 69, 59–72. [Google Scholar]
- Weir, A.; Westerhoff, P.; Fabricius, L.; Hristovski, K.; Von Goetz, N. Titanium Dioxide Nanoparticles in Food and Personal Care Products. Environ. Sci. Technol. 2012, 46, 2242–2250. [Google Scholar] [CrossRef]
- Faust, J.J.; Doudrick, K.; Yang, Y.; Westerhoff, P.; Capco, D.G. Food Grade Titanium Dioxide Disrupts Intestinal Brush Border Microvilli in Vitro Independent of Sedimentation. Cell Biol. Toxicol. 2014, 30, 169–188. [Google Scholar] [CrossRef] [PubMed]
- Peters, R.J.B.; Van Bemmel, G.; Herrera-Rivera, Z.; Helsper, H.P.F.G.; Marvin, H.J.P.; Weigel, S.; Tromp, P.C.; Oomen, A.G.; Rietveld, A.G.; Bouwmeester, H. Characterization of Titanium Dioxide Nanoparticles in Food Products: Analytical Methods to Define Nanoparticles. J. Agric. Food Chem. 2014, 62, 6285–6293. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Doudrick, K.; Bi, X.; Hristovski, K.; Herckes, P.; Westerhoff, P.; Kaegi, R. Characterization of Food-Grade Titanium Dioxide: The Presence of Nanosized Particles. Environ. Sci. Technol. 2014, 48, 6391–6400. [Google Scholar] [CrossRef] [PubMed]
- Dudefoi, W.; Terrisse, H.; Richard-Plouet, M.; Gautron, E.; Popa, F.; Humbert, B.; Ropers, M.H. Criteria to Define a More Relevant Reference Sample of Titanium Dioxide in the Context of Food: A Multiscale Approach. Food Addit. Contam. Part. A Chem. Anal. Control Expo. Risk Assess. 2017, 34, 653–665. [Google Scholar] [CrossRef]
- Fiordaliso, F.; Foray, C.; Salio, M.; Salmona, M.; Diomede, L. Realistic Evaluation of Titanium Dioxide Nanoparticle Exposure in Chewing Gum. J. Agric. Food Chem. 2018, 66, 6860–6868. [Google Scholar] [CrossRef] [PubMed]
- Yusoff, R.; Nguyen, L.T.H.; Chiew, P.; Wang, Z.M.; Ng, K.W. Comparative Differences in the Behavior of TiO2 and SiO2 Food Additives in Food Ingredient Solutions. J. Nanoparticle Res. 2018, 20. [Google Scholar] [CrossRef]
- Geiss, O.; Bianchi, I.; Senaldi, C.; Bucher, G.; Verleysen, E.; Waegeneers, N.; Brassinne, F.; Mast, J.; Loeschner, K.; Vidmar, J.; et al. Particle Size Analysis of Pristine Food-Grade Titanium Dioxide and E 171 in Confectionery Products: Interlaboratory Testing of a Single-Particle Inductively Coupled Plasma Mass Spectrometry Screening Method and Confirmation with Transmission Electron Microscopy. Food Control 2021, 120, 107550. [Google Scholar] [CrossRef]
- Verleysen, E.; Waegeneers, N.; Brassinne, F.; De Vos, S.; Jimenez, I.O.; Mathioudaki, S.; Mast, J. Physicochemical Characterization of the Pristine E171 Food Additive by Standardized and Validated Methods. Nanomaterials 2020, 10, 592. [Google Scholar] [CrossRef]
- Chen, X.X.; Cheng, B.; Yang, Y.X.; Cao, A.; Liu, J.H.; Du, L.J.; Liu, Y.; Zhao, Y.; Wang, H. Characterization and Preliminary Toxicity Assay of Nano-Titanium Dioxide Additive in Sugar-Coated Chewing Gum. Small 2013, 9, 1765–1774. [Google Scholar] [CrossRef]
