Facile Fabrication of Wood-Derived Porous Fe3C/Nitrogen-Doped Carbon Membrane for Colorimetric Sensing of Ascorbic Acid
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, J.; Cullen, J.J.; Buettner, G.R. Ascorbic Acid: Chemistry, Biology and the Treatment of Cancer. Biochim. Biophys. Acta Rev. Cancer 2012, 1826, 443–457. [Google Scholar] [CrossRef] [PubMed]
- van Robertson, W.B.; Schwartz, B. Ascorbic Acid and the Formation of Collagen. J. Biol. Chem. 1953, 201, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Lian, Q.; Zhou, L.; Jiang, Y.; Gao, J. Peroxidase Mimicking of Binary Polyacrylonitrile-CuO Nanoflowers and the Application in Colorimetric Detection of H2O2 and Ascorbic Acid. ACS Sustain. Chem. Eng. 2021, 9, 7030–7043. [Google Scholar] [CrossRef]
- Szultka, M.; Buszewska-Forajta, M.; Kaliszan, R.; Buszewski, B. Determination of Ascorbic Acid and Its Degradation Products by High-Performance Liquid Chromatography-Triple Quadrupole Mass Spectrometry. Electrophoresis 2014, 35, 585–592. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Niu, Y.; Mei, Z.; Bao, J.; Sun, X. Measurement of Ascorbic Acid in Single Rat Peritoneal Mast Cells Using Capillary Electrophoresis with Electrochemical Detection. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2010, 878, 1093–1097. [Google Scholar] [CrossRef] [PubMed]
- Malashikhina, N.; Pavlov, V. DNA-Decorated Nanoparticles as Nanosensors for Rapid Detection of Ascorbic Acid. Biosens. Bioelectron. 2012, 33, 241–246. [Google Scholar] [CrossRef]
- Cheng, H.; Wang, X.; Wei, H. Ratiometric Electrochemical Sensor for Effective and Reliable Detection of Ascorbic Acid in Living Brains. Anal. Chem. 2015, 87, 8889–8895. [Google Scholar] [CrossRef] [PubMed]
- Keerthana, S.; Rajapriya, A.; Viswanathan, C.; Ponpandian, N. Enzyme Like-Colorimetric Sensing of H2O2 Based on Intrinsic Peroxidase Mimic Activity of WS2 Nanosheets Anchored Reduced Graphene Oxide. J. Alloys Compd. 2022, 889, 161669. [Google Scholar] [CrossRef]
- Wei, H.; Wang, E. Nanomaterials with Enzyme-like Characteristics (Nanozymes): Next-Generation Artificial Enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with Enzyme-like Characteristics (Nanozymes): Next-Generation Artificial Enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076. [Google Scholar] [CrossRef]
- Xing, Z.; Tian, J.; Asiri, A.M.; Qusti, A.H.; Al-Youbi, A.O.; Sun, X. Two-Dimensional Hybrid Mesoporous Fe2O3-Graphene Nanostructures: A Highly Active and Reusable Peroxidase Mimetic toward Rapid, Highly Sensitive Optical Detection of Glucose. Biosens. Bioelectron. 2014, 52, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Tripathi, P.; Kumar, N.; Nara, S. Gold Nanorods as Peroxidase Mimetics and Its Application for Colorimetric Biosensing of Malathion. Sens. Actuators B Chem. 2016, 231, 584–592. [Google Scholar] [CrossRef]
- Masud, M.K.; Na, J.; Younus, M.; Hossain, M.S.A.; Bando, Y.; Shiddiky, M.J.A.; Yamauchi, Y. Superparamagnetic Nanoarchitectures for Disease-Specific Biomarker Detection. Chem. Soc. Rev. 2019, 48, 5717–5751. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Sun, D.; Cho, A.; Weon, S.; Lee, S.; Lee, J.; Han, J.W.; Kim, D.P.; Choi, W. Modified Carbon Nitride Nanozyme as Bifunctional Glucose Oxidase-Peroxidase for Metal-Free Bioinspired Cascade Photocatalysis. Nat. Commun. 2019, 10, 940. [Google Scholar] [CrossRef] [PubMed]
