In Situ Fabrication of SnS2/SnO2 Heterostructures for Boosting Formaldehyde−Sensing Properties at Room Temperature
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Chemicals
2.2. Synthesis of SnO2 Hollow Spheres
2.3. Synthesis of SnS2/SnO2 Composites with Hollow Spherical Structures
2.4. Synthesis of SnS2/SnO2 Composites with Hollow Spherical Structures
2.5. Fabrication and Measurement of Sensors
3. Results and Discussion
3.1. Structural and Morphological Characteristics
3.2. Gas-Sensing Properties
3.3. Gas-Sensing Mechanism
- (1)
- The existence of an n–n heterojunction plays a crucial role in enhancing the sensing performance. The difference between the electronic work function of SnO2 and SnS2 makes the electrons in SnS2 flow to SnO2 until the Fermi level reaches equilibrium [28] when they contact each other (Figure 9b). The transfer of electrons and the significant difference in electron work functions result in band bending within the material, further causing the accumulation of electrons at the surface of SnO2 and the depletion of electrons at the surface of SnS2. Meanwhile, a potential barrier is generated between the heterojunction architecture. As the SnS2/SnO2 is exposed to the air environment, more ionized oxygen species are absorbed on the surface of the sensing materials, leading to a more significant initial resistance state immediately. When it is exposed to formaldehyde, the sensing reaction of the oxygen species with formaldehyde releases more electrons back to the conduction band. This process narrows the electron depletion layer, dramatically decreasing the sensor resistance with the reduced heterojunction potential barrier height; thus, the SnS2/SnO2 heterojunction configuration significantly enhances the sensor’s capabilities.
- (2)
- The oxygen/formaldehyde adsorption capacity has an important impact on the gas-sensing performance of the materials. The XPS and EPR analyses show that the SnS2/SnO2 composites process more oxygen vacancies, implying their high oxygen adsorption capacity. Upon exposure to formaldehyde, more oxygen species means more formaldehyde molecules can react, consequently leading to a high gas-sensing ability. At the same time, the enhanced adsorption ability of the SnS2/SnO2 composites was revealed through DFT calculations, which were performed employing the CASTEP module in Materials Studio software (see the Supporting Information and Figure S2 for details). As shown in Figure 9c, when the sensor is in contact with the tested gas molecules, the adsorption energy of formaldehyde on the (110)/(101) plane of SnS2/SnO2 is −1.11 eV, which is much larger than that of the other tested gases (acetone: −0.53 eV, methanol: −0.25 eV, toluene: −0.71 eV, benzene: −0.53 eV, TMA: −0.88 eV, formaldehyde: −1.16 eV). This indicates a strong interaction between formaldehyde and the SnS2/SnO2 surface, directly proving the improved sensing performance to formaldehyde from the energy point of view.
- (3)