- Lim, J.H.; Bae, D.; Fong, A. Titanium Dioxide in Food Products: Quantitative Analysis Using ICP-MS and Raman Spectroscopy. J. Agric. Food Chem. 2018, 66, 13533–13540. [Google Scholar] [CrossRef]
- Sungur, Ş.; Kaya, P.; Koroglu, M. Determination of Titanium Dioxide Nanoparticles Used in Various Foods. Food Addit. Contam. Part. B Surveill. 2020, 13, 260–267. [Google Scholar] [CrossRef]
- Noireaux, J.; López-Sanz, S.; Vidmar, J.; Correia, M.; Devoille, L.; Fisicaro, P.; Loeschner, K. Titanium Dioxide Nanoparticles in Food: Comparison of Detection by Triple-Quadrupole and High-Resolution ICP-MS in Single-Particle Mode. J. Nanoparticle Res. 2021, 23, 102. [Google Scholar] [CrossRef]
- Verleysen, E.; Brassinne, F.; Van Steen, F.; Waegeneers, N.; Cheyns, K.; Machiels, R.; Mathioudaki, S.; Jimenez, I.O.; Ledecq, M.; Mast, J. Towards a Generic Protocol for Measuring the Constituent Particle Size Distribution of E171 in Food by Electron Microscopy. Food Control 2022, 132, 108492. [Google Scholar] [CrossRef]
- Al Mutairi, M.A.; BinSaeedan, N.M.; Alnabati, K.K.; Alotaibi, A.; Al-Mayouf, A.M.; Ali, R.; Alowaifeer, A.M. Characterisation of Engineered Titanium Dioxide Nanoparticles in Selected Food. Food Addit. Contam. Part. B Surveill. 2023, 16, 266–273. [Google Scholar] [CrossRef]
- More, S.; Bampidis, V.; Benford, D.; Bragard, C.; Halldorsson, T.; Hernández-Jerez, A.; Hougaard Bennekou, S.; Koutsoumanis, K.; Lambré, C.; Machera, K.; et al. Guidance on Risk Assessment of Nanomaterials to Be Applied in the Food and Feed Chain: Human and Animal Health. EFSA J. 2021, 19, e06768. [Google Scholar] [CrossRef]
- Younes, M.; Aquilina, G.; Castle, L.; Engel, K.H.; Fowler, P.; Frutos Fernandez, M.J.; Fürst, P.; Gundert-Remy, U.; Gürtler, R.; Husøy, T.; et al. Safety Assessment of Titanium Dioxide (E171) as a Food Additive. EFSA J. 2021, 19, e06585. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) 2022/63 of 14 January 2022; Amending Annexes II and III to Regulation (EC) No 1333/2008 of the European Parliament and of the Council as Regards the Food Additive Titanium Dioxide (E 171). OJ L 2022, 11, 1–5. [Google Scholar]
- De la Calle, I.; Menta, M.; Klein, M.; Maxit, B.; Séby, F. Towards Routine Analysis of TiO2 (Nano-)Particle Size in Consumer Products: Evaluation of Potential Techniques. Spectrochim. Acta Part. B At. Spectrosc. 2018, 147, 28–42. [Google Scholar] [CrossRef]
- De la Calle, I.; Menta, M.; Klein, M.; Séby, F. Screening of TiO2 and Au Nanoparticles in Cosmetics and Determination of Elemental Impurities by Multiple Techniques (DLS, SP-ICP-MS, ICP-MS and ICP-OES). Talanta 2017, 171, 291–306. [Google Scholar] [CrossRef] [PubMed]
- Bucher, G.; Auger, F. Combination of 47Ti and 48Ti for the Determination of Highly Polydisperse TiO2 Particle Size Distributions by SpICP-MS. J. Anal. At. Spectrom. 2019, 34, 1380–1386. [Google Scholar] [CrossRef]
- Candás-Zapico, S.; Kutscher, D.J.; Montes-Bayón, M.; Bettmer, J. Single Particle Analysis of TiO2 in Candy Products Using Triple Quadrupole ICP-MS. Talanta 2018, 180, 309–315. [Google Scholar] [CrossRef]