- Garg, B.; Bisht, T.; Ling, Y.C. Graphene-Based Nanomaterials as Efficient Peroxidase Mimetic Catalysts for Biosensing Applications: An Overview. Molecules 2015, 20, 14155–14190. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Liu, Y.; Kong, R.; Chen, G.; Liu, Z.; Qu, F.; Xia, L.; Tan, W. A Metal-Organic Framework as Selectivity Regulator for Fe3+ and Ascorbic Acid Detection. Anal. Chem. 2019, 91, 12453–12460. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, J.; Guo, X.; Fan, H.; Wu, W.; Liu, H.; Wang, G. Fe3C@nitrogen Doped CNT Arrays Aligned on Nitrogen Functionalized Carbon Nanofibers as Highly Efficient Catalysts for the Oxygen Evolution Reaction. J. Mater. Chem. A 2017, 5, 19672–19679. [Google Scholar] [CrossRef]
- Song, N.; Ma, F.; Zhu, Y.; Chen, S.; Wang, C.; Lu, X. Fe3C/Nitrogen-Doped Carbon Nanofibers as Highly Efficient Biocatalyst with Oxidase-Mimicking Activity for Colorimetric Sensing. ACS Sustain. Chem. Eng. 2018, 6, 16766–16776. [Google Scholar] [CrossRef]
- Hu, M.; Lin, Y.; Li, X.; Zhang, W.; Chen, Z.; Yang, Y.; Li, G.; Lu, Y.; Li, W. Nano-Fe3C@2D-NC@CC as Anode for Improving Extracellular Electron Transfer and Electricity Generation of Microbial Fuel Cells. Electrochim. Acta 2022, 404, 139618. [Google Scholar] [CrossRef]
- Fletcher, D.C.; Hunter, R.; Xia, W.; Smales, G.J.; Pauw, B.R.; Blackburn, E.; Kulak, A.; Xin, H.; Schnepp, Z. Scalable Synthesis of Dispersible Iron Carbide (Fe3C) Nanoparticles by “Nanocasting”. J. Mater. Chem. A 2019, 7, 19506–19512. [Google Scholar] [CrossRef]
- Xi, X.; Peng, X.; Xiong, C.; Shi, D.; Zhu, J.; Wen, W.; Zhang, X.; Wang, S. Iron Doped Graphitic Carbon Nitride with Peroxidase like Activity for Colorimetric Detection of Sarcosine and Hydrogen Peroxide. Microchim. Acta 2020, 187, 383. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hu, Z.; Li, Z.; Jiao, L.; Hou, L.; Ma, F.; He, Y.; Feng, X. Fe3C Encapsulated in N-Doped Carbon Shell Grown on Reduced Graphene Oxide as a High-Performance Negative Material for Electrochemical Energy Storage. Chem. Eng. J. 2021, 412, 128720. [Google Scholar] [CrossRef]
- Qu, K.; Zheng, Y.; Jiao, Y.; Zhang, X.; Dai, S.; Qiao, S.Z. Polydopamine-Inspired, Dual Heteroatom-Doped Carbon Nanotubes for Highly Efficient Overall Water Splitting. Adv. Energy Mater. 2017, 7, 1602068. [Google Scholar] [CrossRef]
- Yuan, J.; Giordano, C.; Antonietti, M. Ionic Liquid Monomers and Polymers as Precursors of Highly Conductive, Mesoporous, Graphitic Carbon Nanostructures. Chem. Mater. 2010, 22, 5003–5012. [Google Scholar] [CrossRef]
- Hunter, R.D.; Rowlandson, J.L.; Smales, G.J.; Pauw, B.R.; Ting, V.P.; Kulak, A.; Schnepp, Z. The Effect of Precursor Structure on Porous Carbons Produced by IroN–Catalyzed Graphitization of Biomass. Mater. Adv. 2020, 1, 3281–3291. [Google Scholar] [CrossRef]
- Yuan, J.; Universitet, S.; Zhang, M.; Zhang, M.; Wang, W.; Eriksson, M.; Wu, M.; Wang, H.; Qu, L.; Yuan, J.; et al. From Wood to Thin Porous Carbon Membrane: Ancient Materials for Modern Ultrafast Electrochemical Capacitors in Alternating Current Line Filtering. Energy Storage Mater. 2021, 35, 327–333. [Google Scholar]
