Lattice Thermal Conductivity of Mg3(Bi,Sb)2 Nanocomposites: A First-Principles Study
Abstract
:1. Introduction
2. Methods
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, J.; Tritt, T.M. Advances in thermoelectric materials research: Looking back and moving forward. Science 2017, 357, eaak9997. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Liu, Z.; Zhou, J.; Zhu, H.; Zhang, Q.; Chen, G.; Ren, Z. Advances in thermoelectrics. Adv. Phys. 2018, 67, 69–147. [Google Scholar] [CrossRef]
- Yang, L.; Chen, Z.-G.; Dargusch, M.S.; Zou, J. High performance thermoelectric materials: Progress and their applications. Adv. Energy Mater. 2018, 8, 1701797. [Google Scholar] [CrossRef]
- Tritt, T.M. Thermoelectric phenomena, materials, and applications. Annu. Rev. Mater. Sci. 2011, 41, 433–448. [Google Scholar] [CrossRef]
- Twaha, S.; Zhu, J.; Yan, Y.; Li, B. A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement. Renew. Sust. Energy Rev. 2016, 65, 698–726. [Google Scholar] [CrossRef]
- Shi, X.; Chen, L.; Uher, C. Recent advances in high-performance bulk thermoelectric materials. Int. Mater. Rev. 2016, 61, 379–415. [Google Scholar] [CrossRef]
- Shuai, J.; Mao, J.; Song, S.; Zhang, Q.; Chen, G.; Ren, Z. Recent progress and future challenges on thermoelectric Zintl materials. Mater. Today Phys. 2017, 1, 74–95. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Huang, X.Y.; Bai, S.Q.; Shi, X.; Uher, C.; Chen, L.D. Thermoelectric devices for power generation: Recent progress and future challenges. Adv. Eng. Mater. 2016, 18, 194–213. [Google Scholar] [CrossRef]
- Wei, J.; Yang, L.; Ma, Z.; Song, P.; Zhang, M.; Ma, J.; Yang, F.; Wang, X. Review of current high-ZT thermoelectric materials. J. Mater. Sci. 2020, 55, 12642–12704. [Google Scholar] [CrossRef]
- Hu, L.; Wu, H.; Zhu, T.; Fu, C.; He, J.; Ying, P.; Zhao, X. Tuning multiscale microstructures to enhance thermoelectric performance of n-type Bismuth-Telluride-based solid solutions. Adv. Energy Mater. 2015, 5, 1500411. [Google Scholar] [CrossRef]
- Liu, W.; Wang, H.; Wang, L.; Wang, X.; Joshi, G.; Chen, G.; Ren, Z. Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3 legs for power generation applications. J. Mater. Chem. A 2013, 1, 13093–13100. [Google Scholar] [CrossRef]
- Mao, J.; Zhu, H.; Ding, Z.; Liu, Z.; Gamage, G.A.; Chen, G.; Ren, Z. High thermoelectric cooling performance of n-type Mg3Bi2-based materials. Science 2019, 365, 495–498. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, H.; Sato, H.K.; Kanno, T. Isotropic conduction network and defect chemistry in Mg3+ δSb2-based layered zintl compounds with high thermoelectric performance. Adv. Mater. 2016, 28, 10182–10187. [Google Scholar] [CrossRef]
- Zhang, J.; Song, L.; Pedersen, S.H.; Yin, H.; Hung, L.T.; Iversen, B.B. Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multivalley conduction bands. Nat. Commun. 2017, 8, 13901. [Google Scholar] [CrossRef]
- Zhang, J.; Song, L.; Iversen, B.B. Insights into the design of thermoelectric Mg3Sb2 and its analogs by combining theory and experiment. NPJ Comput. Mater. 2019, 5, 76. [Google Scholar] [CrossRef]
- Shi, X.; Wang, X.; Li, W.; Pei, Y. Advances in thermoelectric Mg3Sb2 and its derivatives. Small Methods 2018, 2, 1800022. [Google Scholar] [CrossRef]
- Zhou, Z.; Han, G.; Lu, X.; Wang, G.; Zhou, X. High-performance magnesium-based thermoelectric materials: Progress and challenges. J. Magnes. Alloys 2022, 10, 1719–1736. [Google Scholar] [CrossRef]