- The unique structural merits, including the hollow and porous structure, are also essential in improving the gas-sensing performance. The hollow, mesoporous structure of the SnS2/SnO2 composites significantly contributes to the specific surface area (Figure 9d). The BET measurements (see the Supporting Information and Figure S1 for details) revealed that both SnO2 and SnS2/SnO2 hollow spheres possess a high specific surface area, and the SnS2/SnO2-2 hollow spheres (92.5 m2 g−1) have a higher specific surface area than that of SnO2 (87.4 m2 g−1). This indicates that the SnS2/SnO2−2 hollow spheres can provide many active sites for the adsorption of oxygen species and formaldehyde gas, booting the resistance modulation. In addition, the porous channel structure can essentially promote the penetration efficiency of air/target molecules in the sensing interaction, boosting the reaction of formaldehyde and oxygen species.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Das, T.; Mojumder, S.; Chakraborty, S.; Saha, D.; Pal, M. Beneficial effect of Sn doping on bismuth ferrite nanoparticle-based sensor for enhanced and highly selective detection of trace formaldehyde. Appl. Surf. Sci. 2022, 602, 154340. [Google Scholar] [CrossRef]
- Wang, D.; Pu, X.X.; Yu, X.; Bao, L.P.; Cheng, Y.; Xu, J.C.; Han, S.C.; Ma, Q.X.; Wang, X.Y. Controlled preparation and gas sensitive properties of two-dimensional and cubic structure ZnSnO3. J. Colloid Interface Sci. 2022, 608, 1074–1085. [Google Scholar] [CrossRef]
- Rong, Q.; Li, Y.; Hao, S.Q.; Cai, S.T.; Wolverton, C.; Dravid, V.P.; Zhai, T.Y.; Liu, Q.J. Raspberry-like mesoporous Co-doped TiO2 nanospheres for a high-performance formaldehyde gas sensor. J. Mater. Chem. A 2021, 9, 6529–6537. [Google Scholar] [CrossRef]
- Yu, H.M.; Li, J.Z.; Luo, W.B.; Li, Z.Y.; Tian, Y.W.; Yang, Z.D.; Gao, X.W.; Liu, H. Hetero-structure La2O3-modified SnO2–Sn3O4 from tin anode slime for highly sensitive and ppb-Level formaldehyde detection. Appl. Surf. Sci. 2020, 513, 145825. [Google Scholar] [CrossRef]
- Xi, H.T.; Chen, X.G.; Cao, Y.; Xu, J.J.; Ye, C.Z.; Deng, D.W.; Zhang, J.S.; Huang, G.H. Electrochemical determination of formaldehyde via reduced AuNPs@PPy composites modified electrode. Microchem. J. 2020, 156, 104846. [Google Scholar] [CrossRef]
- Melo Cardozo, I.M.; Sousa, E.T.; da Rocha, G.O.; Pereira dos Anjos, J.; de Andrade, J.B. Determination of free- and bound-carbonyl compounds in airborne particles by ultra-fast liquid chromatography coupled to mass spectrometry. Talanta 2020, 217, 121033. [Google Scholar] [CrossRef]
- Xu, L.; Ge, M.Y.; Zhang, F.; Huang, H.J.; Sun, Y.; He, D.N. Nanostructured of SnO2/NiO composite as a highly selective formaldehyde gas sensor. J. Mater. Res. 2020, 35, 3079–3090. [Google Scholar] [CrossRef]
- Sun, Y.J.; Yang, H.Y.; Zhao, Z.T.; Suematsu, K.; Li, P.W.; Yu, Z.C.; Zhang, W.D.; Hu, J. Fabrication of ZnO quantum dots@SnO2 hollow nanospheres hybrid hierarchical structures for effectively detecting formaldehyde. Sens. Actuators B 2020, 318, 128222. [Google Scholar] [CrossRef]
- Krishna, K.G.; Parne, S.; Pothukanuri, N.; Kathirvelu, V.; Gandi, S.; Joshi, D. Nanostructured metal oxide semiconductor-based gas sensors: A comprehensive review. Sens. Actuators A 2022, 341, 113578. [Google Scholar] [CrossRef]
- Pasupuleti, K.S.; Reddeppa, M.; Chougule, S.S.; Bak, N.-H.; Nam, D.-J.; Jung, N.; Cho, H.D.; Kim, S.-G.; Kim, M.-D. High performance langasite based SAW NO2 gas sensor using 2D g-C3N4@TiO2 hybrid nanocomposite. J. Hazard. Mater. 2022, 427, 128174. [Google Scholar] [CrossRef]