- Wu, Y.; Zhang, N.; de Lannoy, C.F. Fast Synthesis of High Surface Area Bio-Based Porous Carbons for Organic Pollutant Removal. MethodsX 2021, 8, 101464. [Google Scholar] [CrossRef]
- Men, Y.; Siebenbürger, M.; Qiu, X.; Antonietti, M.; Yuan, J. Low Fractions of Ionic Liquid or Poly(Ionic Liquid) Can Activate Polysaccharide Biomass into Shaped, Flexible and Fire-Retardant Porous Carbons. J. Mater. Chem. A 2013, 1, 11887–11893. [Google Scholar] [CrossRef]
- Miao, L.; Duan, H.; Wang, Z.; Lv, Y.; Xiong, W.; Zhu, D.; Gan, L.; Li, L.; Liu, M. Improving the Pore-Ion Size Compatibility between Poly(Ionic Liquid)-Derived Carbons and High-Voltage Electrolytes for High Energy-Power Supercapacitors. Chem. Eng. J. 2020, 382, 122945. [Google Scholar] [CrossRef]
- Li, H.; Zhang, C.; Yan, Y.; Hu, K.; Shi, X.; Wang, N.; Lin, H.; Rui, K.; Zhu, J.; Huang, W. Poly(Ionic Liquid) Derived N-Doped Carbon@SnOx Nanostructures Self-Reconstruction for Alkaline-Metal-Ion Batteries. J. Power Sources 2020, 449, 227509. [Google Scholar] [CrossRef]
- Zhang, M.; Dong, K.; Saeedi Garakani, S.; Khorsand Kheirabad, A.; Manke, I.; Wu, M.; Wang, H.; Qu, L.; Yuan, J. Bridged Carbon Fabric Membrane with Boosted Performance in AC Line-Filtering Capacitors. Adv. Sci. 2022, 9, 2105072. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, S.; Sun, J.K.; Antonietti, M.; Yuan, J. Poly(Ionic Liquid)s with Engineered Nanopores for Energy and Environmental Applications. Polymer 2020, 202, 122640. [Google Scholar] [CrossRef]
- Khorsand Kheirabad, A.; Saeedi Garakani, S.; Tan, L.; Yuan, J. Ferrocene-Containing Porous Poly(Ionic Liquid) Membranes: Synthesis and Application as Sacrificial Template for Porous Iron Oxide Films. Macromol. Rapid Commun. 2021, 42, 2100077. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhang, Z.; Song, N.; Shi, J.; Yang, N.; Nie, G.; Wang, C. Vanadium/Cobalt Oxides–Anchored Flexible Carbon Nanofibers with Tunable Magnetism as Recoverable Peroxidase-like Catalysts. Mater. Today Chem. 2021, 22, 100568. [Google Scholar] [CrossRef]
- Zhang, K.; Lu, L.; Liu, Z.; Cao, X.; Lv, L.; Xia, J.; Wang, Z. Colloids and Surfaces A: Physicochemical and Engineering Aspects Metal-Organic Frameworks-Derived Bimetallic Oxide Composite Nanozyme Fiber Membrane and the Application to Colorimetric Detection of Phenol. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 650, 129662. [Google Scholar] [CrossRef]
- Wang, Y.C.; Wan, L.Y.; Cui, P.X.; Tong, L.; Ke, Y.Q.; Sheng, T.; Zhang, M.; Sun, S.H.; Liang, H.W.; Wang, Y.S.; et al. Porous Carbon Membrane-Supported Atomically Dispersed Pyrrole-Type Fe-N4 as Active Sites for Electrochemical Hydrazine Oxidation Reaction. Small 2020, 16, 2002203. [Google Scholar] [CrossRef] [PubMed]
- Adam, M.; Oschatz, M.; Nickel, W.; Kaskel, S. Preparation of Hierarchical Porous Biomorphic Carbide-Derived Carbon by Polycarbosilane Impregnation of Wood. Microporous Mesoporous Mater. 2015, 210, 26–31. [Google Scholar] [CrossRef]
- Song, H.; Xu, S.; Li, Y.; Dai, J.; Gong, A.; Zhu, M.; Zhu, C.; Chen, C.; Chen, Y.; Yao, Y.; et al. Hierarchically Porous, Ultrathick, “Breathable” Wood-Derived Cathode for Lithium-Oxygen Batteries. Adv. Energy Mater. 2018, 8, 1701203. [Google Scholar] [CrossRef]