- Shang, H.; Liang, Z.; Xu, C.; Mao, J.; Gu, H.; Ding, F.; Ren, Z. N-Type Mg3Sb2-xBix alloys as promising thermoelectric materials. Research 2020, 2020, 1219461. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, C.; Ma, Z.; Li, L.; Li, S.; Wang, J. Improved thermoelectric performance of n-type Mg3Sb2–Mg3Bi2 alloy with Co element doping. Curr. Appl. Phys. 2021, 21, 25–30. [Google Scholar] [CrossRef]
- Jiang, F.; Feng, T.; Zhu, Y.; Han, Z.; Shu, R.; Chen, C.; Zhang, Y.; Xia, C.; Wu, X.; Yu, H.; et al. Extraordinary thermoelectric performance, thermal stability and mechanical properties of n-type Mg3Sb1.5Bi0.5 through multi-dopants at interstitial site. Mater. Today Phys. 2022, 27, 100835. [Google Scholar] [CrossRef]
- Shang, H.; Liang, Z.; Xu, C.; Song, S.; Huang, D.; Gu, H.; Mao, J.; Ren, Z.; Ding, F. Ntype Mg3Sb2-xBix with improved thermal stability for thermoelectric power generation. Acta Mater. 2020, 201, 572–579. [Google Scholar] [CrossRef]
- Yang, J.; Li, G.; Zhu, H.; Chen, N.; Lu, T.; Gao, J.; Guo, L.; Xiang, J.; Sun, P.; Yao, Y.; et al. Next-generation thermoelectric cooling modules based on high-performance Mg3(Bi, Sb)2 material. Joule 2022, 6, 193–204. [Google Scholar] [CrossRef]
- Peng, Q.; Yuan, X.; Zhao, S.; Zhou, Y.; Wen, X.; Chen, X.-j. Active-learning search for unitcell structures: A case study on Mg3Bi2-xSbx. Comput. Mater. Sci. 2023, 226, 112260. [Google Scholar] [CrossRef]
- Peng, Q.; Zhao, S.; Yuan, X.; Chen, X.-J. Elasticity of Mg3Bi2-xSbx. Materials 2022, 15, 7161. [Google Scholar] [CrossRef]
- Huang, B.; Luo, P.; Li, Z.; Liu, X.; Zhang, Y.; Tang, Y.; Xing, J.; Zhang, J.; Guo, K.; Dong, Z.; et al. Improving Thermoelectric Performance of n-Type Mg3Bi2-Based Materials by Introducing a Spatially Confined Magnetic Ordered Structure. ACS Appl. Energy Mater. 2023, 6, 8032–8041. [Google Scholar] [CrossRef]
- Zhang, Y.-b.; Liang, J.-S.; Liu, C.; Zhou, Q.; Xu, Z.; Chen, H.-b.; Li, F.-c.; Peng, Y.; Miao, L. Enhancing thermoelectric performance in P-Type Mg3Sb2-based zintls through optimization of band gap structure and nanostructuring. J. Mater. Sci. Technol. 2024, 170, 25–32. [Google Scholar] [CrossRef]
- Witkoske, E.; Wang, X.; Maassen, J.; Lundstrom, M. Universal behavior of the thermoelectric figure of merit, zT, vs. quality factor. Mater. Today Phys. 2019, 8, 43–48. [Google Scholar] [CrossRef]
- Chen, K.-X.; Li, M.-S.; Mo, D.-C.; Lyu, S.-S. Nanostructural thermoelectric materials and their performance. Front. Energy 2018, 12, 97–108. [Google Scholar] [CrossRef]
- Biswas, K.; He, J.; Blum, I.D.; Wu, C.-I.; Hogan, T.P.; Seidman, D.N.; Dravid, V.P.; Kanatzidis, M.G. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 2012, 489, 414–418. [Google Scholar] [CrossRef]
- Nakamura, Y.; Isogawa, M.; Ueda, T.; Yamasaka, S.; Matsui, H.; Kikkawa, J.; Ikeuchi, S.; Oyake, T.; Hori, T.; Shiomi, J.; et al. Anomalous reduction of thermal conductivity in coherent nanocrystal architecture for silicon thermoelectric material. Nano Energy 2015, 12, 845–851. [Google Scholar] [CrossRef]
- Zhang, Q.; He, J.; Zhu, T.; Zhang, S.; Zhao, X.; Tritt, T.M. High figures of merit and natural nanostructures in Mg2Si0.4Sn0.6 based thermoelectric materials. Appl. Phys. Lett. 2008, 93, 102109. [Google Scholar] [CrossRef]
- Mo, X.; Liao, J.; Yuan, G.; Zhu, S.; Lei, X.; Huang, L.; Zhang, Q.; Wang, C.; Ren, Z. High thermoelectric performance at room temperature of n-type Mg3Bi2-based materials by Se doping. J. Magnes. Alloys 2022, 10, 1024–1032. [Google Scholar] [CrossRef]