- Geiss, O.; Ponti, J.; Senaldi, C.; Bianchi, I.; Mehn, D.; Barrero, J.; Gilliland, D.; Matissek, R.; Anklam, E. Characterisation of Food Grade Titania with Respect to Nanoparticle Content in Pristine Additives and in Their Related Food Products. Food Addit. Contam. Part. A Chem. Anal. Control Expo. Risk Assess. 2020, 37, 239–253. [Google Scholar] [CrossRef]
- Givelet, L.; Truffier-Boutry, D.; Noël, L.; Damlencourt, J.F.; Jitaru, P.; Guérin, T. Optimisation and Application of an Analytical Approach for the Characterisation of TiO2 Nanoparticles in Food Additives and Pharmaceuticals by Single Particle Inductively Coupled Plasma-Mass Spectrometry. Talanta 2021, 224, 121873. [Google Scholar] [CrossRef]
- Bucher, G.; El Hadri, H.; Asensio, O.; Auger, F.; Barrero, J.; Rosec, J.P. Large-Scale Screening of E171 Food Additive (TiO2) on the French Market from 2018 to 2022: Occurrence and Particle Size Distribution in Various Food Categories. Food Control 2024, 155, 110102. [Google Scholar] [CrossRef]
- Epstein, E. The Discovery of the Essential Elements. In Discoveries in Plant Biology; World Scientific: Singapore, 2000; pp. 1–16. [Google Scholar]
- WHO Task Group on Environmental Health Criteria for Titanium. Environmental Health Criteria 24: Titanium; World Health Organization: Geneva, Switzerland, 1982; ISBN 9241540842. [Google Scholar]
- Cornu, S.; Lucas, Y.; Lebon, E.; Ambrosi, J.P.; Luizao, F.; Rouiller, J.; Bonnay, M.; Neal, C. Evidence of titanium mobility in soil profiles, Manaus, central Amazonia. Geoderma 1999, 91, 281–295. [Google Scholar] [CrossRef]
- Kelemen, G.; Keresztes, A.; Bacsy, E.; Feher, M.; Fodor, P.; Pais, I. Distribution and Intracellular Localization of Titanium in Plants After Titanium Treatment. Food Struct. 1993, 12, 8. [Google Scholar]
- Lyu, S.; Wei, X.; Chen, J.; Wang, C.; Wang, X.; Pan, D. Titanium as a Beneficial Element for Crop Production. Front. Plant Sci. 2017, 8, 597. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.; Dias, M.C.; Silva, A.M.S. Titanium and Zinc Based Nanomaterials in Agriculture: A Promising Approach to Deal with (A)Biotic Stresses? Toxics 2022, 10, 172. [Google Scholar] [CrossRef]
- Rodríguez-González, V.; Terashima, C.; Fujishima, A. Applications of Photocatalytic Titanium Dioxide-Based Nanomaterials in Sustainable Agriculture. J. Photochem. Photobiol. C Photochem. Rev. 2019, 40, 49–67. [Google Scholar] [CrossRef]
- Madanayake, N.H.; Adassooriya, N.M. Phytotoxicity of Nanomaterials in Agriculture. Open Biotechnol. J. 2021, 15, 109–118. [Google Scholar] [CrossRef]
- Simonin, M.; Richaume, A.; Guyonnet, J.P.; Dubost, A.; Martins, J.M.F.; Pommier, T. Titanium Dioxide Nanoparticles Strongly Impact Soil Microbial Function by Affecting Archaeal Nitrifiers. Sci. Rep. 2016, 6, 33643. [Google Scholar] [CrossRef] [PubMed]