- Huang, J.Y.; Liang, H.; Ye, J.X.; Jiang, D.T.; Sun, Y.L.; Li, X.J.; Geng, Y.F.; Wang, J.Q.; Qian, Z.F.; Du, Y. Ultrasensitive formaldehyde gas sensor based on Au-loaded ZnO nanorod arrays at low temperature. Sens. Actuators B 2021, 346, 130568. [Google Scholar] [CrossRef]
- Kang, Z.J.; Zhang, D.Z.; Li, T.T.; Liu, X.H.; Song, X.S. Polydopamine-modified SnO2 nanofiber composite coated QCM gas sensor for high-performance formaldehyde sensing. Sens. Actuators B 2021, 345, 130299. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, T.T.; Huo, L.H.; Gao, S.; Li, B.S.; Guo, C.Y.; Yu, H.X.; Major, Z.; Zhang, X.F.; Cheng, X.L.; et al. Small size porous NiO/NiFe2O4 nanocubes derived from Ni–Fe bimetallic metal-organic frameworks for fast volatile organic compounds detection. Appl. Surf. Sci. 2023, 623, 157075. [Google Scholar] [CrossRef]
- Im, D.; Kim, D.; Jeong, D.; Park, W.I.; Chun, M.; Park, J.-S.; Kim, H.; Jung, H. Improved formaldehyde gas sensing properties of well-controlled Au nanoparticle-decorated In2O3 nanofibers integrated on low power MEMS platform. J. Mater. Sci. Technol. 2020, 38, 56–63. [Google Scholar] [CrossRef]
- Lu, Z.C.; Ma, Z.R.; Song, P.; Wang, Q. Facile synthesis of CuO nanoribbons/rGO nanocomposites for high-performance formaldehyde gas sensor at low temperature. J. Mater. Sci. Mater. Electron. 2021, 32, 19297–19308. [Google Scholar] [CrossRef]
- Devabharathi, N.; Umarji, A.M.; Dasgupta, S. Fully Inkjet-Printed Mesoporous SnO2-Based Ultrasensitive Gas Sensors for Trace Amount NO2 Detection. ACS Appl. Mater. Interfaces 2020, 12, 57207–57217. [Google Scholar] [CrossRef]
- Das, S.; Jayaraman, V. SnO2: A comprehensive review on structures and gas sensors. Prog. Mater Sci. 2014, 66, 112–255. [Google Scholar] [CrossRef]
- Meng, F.L.; Ji, H.Y.; Yuan, Z.Y.; Chen, Y.R.; Zhang, H.; Qin, W.B.; Gao, H.L. Dynamic Measurement and Recognition Methods of SnO2 Sensor to VOCs Under Zigzag-Rectangular Wave Temperature Modulation. IEEE Sens. J. 2021, 21, 10915–10922. [Google Scholar] [CrossRef]
- Meng, X.; Bi, M.; Xiao, Q.; Gao, W. Ultrasensitive gas sensor based on Pd/SnS2/SnO2 nanocomposites for rapid detection of H2. Sens. Actuators B 2022, 359, 131612. [Google Scholar] [CrossRef]
- Manikandan, D.; Murugan, R. Genesis and tuning of ferromagnetism in SnO2 semiconductor nanostructures: Comprehensive review on size, morphology, magnetic properties and DFT investigations. Prog. Mater. Sci. 2022, 130, 100970. [Google Scholar] [CrossRef]
- Yuan, Z.Y.; Zuo, K.Y.; Meng, F.L.; Ma, Z.W.; Xu, W.X.; Dong, H. Microscale analysis and gas sensing characteristics based on SnO2 hollow spheres. Microelectron. Eng. 2020, 231, 111372. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, Y.; Dong, L.H.; Wang, J.X. Fabricating pod-like SnO2 hierarchical micro-nanostructures for enhanced acetone gas detection. Mater. Sci. Semicond. Process. 2021, 121, 105451. [Google Scholar] [CrossRef]