- Knura, R.; Parashchuk, T.; Yoshiasa, A.; Wojciechowski, K.T. Origins of low lattice thermal conductivity of Pb1-xSnx Te alloys for thermoelectric applications. Dalton Trans. 2021, 50, 4323–4334. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Lanigan-Atkins, T.; Calderón-Cueva, M.; Banerjee, A.; Abernathy, D.L.; Said, A.; Zevalkink, A.; Delaire, O. Soft anharmonic phonons and ultralow thermal conductivity in Mg3(Sb,Bi)2 thermoelectrics. Sci. Adv. 2021, 7, eabg1449. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Petretto, G.; Rignanese, G.-M.; Hautier, G.; Zevalkink, A. An unlikely route to low lattice thermal conductivity: Small atoms in a simple layered structure. Joule 2018, 2, 1879–1893. [Google Scholar] [CrossRef]
- Zhu, Y.; Xia, Y.; Wang, Y.; Sheng, Y.; Yang, J.; Fu, C.; Li, A.; Zhu, T.; Luo, J.; Wolverton, C.; et al. Violation of the T- 1 relationship in the lattice thermal conductivity of Mg3Sb2 with locally asymmetric vibrations. Research 2020, 2020, 4589786. [Google Scholar] [CrossRef]
- Han, Z.; Gui, Z.; Zhu, Y.; Qin, P.; Zhang, B.-P.; Zhang, W.; Huang, L.; Liu, W. The electronic transport channel protection and tuning in real space to boost the thermoelectric performance of Mg3+ δSb2-yBiy near room temperature. Research 2020, 2020, 1672051. [Google Scholar] [CrossRef]
- Imasato, K.; Kang, S.D.; Snyder, G.J. Exceptional thermoelectric performance in Mg3Sb0.6Bi1.4 for low-grade waste heat recovery. Energy Environ. Sci. 2019, 12, 965–971. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, X.; Ganose, A.; Park, J.; Sun, C.; Chen, Z.; Lin, S.; Li, W.; Jain, A.; Pei, Y. Compromise between band structure and phonon scattering in efficient nMg3SbBi2-xBix thermoelectrics. Mater. Today Phys. 2021, 18, 100362. [Google Scholar] [CrossRef]
- Xu, C.; Liang, Z.; Shang, H.; Wang, D.; Wang, H.; Ding, F.; Mao, J.; Ren, Z. Scalable synthesis of n-type Mg3SbBi2-xBix for thermoelectric applications. Mater. Today Phys. 2021, 17, 100336. [Google Scholar] [CrossRef]
- Imasato, K.; Wood, M.; Anand, S.; Kuo, J.J.; Snyder, G.J. Understanding the high thermoelectric performance of Mg3Sb2-Mg3Bi2 alloys. Adv. Energy Sustain. Res. 2022, 3, 2100208. [Google Scholar] [CrossRef]
- Pan, Y.; Yao, M.; Hong, X.; Zhu, Y.; Fan, F.; Imasato, K.; He, Y.; Hess, C.; Fink, J.; Yang, J.; et al. Mg3(Bi, Sb)2 single crystals towards high thermoelectric performance. Energy Environ. Sci. 2020, 13, 1717–1724. [Google Scholar] [CrossRef]
- Togo, A.; Chaput, L.; Tanaka, I. Distributions of phonon lifetimes in Brillouin zones. Phys. Rev. B 2015, 91, 094306. [Google Scholar] [CrossRef]
- Li, W.; Carrete, J.; Katcho, N.A.; Mingo, N. ShengBTE: A solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 2014, 185, 1747–1758. [Google Scholar] [CrossRef]
- Korotaev, P.; Shapeev, A. Lattice dynamics of YbxCo4Sb12 skutterudite by machine learning interatomic potentials: Effect of filler concentration and disorder. Phys. Rev. B 2020, 102, 184305. [Google Scholar] [CrossRef]
- Verdi, C.; Karsai, F.; Liu, P.; Jinnouchi, R.; Kresse, G. Thermal transport and phase transitions of zirconia by on-the-fly machine-learned interatomic potentials. NPJ Comput. Mater. 2021, 7, 156. [Google Scholar] [CrossRef]
- Li, R.; Liu, Z.; Rohskopf, A.; Gordiz, K.; Henry, A.; Lee, E.; Luo, T. A deep neural network interatomic potential for studying thermal conductivity of β-Ga2O3. Appl. Phys. Lett. 2020, 117, 152102. [Google Scholar] [CrossRef]
- George, J.; Hautier, G.; Bartók, A.P.; Csányi, G.; Deringer, V.L. Combining phonon accuracy with high transferability in Gaussian approximation potential models. J. Chem. Phys. 2020, 153, 044104. [Google Scholar] [CrossRef]