- Gogos, A.; Moll, J.; Klingenfuss, F.; Heijden, M.; Irin, F.; Green, M.J.; Zenobi, R.; Bucheli, T.D. Vertical Transport and Plant Uptake of Nanoparticles in a Soil Mesocosm Experiment. J. Nanobiotechnology 2016, 14, 40. [Google Scholar] [CrossRef] [PubMed]
- European Committee for Food Contact Materials and Articles (Partial Agreement) (CD-P-MCA). Technical Guide on Metals and Alloys Used in Food Contact Materials and Articles, a Practical Guide for Manufacturers and Regulators, 2nd ed.; Council of Europe: Strasbourg, France, 2022. [Google Scholar]
- Koller, D.; Bramhall, P.; Devoy, J.; Goenaga-Infante, H.; Harrington, C.F.; Leese, E.; Morton, J.; Nuñez, S.; Rogers, J.; Sampson, B.; et al. Analysis of Soluble or Titanium Dioxide Derived Titanium Levels in Human Whole Blood: Consensus from an Inter-Laboratory Comparison. Analyst 2018, 143, 5520–5529. [Google Scholar] [CrossRef] [PubMed]
- Rompelberg, C.; Heringa, M.B.; van Donkersgoed, G.; Drijvers, J.; Roos, A.; Westenbrink, S.; Peters, R.; van Bemmel, G.; Brand, W.; Oomen, A.G. Oral Intake of Added Titanium Dioxide and Its Nanofraction from Food Products, Food Supplements and Toothpaste by the Dutch Population. Nanotoxicology 2016, 10, 1404–1414. [Google Scholar] [CrossRef] [PubMed]
- Lomer, M.C.E.; Thompson, R.P.H.; Commisso, J.; Keen, C.L.; Powell, J.J. Determination of Titanium Dioxide in Foods Using Inductively Coupled Plasma Optical Emission Spectrometry. Analyst 2000, 125, 2339–2343. [Google Scholar] [CrossRef]
- Sprong, C.; Bakker, M.; Niekerk, M.; Vennemann, F. Exposure Assessment of the Food Additive Titanium Dioxide (E 171) Based on Use Levels Provided by the Industry; RIVM Letter Report 2015-0195; Dutch National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2015. [Google Scholar]
- EFSA Panel on Food Additives and Nutrient Sources Added to Food (ANS). Re-Evaluation of Titanium Dioxide (E 171) as a Food Additive. EFSA J. 2016, 14, e04545. [Google Scholar] [CrossRef]
- Hetzer, B.; Gräf, V.; Walz, E.; Greiner, R. Characterisation of TiO2-Containing Pearlescent Pigments with Regard to the European Union Labelling Obligation of Engineered Nanomaterials in Food. Food Addit. Contam. Part. A Chem. Anal. Control Expo. Risk Assess. 2021, 38, 741–753. [Google Scholar] [CrossRef] [PubMed]
- Younes, M.; Aquilina, G.; Castle, L.; Engel, K.H.; Fowler, P.; Frutos Fernandez, M.J.; Fürst, P.; Gürtler, R.; Gundert-Remy, U.; Husøy, T.; et al. Re-Evaluation of Sodium Aluminium Silicate (E 554) and Potassium Aluminium Silicate (E 555) as Food Additives. EFSA J. 2020, 18, e06152. [Google Scholar] [CrossRef]
- Ferraris, F.; Raggi, A.; Ponti, J.; Mehn, D.; Gilliland, D.; Savini, S.; Iacoponi, F.; Aureli, F.; Calzolai, L.; Cubadda, F. Agglomeration Behaviour and Fate of Food-Grade Titanium Diox-2 Ide in Human Gastrointestinal Digestion and in the Lysosomal 3 Environment. Nanomaterials 2023, 13, 1908. [Google Scholar] [CrossRef] [PubMed]
- Pace, H.E.; Rogers, N.J.; Jarolimek, C.; Coleman, V.A.; Higgins, C.P.; Ranville, J.F. Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2011, 83, 9361–9369. [Google Scholar] [CrossRef] [PubMed]