- Wu, S.; Huang, H.; Feng, X.; Du, C.; Song, W. Facile Visual Colorimetric Sensor Based on Iron Carbide Nanoparticles Encapsulated in Porous Nitrogen-Rich Graphene. Talanta 2017, 167, 385–391. [Google Scholar] [CrossRef]
- Saeedi Garakani, S.; Xie, D.; Kheirabad, A.K.; Lu, Y.; Yuan, J. Template-Synthesis of a Poly(Ionic Liquid)-Derived Fe1−XS/Nitrogen-Doped Porous Carbon Membrane and Its Electrode Application in Lithium-Sulfur Batteries. Mater. Adv. 2021, 2, 5203–5212. [Google Scholar] [CrossRef]
- Jiang, W.J.; Gu, L.; Li, L.; Zhang, Y.; Zhang, X.; Zhang, L.J.; Wang, J.Q.; Hu, J.S.; Wei, Z.; Wan, L.J. Understanding the High Activity of Fe-N–C Electrocatalysts in Oxygen Reduction: Fe/Fe3C Nanoparticles Boost the Activity of Fe-Nx. J. Am. Chem. Soc. 2016, 138, 3570–3578. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.; Feng, J.; Peng, Q.; Zhao, H.; Miao, Y.; Pan, H. Super-Fast Degradation of High Concentration Methyl Orange over Bifunctional Catalyst Fe/Fe3C@C with Microwave Irradiation. J. Hazard. Mater. 2020, 392, 122279. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, N.; Yuen, G.; de Lannoy, C.F. Cross-Linked Iron Nanoparticle-Doped Reduced Graphene Oxide Membranes for Micropollutant Removal from Water. Chem. Eng. J. 2022, 455, 140624. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.; Ma, H.; Zhou, Y.; Xing, H.; Feng, W.; Feng, J.; Shi, Z.; Zong, Y.; Li, X.; et al. Fe3C Nanocrystals Encapsulated in N-Doped Carbon Nanofibers as High-Efficient Microwave Absorbers with Superior Oxidation/Corrosion Resistance. Carbon 2021, 178, 515–527. [Google Scholar] [CrossRef]
- Jiang, H.; Yao, Y.; Zhu, Y.; Liu, Y.; Su, Y.; Yang, X.; Li, C. Iron Carbide Nanoparticles Encapsulated in Mesoporous Fe-N-Doped Graphene-Like Carbon Hybrids as Efficient Bifunctional Oxygen Electrocatalysts. ACS Appl. Mater. Interfaces 2015, 7, 21511–21520. [Google Scholar] [CrossRef] [PubMed]
- Jeon, I.Y.; Zhang, S.; Zhang, L.; Choi, H.J.; Seo, J.M.; Xia, Z.; Dai, L.; Baek, J.B. Edge-Selectively Sulfurized Graphene Nanoplatelets as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction: The Electron Spin Effect. Adv. Mater. 2013, 25, 6138–6145. [Google Scholar] [CrossRef] [PubMed]
- Zou, M.; Wang, L.; Li, J.; Guan, L.; Huang, Z. Enhanced Li-Ion Battery Performances of Yolk-Shell Fe3O4@C Anodes with Fe3C Catalyst. Electrochim. Acta 2017, 233, 85–91. [Google Scholar] [CrossRef]
- Dai, J.; Tian, S.; Jiang, Y.; Chang, Z.; Xie, A.; Zhang, R.; Li, C.; Yan, Y. Fe3C/Fe/C Magnetic Hierarchical Porous Carbon with Micromesopores for Highly Efficient Chloramphenicol Adsorption: Magnetization, Graphitization, and Adsorption Properties Investigation. Ind. Eng. Chem. Res. 2018, 57, 3510–3522. [Google Scholar] [CrossRef]
- Zhao, K.; Nie, X.; Wang, H.; Chen, S.; Quan, X.; Yu, H.; Choi, W.; Zhang, G.; Kim, B.; Chen, J.G. Selective Electroreduction of CO2 to Acetone by Single Copper Atoms Anchored on N-Doped Porous Carbon. Nat. Commun. 2020, 11, 2455. [Google Scholar] [CrossRef]