- Eriksson, F.; Fransson, E.; Erhart, P. The Hiphive Package for the extraction of high order force constants by machine learning. Adv. Theory Simul. 2019, 2, 1800184. [Google Scholar] [CrossRef]
- Fransson, E.; Eriksson, F.; Erhart, P. Efficient construction of linear models in materials modeling and applications to force constant expansions. NPJ Comput. Mater. 2020, 6, 135. [Google Scholar] [CrossRef]
- Yang, H.; Zhu, Y.; Dong, E.; Wu, Y.; Yang, J.; Zhang, W. Dual adaptive sampling and machine learning interatomic potentials for modeling materials with chemical bond hierarchy. Phys. Rev. B 2021, 104, 094310. [Google Scholar] [CrossRef]
- Zuo, Y.; Chen, C.; Li, X.; Deng, Z.; Chen, Y.; Behler, J.; Csányi, G.; Shapeev, A.V.; Thompson, A.P.; Wood, M.A.; et al. Performance and cost assessment of machine learning interatomic potentials. J. Phys. Chem. A 2020, 124, 731–745. [Google Scholar] [CrossRef]
- Shapeev, A.V. Moment tensor potentials: A class of systematically improvable interatomic potentials. Multiscale Model. Simul. 2016, 14, 1153–1173. [Google Scholar] [CrossRef]
- Ouyang, P.; Yuan, M.-h.; Tang, P.; Zhang, Q.; Liu, S.; Shuai, J.; Li, X.-G. Atomic Local Ordering and Alloying Effects on the Mg3(Sb1–xBix)2 Thermoelectric Material. ACS Appl. Mater. Interfaces 2023, 15, 37554–37562. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Wu, X.; Vanderbilt, D.; Hamann, D. Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory. Phys. Rev. B 2005, 72, 035105. [Google Scholar] [CrossRef]
- Huang, L.-F.; Zeng, Z. Roles of mass, structure, and bond strength in the phonon properties and lattice anharmonicity of single-layer Mo and W dichalcogenides. J. Phys. Chem. C 2015, 119, 18779–18789. [Google Scholar] [CrossRef]
- Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5. [Google Scholar] [CrossRef]
- Ziman, J.M. Electrons and Phonons: The Theory of Transport Phenomena in Solids; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Omini, M.; Sparavigna, A. An iterative approach to the phonon Boltzmann equation in the theory of thermal conductivity. Phys. B Condens. Matter 1995, 212, 101–112. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed]
- Wang, V.; Xu, N.; Liu, J.-C.; Tang, G.; Geng, W.-T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033. [Google Scholar] [CrossRef]
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002. [Google Scholar] [CrossRef]
- Gladishevskij, E.; Kripjakevic, P.; Bodak, O. The crystal structures of the compound CaAl2Si2 and its analogues. Ukr. Fiz. Zh. 1967, 12, 447–453. [Google Scholar]
- Shuai, J.; Wang, Y.; Kim, H.S.; Liu, Z.; Sun, J.; Chen, S.; Sui, J.; Ren, Z. Thermoelectric properties of Na-doped Zintl compound: Mg3-xNaxSb2. Acta Mater. 2015, 93, 187–193. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Q.; Yuan, X.; Zhao, S.; Chen, X.-J. Lattice Thermal Conductivity of Mg3(Bi,Sb)2 Nanocomposites: A First-Principles Study. Nanomaterials 2023, 13, 2938. https://doi.org/10.3390/nano13222938
Peng Q, Yuan X, Zhao S, Chen X-J. Lattice Thermal Conductivity of Mg3(Bi,Sb)2 Nanocomposites: A First-Principles Study. Nanomaterials. 2023; 13(22):2938. https://doi.org/10.3390/nano13222938
Chicago/Turabian StylePeng, Qing, Xiaoze Yuan, Shuai Zhao, and Xiao-Jia Chen. 2023. "Lattice Thermal Conductivity of Mg3(Bi,Sb)2 Nanocomposites: A First-Principles Study" Nanomaterials 13, no. 22: 2938. https://doi.org/10.3390/nano13222938
APA StylePeng, Q., Yuan, X., Zhao, S., & Chen, X.-J. (2023). Lattice Thermal Conductivity of Mg3(Bi,Sb)2 Nanocomposites: A First-Principles Study. Nanomaterials, 13(22), 2938. https://doi.org/10.3390/nano13222938