- Balcaen, L.; Bolea-Fernandez, E.; Resano, M.; Vanhaecke, F. Accurate Determination of Ultra-Trace Levels of Ti in Blood Serum Using ICP-MS/MS. Anal. Chim. Acta 2014, 809, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Mech, A.; Rauscher, H.; Rasmussen, K.; Babick, F.; Hodoroaba, V.-D.; Ghanem, A.; Wohlleben, W.; Marvin, H.; Brüngel, R.; Friedrich, C.M. The NanoDefine Methods Manual. Part 3: Standard Operating Procedures (SOPs): JRC117501; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar] [CrossRef]
Isotope | Abundance (%) | Isobaric Interferences | Polyatomic Interferences |
---|---|---|---|
46Ti | 8.25 | 46Ca+ (0.004) | 32S14N+, 14N16O2+, 15N216O+ |
47Ti | 7.44 | 32S14N1H+, 30Si16O1H+, 32S15N+, 33S14N+, 15N16O2+, 14N16O21H+, 12C35Cl+, 31P16O+ | |
48Ti | 73.72 | 48Ca+ (0.187) | 32S16O+, 34S14N+, 33S15N+, 14N16O18O+, 14N17N2+, 12C4+, 36Ar12C+ |
49Ti | 5.41 | 32S17O+, 32S16O1H+, 35Cl14N+, 34S15N+, 33S16O+, 14N17O21H+, 14N35Cl+, 36Ar13C+, 36Ar12C1H+, 12C37Cl+, 31P18O+ | |
50Ti | 5.18 | 50Cr+ (4.345), 50V+ (0.25) | 32S18O+, 32S17O1H+, 36Ar14N+, 35Cl15N+, 36S14N+, 33S17O+, 34S16O+, 1H14N35Cl+, 34S15O1H+ |
Sample Type | n b | Total Ti (mg g−1) | Ref. |
---|---|---|---|
Chewing gum | 7 | 0.15–4.5 | [7] |
Softmints | 1 | 0.66 | [40] |
Creamed horseradish | 1 | 1.7 | |
Dressings | 2 | 0.6–4.49 | |
Chewing gum | 5 | ca. 0.6–5.5 | [4] |
Toothpaste | 3 | ca. 2.8–4.9 | |
Mayonnaise | 1 | ca. 0.7 | |
Hard candy | 2 | ca. 0.4–2.5 | |
Chocolate | 2 | ca. 0.5–0.9 | |
Soft candy | 3 | ca. 0.15–0.5 | |
Pastry | 3 | ca. 0.1–0.4 | |
Button shaped candies | 1 | 0.7 | [15] |
Chewing gum | 2 | 1.51–1.6 | |
Cake decoration | 4 | 0.64–0.89 | |
Marzipan and sugar paste | 2 | 1.86–3.2 | |
Mints | 2 | 1.16–3.73 | |
Confectionery | 2 | 0.13–0.67 | |
Ice frosting | 2 | 0.17–0.35 | |
Coated biscuit | 1 | 0.31 | |
Instant powder orange drink | 1 | 1.92 | |
Chocolate confectionery | 2 | 0.87–1.36 | |
Croissant filling | 1 | 4.04 | |
Toothpaste | 1 | 0.57 | |
Acidic food matrix | 86 | <0.1–4.00 | [26] |
Food containing pearlescent colorant | 13 | <0.1–2.17 | |
Other food matrix | 148 | <0.1–11.46 | |
Sugar-coated candies | 105 | <0.1–4.90 |
Parameters | Operating Conditions |
---|---|
Power RF | 1550 W |
Nebulizer | Esi PFA-LC |
Spray chamber | Scott PFA inert kit |
Flow nebulizer | 0.82 L min−1 |
Makeup gas | 0.31 L min−1 |
Peristaltic pump | 0.15 rps |
Mode | SQ; MS/MS, either on-mass or in mass shift with NH3 (22%) |
Sampling period | 30 s |
Integration time | 2 s |
Selected masses Q1 | 46Ti, 47Ti, 48Ti, 49Ti, 50Ti, 103Rh |
Selected masses Q2 | 46Ti, 47Ti, 48Ti, 49Ti; 50Ti; 46Ti ⟶ 148; 47Ti ⟶ 149, 48Ti ⟶ 150, 49Ti ⟶ 151, 50Ti ⟶ 152, 103Rh |
Parameters | Operating Conditions |
---|---|
Power RF | 1600 W |
Nebulizer | Quartz concentric |
Spray chamber | Cyclonic spray chamber |
Flow nebulizer | 0.99 L min−1 |
Peristaltic pump | −20 rps |
Mode | Standard |
QID | On |
Selected mass | 48Ti |