- Pandit, N.A.; Ahmad, T. Tin Oxide Based Hybrid Nanostructures for Efficient Gas Sensing. Molecules 2022, 27, 7038. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.S.; Meng, S.J.; Ma, Z.Y.; Yang, M.X.; Ma, D.W.; Yang, Z.X.; Talib, S.H. Electronic and catalytic properties of Ti single atoms@SnO2 and its implications on sensing mechanism for CO. Appl. Surf. Sci. 2022, 594, 153500. [Google Scholar] [CrossRef]
- Nascimento, E.P.; Firmino, H.C.T.; Neves, G.A.; Menezes, R.R. A review of recent developments in tin dioxide nanostructured materials for gas sensors. Ceram. Int. 2022, 48, 7405–7440. [Google Scholar] [CrossRef]
- Chen, Z.L.; Wang, D.; Wang, X.Y.; Yang, J.H. Enhanced formaldehyde sensitivity of two-dimensional mesoporous SnO2 by nitrogen-doped graphene quantum dots. Rare Met. 2021, 40, 1561–1570. [Google Scholar] [CrossRef]
- Li, Y.X.; Leonardi, S.G.; Bonavita, A.; Neri, G.; Wlodarski, W. Two-Dimensional (2D) SnS2-based Oxygen Sensor. Procedia Eng. 2016, 168, 1102–1105. [Google Scholar] [CrossRef]
- Liu, D.; Tang, Z.L.; Zhang, Z.T. Visible light assisted room-temperature NO2 gas sensor based on hollow SnO2@SnS2 nanostructures. Sens. Actuators B 2020, 324, 128754. [Google Scholar] [CrossRef]
- Gu, D.; Li, X.G.; Zhao, Y.Y.; Wang, J. Enhanced NO2 sensing of SnO2/SnS2 heterojunction based sensor. Sens. Actuators B 2017, 244, 67–76. [Google Scholar] [CrossRef]
- Bai, J.Z.; Shen, Y.b.; Zhao, S.K.; Li, A.; Kang, Z.k.; Cui, B.Y.; Wei, D.Z.; Yuan, Z.Y.; Meng, F.L. Room-Temperature NH3 Sensor Based on SnO2 Quantum Dots Functionalized SnS2 Nanosheets. Adv. Mater. Technol. 2023, 8, 2201671. [Google Scholar] [CrossRef]
- Kou, X.Y.; Meng, F.Q.; Chen, K.; Wang, T.S.; Sun, P.; Liu, F.M.; Yan, X.; Sun, Y.F.; Liu, F.M.; Shimanoe, K.; et al. High-performance acetone gas sensor based on Ru-doped SnO2 nanofibers. Sens. Actuators B 2020, 320, 128292. [Google Scholar] [CrossRef]
- Zhao, W.; He, M.; Chen, F.; Jin, X.; Duan, H.; Long, M.; Wu, Z.; Cao, B.; Yu, Y. One-pot synthesis of flower-like SnS2/SnO2 heterojunction with enhanced visible light photocatalytic performance. Opt. Mater. 2022, 123, 111934. [Google Scholar] [CrossRef]
- Wang, Z.J.; Wang, F.; Hermawan, A.; Asakura, Y.; Hasegawa, T.; Kumagai, H.; Kato, H.; Kakihana, M.; Zhu, J.F.; Yin, S. SnO-SnO2 modified two-dimensional MXene Ti3C2Tx for acetone gas sensor working at room temperature. J. Mater. Sci. Technol. 2021, 73, 128–138. [Google Scholar] [CrossRef]
- Meng, X.; Bi, M.; Gao, W. Shape and composition effects of PdPt bimetallic nanocrystals on hydrogen sensing properties of SnO2 based sensors. Sens. Actuators B 2023, 390, 133976. [Google Scholar] [CrossRef]
- Yang, Z.; Su, C.; Wang, S.T.; Han, Y.T.; Chen, X.W.; Xu, S.S.; Zhou, Z.H.; Hu, N.T.; Su, Y.J.; Zeng, M. Highly sensitive NO2 gas sensors based on hexagonal SnS2 nanoplates operating at room temperature. Nanotechnology 2020, 31, 075501. [Google Scholar] [CrossRef]
- Morazzoni, F.; Canevali, C.; Chiodini, N.; Mari, C.; Ruffo, R.; Scotti, R.; Armelao, L.; Tondello, E.; Depero, L.; Bontempi, E. Surface reactivity of nanostructured tin oxide and Pt-doped tin oxide as studied by EPR and XPS spectroscopies. Mater. Sci. Eng. C 2001, 15, 167–169. [Google Scholar] [CrossRef]
- Yordanov, N.D.; Christova, A. DPPH as a Primary Standard for Quantitative EPR Spectrometry. Appl. Magn. Reson. 1994, 6, 341–345. [Google Scholar] [CrossRef]