- Qu, K.; Zheng, Y.; Zhang, X.; Davey, K.; Dai, S.; Qiao, S.Z. Promotion of Electrocatalytic Hydrogen Evolution Reaction on Nitrogen-Doped Carbon Nanosheets with Secondary Heteroatoms. ACS Nano 2017, 11, 7293–7300. [Google Scholar] [CrossRef]
- Ma, W.; Du, Y.; Wang, N.; Miao, P. ZIF-8 Derived Nitrogen-Doped Porous Carbon as Metal-Free Catalyst of Peroxymonosulfate Activation. Environ. Sci. Pollut. Res. 2017, 24, 16276–16288. [Google Scholar] [CrossRef]
- Ma, W.; Wang, N.; Du, Y.; Tong, T.; Zhang, L.; Andrew Lin, K.Y.; Han, X. One-Step Synthesis of Novel Fe3C@nitrogen-Doped Carbon Nanotubes/Graphene Nanosheets for Catalytic Degradation of Bisphenol A in the Presence of Peroxymonosulfate. Chem. Eng. J. 2019, 356, 1022–1031. [Google Scholar] [CrossRef]
- Guo, C.; Chen, C.; Lu, J.; Fu, D.; Yuan, C.Z.; Wu, X.L.; Hui, K.N.; Chen, J. Stable and Recyclable Fe3C@CN Catalyst Supported on Carbon Felt for Efficient Activation of Peroxymonosulfate. J. Colloid Interface Sci. 2021, 599, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Joshi, B.; Lee, J.G.; Samuel, E.; Jo, H.S.; Kim, T.G.; Swihart, M.T.; Yoon, W.Y.; Yoon, S.S. Supersonically Blown Reduced Graphene Oxide Loaded Fe–Fe3C Nanofibers for Lithium Ion Battery Anodes. J. Alloys Compd. 2017, 726, 114–120. [Google Scholar] [CrossRef]
- Lin, G.; Ma, R.; Zhou, Y.; Hu, C.; Yang, M.; Liu, Q.; Kaskel, S.; Wang, J. Three-Dimensional Interconnected Nitrogen-Doped Mesoporous Carbons as Active Electrode Materials for Application in Electrocatalytic Oxygen Reduction and Supercapacitors. J. Colloid Interface Sci. 2018, 527, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jiao, L.; Xu, W.; Chen, Y.; Wu, Y.; Yan, H.; Gu, W.; Zhu, C. Defect-Rich and Ultrathin Nitrogen-Doped Carbon Nanosheets with Enhanced Peroxidase-like Activity for the Detection of Urease Activity and Fluoride Ion. Chin. Chem. Lett. 2022, 33, 1317–1320. [Google Scholar] [CrossRef]
- Miao, L.; Duan, H.; Liu, M.; Lu, W.; Zhu, D.; Chen, T.; Li, L.; Gan, L. Poly(Ionic Liquid)-Derived, N, S-Codoped Ultramicroporous Carbon Nanoparticles for Supercapacitors. Chem. Eng. J. 2017, 317, 651–659. [Google Scholar] [CrossRef]
- Chen, Y.; Jiao, L.; Yan, H.; Xu, W.; Wu, Y.; Wang, H.; Gu, W.; Zhu, C. Hierarchically Porous S/N Codoped Carbon Nanozymes with Enhanced Peroxidase-like Activity for Total Antioxidant Capacity Biosensing. Anal. Chem. 2020, 92, 13518–13524. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, M.; Liu, Y.; Meng, X.; Ye, Y.; Song, X.; Liang, Z. Novel D-π-A Conjugated Microporous Polymer as Visible Light-Driven Oxidase Mimic for Efficient Colorimetric Detection of Glutathione. Sens. Actuators B Chem. 2021, 326, 128808. [Google Scholar] [CrossRef]
- Chen, Q.; Li, S.; Liu, Y.; Zhang, X.; Tang, Y.; Chai, H.; Huang, Y. Size-Controllable Fe-N/C Single-Atom Nanozyme with Exceptional Oxidase-like Activity for Sensitive Detection of Alkaline Phosphatase. Sens. Actuators B Chem. 2020, 305, 127511. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Y.; Zhang, G.; Du, L.; Yang, L.; Markiewicz, M.; Choi, J.; Chenitz, R.; Sun, S. SiO2-Fe/N/C Catalyst with Enhanced Mass Transport in PEM Fuel Cells. Appl. Catal. B Environ. 2020, 264, 118523. [Google Scholar] [CrossRef]