Dwell time | 100 µs |
Sampling time | 60 s |
Transport efficiency | 7.51 ± 0.18% |
Density | 3.8 (g cm−3) |
Mass fraction TiO2/Ti | 1.67 |
49Ti [SQ] | 50Ti [SQ] | 49 ⟶ 49 [MS/MS No Gas] | 50 ⟶ 50 [MS/MS No Gas] | 47 ⟶ 149 [MS/MS, NH3] | 48 ⟶ 150 [MS/MS, NH3] | |||||
---|---|---|---|---|---|---|---|---|---|---|
Sample | E 171 Labelling | HF | HCl | n a | Ti (µg g−1) Mean ± SD | |||||
NIST SRM 3280 | Y | N | N | 3 | 249 ± 72 | 272 ± 47 | 264 ± 60 | 288 ± 56 | 256 ± 35 | 237 ± 50 |
N | Y | 3 | 287 ± 42 | 400 ± 49 | 306 ± 41 | 336 ± 89 | 378 ± 56 | 320 ± 58 | ||
Y | N | 3 | 4256 ± 34 | 4270 ± 38 | 4374 ± 80 | 4368 ± 74 | 4119 ± 87 | 4063 ± 78 | ||
Y | Y | 5 | 4054 ± 233 | 4103 ± 244 | 4144 ± 236 | 4158 ± 231 | 4104 ± 210 | 4067 ± 193 | ||
Food supplements | ||||||||||
Melatonin supplement | Y | N | N | 3 | 349 ± 114 | 400 ± 59 | 459 ± 103 | 441 ± 45 | 438 ± 104 | 447 ± 118 |
N | Y | 3 | 180 ± 45 | 172 ± 21 | 185 ± 72 | 183 ± 48 | 188 ± 47 | 199 ± 55 | ||
Y | Y | 3 | 2266 ± 45 | 2264 ± 37 | 2256 ± 40 | 2238 ± 28 | 2292 ± 38 | 2260 ± 42 | ||
Valerian supplement | Y | N | N | 3 | 113 ± 50 | 85 ± 13 | 123 ± 11 | 108 ± 12 | 209 ± 16 | 134 ± 23 |
N | Y | 3 | 286 ± 73 | 207 ± 60 | 289 ± 85 | 291 ± 79 | 270 ± 95 | 291 ± 101 | ||
Y | Y | 3 | 3567 ± 154 | 3579 ± 145 | 3561 ± 180 | 3537 ± 152 | 3612 ± 181 | 3500 ± 174 | ||
Soy-isoflavones supplement | Y | Y | Y | 3 | 1398 ± 172 | 1402 ± 158 | 1388 ± 161 | 1388 ± 158 | 1421 ± 170 | 1413 ± 164 |
Multi-B supplement | Y | Y | Y | 3 | 1979 ± 144 | 1990 ± 136 | 1977 ± 132 | 1979 ± 148 | 2021 ± 139 | 1997 ± 135 |
49Ti [SQ] | 50Ti [SQ] | 49 ⟶ 49 [MS/MS No Gas] | 50 ⟶ 50 [MS/MS No Gas] | 47 ⟶ 149 [MS/MS, NH3] | 48 ⟶ 150 [MS/MS, NH3] | ||||
---|---|---|---|---|---|---|---|---|---|
Sample | E 171 Labelling | HF | n b | Ti (µg g−1) Mean ± SD | |||||
Croissant | Y | N | 3 | 57 ± 23 | 51 ± 12 | 76 ± 12 | 62 ± 24 | 79 ± 39 | 67 ± 17 |
Y | 5 | 906 ± 303 | 902 ± 296 | 904 ± 303 | 913 ± 308 | 939 ± 310 | 911 ± 294 | ||
High protein cappuccino | Y | N | 3 | 159 ± 126 | 133 ± 93 | 177 ± 70 | 133 ± 74 | 200 ± 166 | 180 ± 108 |
Y | 3 | 3020 ± 43 | 2999 ± 30 | 3004 ± 38 | 3005 ± 16 | 3072 ± 15 | 2949 ± 20 | ||
Cappuccino powder | N | N | 3 | <0.26 b | 0.27 ± 0.02 | <0.25 b | 0.24 ± 0.03 | 0.09 ± 0.02 | 0.10 ± 0.01 |
Y | 3 | <0.26 b | 0.19 ± 0.10 | <0.25 b | 0.17 ± 0.10 | 0.15 ± 0.09 | 0.14 ± 0.08 | ||
Fair trade chocolate bar | N | N | 3 | 2.99 ± 0.52 | 3.46 ± 0.65 | 2.78 ± 0.45 | 3.54 ± 0.61 | 2.81 ± 0.49 | 2.78 ± 0.51 |
Y | 3 | 3.12 ± 0.46 | 3.48 ± 0.47 | 2.93 ± 0.44 | 3.38 ± 0.44 | 2.74 ± 0.41 | 2.69 ± 0.38 | ||
Dark chocolate chips 1 | N | N | 3 | 4.16 ± 0.15 | 5.29 ± 0.29 | 3.79 ± 0.10 | 5.15 ± 0.23 | 3.56 ± 0.11 | 3.48 ± 0.13 |
Y | 3 | 5.84 ± 0.86 | 6.72 ± 0.88 | 5.47 ± 0.84 | 6.54 ± 0.89 | 5.13 ± 0.81 | 5.09 ± 0.77 | ||
White chocolate chips 1 | N | N | 3 | <0.26 b | 0.24 ± 0.00 | <0.25 b | 0.25 ± 0.00 | 0.20 ± 0.01 | 0.19 ± 0.01 |
Y | 3 | <0.26 a | 0.22 ± 0.17 | <0.25 a | 0.21 ± 0.16 | 0.19 ± 0.15 | 0.18 ± 0.14 | ||