- Gao, L.P.; Fu, H.; Zhu, J.J.; Wang, J.H.; Chen, Y.P.; Liu, H.J. Synthesis of SnO2 nanoparticles for formaldehyde detection with high sensitivity and good selectivity. J. Mater. Res. 2020, 35, 2208–2217. [Google Scholar] [CrossRef]
- Xian, J.B.; Li, J.; Wang, W.J.; Zhu, J.Y.; Li, P.Z.; Leung, C.M.; Zeng, M.; Lu, X.B.; Gao, X.S.; Liu, J.M. Enhanced specific surface area of ZIF-8 derived ZnO induced by sulfuric acid modification for high-performance acetone gas sensor. Appl. Surf. Sci. 2023, 614, 156175. [Google Scholar] [CrossRef]
- Lou, C.M.; Huang, Q.X.; Li, Z.S.; Lei, G.L.; Liu, X.H.; Zhang, J. Fe2O3-sensitized SnO2 nanosheets via atomic layer deposition for sensitive formaldehyde detection. Sens. Actuators B 2021, 345, 130429. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Li, X.; Shao, C.; Han, C.; Xin, J.; Lu, D.; Niu, L.; Tang, Y.; Liu, Y. Highly permeable WO3/CuWO4 heterostructure with 3D hierarchical porous structure for high-sensitive room-temperature visible-light driven gas sensor. Sens. Actuators B 2022, 365, 131926. [Google Scholar] [CrossRef]
- Cai, H.J.; Luo, N.; Hu, Q.M.; Xue, Z.G.; Wang, X.H.; Xu, J.Q. Multishell SnO2 Hollow Microspheres Loaded with Bimetal PdPt Nanoparticles for Ultrasensitive and Rapid Formaldehyde MEMS Sensors. ACS Sens. 2022, 7, 1484–1494. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Sun, S.P.; Huang, B.Y.; Wang, N.; Li, X.G. UV-Enhanced Formaldehyde Sensor Using Hollow In2O3@TiO2 Double-Layer Nanospheres at Room Temperature. ACS Appl. Mater. Interfaces 2023, 15, 4329–4342. [Google Scholar] [CrossRef]
- Guo, L.P.; Liang, H.P.; Hu, H.Y.; Shi, S.B.; Wang, C.X.; Lv, S.T.; Yang, H.H.; Li, H.; de Rooij, N.F.; Lee, Y.-K.; et al. Large-Area and Visible-Light-Driven Heterojunctions of In2O3/Graphene Built for ppb-Level Formaldehyde Detection at Room Temperature. ACS Appl. Mater. Interfaces 2023, 15, 18205–18216. [Google Scholar] [CrossRef]
- Zhang, D.Z.; Cao, Y.H.; Yang, Z.M.; Wu, J.F. Nanoheterostructure Construction and DFT Study of Ni-Doped In2O3 Nanocubes/WS2 Hexagon Nanosheets for Formaldehyde Sensing at Room Temperature. ACS Appl. Mater. Interfaces 2020, 12, 11979–11989. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Zhang, Y.J.; Wang, Y.; Zhang, Y.; Cao, J.L. Nanoporous Mixed-Phase In2O3 Nanoparticle Homojunctions for Formaldehyde Sensing. ACS Appl. Nano Mater. 2023, 6, 5635–5644. [Google Scholar] [CrossRef]
- Zhang, D.Z.; Mi, Q.; Wang, D.Y.; Li, T.T. MXene/Co3O4 composite based formaldehyde sensor driven by ZnO/MXene nanowire arrays piezoelectric nanogenerator. Sens. Actuators B 2021, 339, 129923. [Google Scholar] [CrossRef]
- Zhang, R.; Ma, S.Y.; Zhang, J.L.; Wang, B.J.; Pei, S.T. Enhanced formaldehyde gas sensing performance based on Bi doped Zn2SnO4/SnO2 porous nanospheres. J. Alloys Compd. 2020, 828, 154408. [Google Scholar] [CrossRef]
- Khojier, K. Preparation and investigation of Al-doped ZnO thin films as a formaldehyde sensor with extremely low detection limit and considering the effect of RH. Mater. Sci. Semicond. Process. 2021, 121, 105283. [Google Scholar] [CrossRef]
- Sun, Y.H.; Wang, J.; Du, H.Y.; Li, X.G.; Wang, C.; Hou, T.Y. Formaldehyde gas sensors based on SnO2/ZSM−5 zeolite composite nanofibers. J. Alloys Compd. 2021, 868, 159140. [Google Scholar] [CrossRef]