- Yang, H.; Xiao, J.; Su, L.; Feng, T.; Lv, Q.; Zhang, X. Oxidase-Mimicking Activity of the Nitrogen-Doped Fe3C@C Composites. Chem. Commun. 2017, 53, 3882–3885. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Ren, J.; Qu, X. Catalytically Active Nanomaterials: A Promising Candidate for Artificial Enzymes. Acc. Chem. Res. 2014, 47, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; et al. Intrinsic Peroxidase-like Activity of Ferromagnetic Nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Masud, M.K.; Yadav, S.; Islam, M.N.; Nguyen, N.T.; Salomon, C.; Kline, R.; Alamri, H.R.; Alothman, Z.A.; Yamauchi, Y.; Hossain, M.S.A.; et al. Gold-Loaded Nanoporous Ferric Oxide Nanocubes with Peroxidase-Mimicking Activity for Electrocatalytic and Colorimetric Detection of Autoantibody. Anal. Chem. 2017, 89, 11005–11013. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ma, W.; Sun, J.; Lin, M.; Niu, Y.; Yang, X.; Xu, Y. Electrochemical Generation of Fe3C/N-Doped Graphitic Carbon Nanozyme for Efficient Wound Healing in Vivo. Carbon 2020, 159, 149–160. [Google Scholar] [CrossRef]
- Lv, N.; Wang, T.; Zhao, Z.; Mu, S.; Zhu, H.; Bai, M.; Gao, Y.; Ma, L.; Luo, X.; Cheng, C. Creating Efficient and Specific Peroxidase-Like Atomic Cu-N–C Centers via Axial Strong-Metal-Support-Interaction for Enzymatic Biodetection. Adv. Mater. Technol. 2023, 8, 2300130. [Google Scholar] [CrossRef]
- Zhu, J.; Nie, W.; Wang, Q.; Li, J.; Li, H.; Wen, W.; Bao, T.; Xiong, H.; Zhang, X.; Wang, S. In Situ Growth of Copper Oxide-Graphite Carbon Nitride Nanocomposites with Peroxidase-Mimicking Activity for Electrocatalytic and Colorimetric Detection of Hydrogen Peroxide. Carbon 2018, 129, 29–37. [Google Scholar] [CrossRef]
- Dutta, A.K.; Das, S.; Samanta, S.; Samanta, P.K.; Adhikary, B.; Biswas, P. CuS Nanoparticles as a Mimic Peroxidase for Colorimetric Estimation of Human Blood Glucose Level. Talanta 2013, 107, 361–367. [Google Scholar] [CrossRef]
- Masud, M.K.; Kim, J.; Billah, M.M.; Wood, K.; Shiddiky, M.J.A.; Nguyen, N.T.; Parsapur, R.K.; Kaneti, Y.V.; Alshehri, A.A.; Alghamidi, Y.G.; et al. Nanoarchitectured Peroxidase-Mimetic Nanozymes: Mesoporous Nanocrystalline α- Or γ-Iron Oxide? J. Mater. Chem. B 2019, 7, 5412–5422. [Google Scholar] [CrossRef]
- Bano, D.; Kumar, V.; Singh, V.K.; Chandra, S.; Singh, D.K.; Yadav, P.K.; Talat, M.; Hasan, S.H. A Facile and Simple Strategy for the Synthesis of Label Free Carbon Quantum Dots from the Latex of Euphorbia Milii and Its Peroxidase-Mimic Activity for the Naked Eye Detection of Glutathione in a Human Blood Serum. ACS Sustain. Chem. Eng. 2019, 7, 1923–1932. [Google Scholar] [CrossRef]
- Lin, Y.; Ren, J.; Qu, X. Nano-Gold as Artificial Enzymes: Hidden Talents. Adv. Mater. 2014, 26, 4200–4217. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Han, Q.; Cai, S.; Wang, T.; Qi, C.; Yang, R.; Wang, C. Excellent Peroxidase Mimicking Property of CuO/Pt Nanocomposites and Their Application as an Ascorbic Acid Sensor. Analyst 2017, 142, 2500–2506. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Ding, Y.; Yang, B.; Liu, Z.; Liu, Q.; Zhang, X. Colorimetric and Ultrasensitive Detection of H2O2 Based on Au/Co3O4-CeOx Nanocomposites with Enhanced Peroxidase-like Performance. Sens. Actuators B Chem. 2018, 271, 336–345. [Google Scholar] [CrossRef]