Dark chocolate bar 2 | N | Y | 3 | 2.63 ± 0.42 | 3.06 ± 0.38 | 2.39 ± 0.37 | 2.90 ± 0.39 | 2.30 ± 0.34 | 2.29 ± 0.34 |
Dark chocolate bar 1 | N | Y | 3 | 2.91 ± 0.17 | 3.36 ± 0.19 | 2.60 ± 0.16 | 3.10 ± 0.17 | 2.54 ± 0.13 | 2.52 ± 0.11 |
White chocolate chips 2 | N | Y | 3 | <0.26 b | <0.07 b | <0.25 b | <0.06 b | <0.04 b | <0.04 b |
Dark chocolate chips 2 | N | Y | 3 | 4.21 ± 0.39 | 4.33 ± 0.40 | 3.95 ± 0.37 | 4.22 ± 0.36 | 3.70 ± 0.32 | 3.69 ± 0.33 |
White chocolate bar 1 | N | Y | 3 | <0.26 b | <0.14 c | <0.25 a | <0.13 b | <0.09 c | 0.09 ± 0.01 |
White chocolate bar 2 | N | Y | 3 | <0.26 b | <0.07 b | <0.25 b | <0.06 b | <0.04 b | <0.04 b |
Milk and chocolate snack | N | Y | 5 | 1.25 ± 0.26 | 1.39 ± 0.28 | 1.10 ± 0.24 | 1.22 ± 0.24 | 1.17 ± 0.25 | 1.13 ± 0.24 |
Vanilla and cocoa dessert | N | Y | 3 | <0.53 c | 0.41 ± 0.06 | <0.49 c | 0.40 ± 0.07 | 0.39 ± 0.06 | 0.38 ± 0.06 |
Cream ice-cream | Y | Y | 3 | <0.26 b | <0.07 b | <0.25 b | <0.06 b | <0.04 b | <0.04 b |
E 171 Labelling | 49Ti [SQ] | 50Ti [SQ] | 49 ⟶ 49 [MS/MS No Gas] | 50 ⟶ 50 [MS/MS No Gas] | 47 ⟶ 149 [MS/MS, NH3] | 48 ⟶ 150 [MS/MS, NH3] | |||
---|---|---|---|---|---|---|---|---|---|
Sample | HF | n a | % | % | % | % | % | % | |
Cappuccino powder | N | N | 3 | 32 | 33 | 37 | 36 | 37 | 37 |
Cappuccino powder | N | Y | 6 | 107 | 107 | 106 | 107 | 109 | 110 |
Probiotics supplement | N | Y | 4 | 108 | 105 | 107 | 106 | 113 | 117 |
Sample | E 171 Labelling | Mean Particle Diameter (nm) | Most Frequent Size (nm) | Min Particle Diameter (nm) | Max Particle Diameter (nm) | Particles <100 nm (%) |
---|---|---|---|---|---|---|
Food supplements | ||||||
Multi-B supplement | Y | 175 | 102 | 42 | 403 | 28 |
Melatonin supplement | Y | 158 | 103 | 39 | 364 | 28 |
Valerian supplement | Y | 169 | 122 | 54 | 363 | 20 |
Soy-isoflavones supplement | Y | 160 | 115 | 55 | 361 | 23 |
Food | ||||||
Croissant | Y | 178 | 198 | 35 | 360 | 15 |
Dark chocolate chips 1 | N | 118 | 83 | 50 | 329 | 49 |
Dark chocolate bar 1 | N | 117 | 78 | 49 | 338 | 54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferraris, F.; Adelantado, C.; Raggi, A.; Savini, S.; Zougagh, M.; Ríos, Á.; Cubadda, F. An ICP-MS-Based Analytical Strategy for Assessing Compliance with the Ban of E 171 as a Food Additive on the EU Market. Nanomaterials 2023, 13, 2957. https://doi.org/10.3390/nano13222957
Ferraris F, Adelantado C, Raggi A, Savini S, Zougagh M, Ríos Á, Cubadda F. An ICP-MS-Based Analytical Strategy for Assessing Compliance with the Ban of E 171 as a Food Additive on the EU Market. Nanomaterials. 2023; 13(22):2957. https://doi.org/10.3390/nano13222957
Chicago/Turabian StyleFerraris, Francesca, Carlos Adelantado, Andrea Raggi, Sara Savini, Mohammed Zougagh, Ángel Ríos, and Francesco Cubadda. 2023. "An ICP-MS-Based Analytical Strategy for Assessing Compliance with the Ban of E 171 as a Food Additive on the EU Market" Nanomaterials 13, no. 22: 2957. https://doi.org/10.3390/nano13222957