- Han, Z.J.; Qi, Y.; Yang, Z.Y.; Han, H.C.; Jiang, Y.Y.; Du, W.J.; Zhang, X.; Zhang, J.Z.; Dai, Z.F.; Wu, L.L.; et al. Recent advances and perspectives on constructing metal oxide semiconductor gas sensing materials for efficient formaldehyde detection. J. Mater. Chem. C 2020, 8, 13169–13188. [Google Scholar] [CrossRef]
- Hankin, A.; Bedoya-Lora, F.E.; Alexander, J.C.; Regoutz, A.; Kelsall, G.H. Flat band potential determination: Avoiding the pitfalls. J. Mater. Chem. A 2019, 7, 26162–26176. [Google Scholar] [CrossRef]
- Pasupuleti, K.S.; Chougule, S.S.; Vidyasagar, D.; Bak, N.-H.; Jung, N.; Kim, Y.-H.; Lee, J.-H.; Kim, S.-G.; Kim, M.-D. UV light driven high-performance room temperature surface acoustic wave NH3 gas sensor using sulfur-doped g-C3N4 quantum dots. Nano Res. 2023, 16, 7682–7695. [Google Scholar] [CrossRef]
- Shaalan, N.M.; Hamad, D. Low-temperature hydrogen sensor based on sputtered tin dioxide nanostructures through slow deposition rate. Appl. Surf. Sci. 2022, 598, 153857. [Google Scholar] [CrossRef]
- Liu, M.; Sun, R.Y.; Sima, Z.H.; Song, P.; Ding, Y.L.; Wang, Q. Au-decorated In2O3 nanospheres/exfoliated Ti3C2Tx MXene nanosheets for highly sensitive formaldehyde gas sensing at room temperature. Appl. Surf. Sci. 2022, 605, 154839. [Google Scholar] [CrossRef]
Materials | Temperature (°C) | Concentration (ppm) | Response (Ra/Rg) | Res./Rec. Time (s) | LOD | References |
---|---|---|---|---|---|---|
Sn3O4/rGO | 150 | 100 | 44 | 4/125 | 1 ppm | [1] |
PdPt/SnO2 | 190 | 1 | 83.7 | 5/7 | 50 ppb | [42] |
In2O3/TiO2 | RT | 1 | 3.8 | 28/50 | 0.06 ppm | [43] |
In2O3/ANS/rGO | RT | 0.5 | 2.4 | 119/179 | 5 ppb | [44] |
Ni-In2O3/WS2 | RT | 20 | 32 | 76/123 | 15 ppb | [45] |
C/rh-In2O3 | 120 | 50 | 330 | 12/355 | 11 ppb | [46] |
MXene/Co3O4 | RT | 10 | 9.2 | 0.17/0.19 | 0.01 ppm | [47] |
Bi doped Zn2SnO4/SnO2 | 180 | 50 | 23.2 | 16/9 | -- | [48] |
2 at% Al-doped ZnO | 320 | 50 | 6.8 | 81/21 | 0.5 ppm | [49] |
SnO2/ZSM−5 | 250 | 10 | 11.67 | 37/115 | 2 ppm | [50] |
SnS2/SnO2 | RT | 0.1 | 1.93 | 227/424 | 5.81 ppb | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, D.; Xie, Z.; Wang, M.; Xu, J.; San, X.; Qi, J.; Zhang, Y.; Wang, G.; Jin, Q. In Situ Fabrication of SnS2/SnO2 Heterostructures for Boosting Formaldehyde−Sensing Properties at Room Temperature. Nanomaterials 2023, 13, 2493. https://doi.org/10.3390/nano13172493
Meng D, Xie Z, Wang M, Xu J, San X, Qi J, Zhang Y, Wang G, Jin Q. In Situ Fabrication of SnS2/SnO2 Heterostructures for Boosting Formaldehyde−Sensing Properties at Room Temperature. Nanomaterials. 2023; 13(17):2493. https://doi.org/10.3390/nano13172493
Chicago/Turabian StyleMeng, Dan, Zongsheng Xie, Mingyue Wang, Juhua Xu, Xiaoguang San, Jian Qi, Yue Zhang, Guosheng Wang, and Quan Jin. 2023. "In Situ Fabrication of SnS2/SnO2 Heterostructures for Boosting Formaldehyde−Sensing Properties at Room Temperature" Nanomaterials 13, no. 17: 2493. https://doi.org/10.3390/nano13172493
APA StyleMeng, D., Xie, Z., Wang, M., Xu, J., San, X., Qi, J., Zhang, Y., Wang, G., & Jin, Q. (2023). In Situ Fabrication of SnS2/SnO2 Heterostructures for Boosting Formaldehyde−Sensing Properties at Room Temperature. Nanomaterials, 13(17), 2493. https://doi.org/10.3390/nano13172493