- Chen, T.M.; Wu, X.J.; Wang, J.X.; Yang, G.W. WSe2 Few Layers with Enzyme Mimic Activity for High-Sensitive and High-Selective Visual Detection of Glucose. Nanoscale 2017, 9, 11806–11813. [Google Scholar] [CrossRef]
- Zheng, H.Q.; Liu, C.Y.; Zeng, X.Y.; Chen, J.; Lü, J.; Lin, R.G.; Cao, R.; Lin, Z.J.; Su, J.W. MOF-808: A Metal-Organic Framework with Intrinsic Peroxidase-Like Catalytic Activity at Neutral PH for Colorimetric Biosensing. Inorg. Chem. 2018, 57, 9096–9104. [Google Scholar] [CrossRef]
- Zhang, J.W.; Zhang, H.T.; Du, Z.Y.; Wang, X.; Yu, S.H.; Jiang, H.L. Water-Stable Metal–Organic Frameworks with Intrinsic Peroxidase-like Catalytic Activity as a Colorimetric Biosensing Platform. Chem. Commun. 2014, 50, 1092–1094. [Google Scholar] [CrossRef] [PubMed]
- Ai, L.; Li, L.; Zhang, C.; Fu, J.; Jiang, J. MIL-53(Fe): A Metal-Organic Framework with Intrinsic Peroxidase-like Catalytic Activity for Colorimetric Biosensing. Chem. A Eur. J. 2013, 19, 15105–15108. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, J.; Liang, Q.; Wang, Y.; Luo, G. Carbon Nanotube-Modified Electrodes for the Simultaneous Determination of Dopamine and Ascorbic Acid. Analyst 2002, 127, 653–658. [Google Scholar] [CrossRef]
- Alizadeh, N.; Ghasemi, F.; Salimi, A.; Hallaj, R.; Fathi, F.; Soleimani, F. Polymer Nanocomposite Film for Dual Colorimetric and Fluorescent Ascorbic Acid Detection Integrated Single-Cell Bioimaging with Droplet Microfluidic Platform. Dye. Pigment. 2020, 173, 107875. [Google Scholar] [CrossRef]
- Ferreira, D.C.M.; Giordano, G.F.; Soares, C.C.D.S.P.; De Oliveira, J.F.A.; Mendes, R.K.; Piazzetta, M.H.; Gobbi, A.L.; Cardoso, M.B. Optical Paper-Based Sensor for Ascorbic Acid Quantification Using Silver Nanoparticles. Talanta 2015, 141, 188–194. [Google Scholar] [CrossRef]
- Li, R.; An, H.; Huang, W.; He, Y. Molybdenum Oxide Nanosheets Meet Ascorbic Acid: Tunable Surface Plasmon Resonance and Visual Colorimetric Detection at Room Temperature. Sens. Actuators B Chem. 2018, 259, 59–63. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saeedi Garakani, S.; Zhang, M.; Xie, D.; Sikdar, A.; Pang, K.; Yuan, J. Facile Fabrication of Wood-Derived Porous Fe3C/Nitrogen-Doped Carbon Membrane for Colorimetric Sensing of Ascorbic Acid. Nanomaterials 2023, 13, 2786. https://doi.org/10.3390/nano13202786
Saeedi Garakani S, Zhang M, Xie D, Sikdar A, Pang K, Yuan J. Facile Fabrication of Wood-Derived Porous Fe3C/Nitrogen-Doped Carbon Membrane for Colorimetric Sensing of Ascorbic Acid. Nanomaterials. 2023; 13(20):2786. https://doi.org/10.3390/nano13202786
Chicago/Turabian StyleSaeedi Garakani, Sadaf, Miao Zhang, Dongjiu Xie, Anirban Sikdar, Kanglei Pang, and Jiayin Yuan. 2023. "Facile Fabrication of Wood-Derived Porous Fe3C/Nitrogen-Doped Carbon Membrane for Colorimetric Sensing of Ascorbic Acid" Nanomaterials 13, no. 20: 2786. https://doi.org/10.3390/nano13202786
APA StyleSaeedi Garakani, S., Zhang, M., Xie, D., Sikdar, A., Pang, K., & Yuan, J. (2023). Facile Fabrication of Wood-Derived Porous Fe3C/Nitrogen-Doped Carbon Membrane for Colorimetric Sensing of Ascorbic Acid. Nanomaterials, 13(20), 2786. https://doi.org/10.3390/nano13202786