Fe3N Nanoparticle-Encapsulated N-Doped Carbon Nanotubes on Biomass-Derived Carbon Cloth as Self-Standing Electrocatalyst for Oxygen Reduction Reaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of Fe3N@CNT/CC
2.3. Physicochemical Characterization
2.4. Electrochemical Measurements
2.5. Zn–Air Battery Tests
3. Results and Discussion
3.1. Structural and Compositional Analyses
3.2. Electrocatalytic Activities of Fe3N@CNT/CC for ORR
3.3. Application of Fe3N@CNT/CC Catalyst in ZAB
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nie, Y.; Xu, X.; Wang, X.; Liu, M.; Gao, T.; Liu, B.; Li, L.; Meng, X.; Gu, P.; Zou, J. Coni alloys encapsulated in N-doped carbon nanotubes for stabilizing oxygen electrocatalysis in zinc-air battery. Nanomaterials 2023, 13, 1788. [Google Scholar] [CrossRef]
- Cebollada, J.; Sebastián, D.; Lázaro, M.J.; Martínez-Huerta, M.V. Carbonized polydopamine-based nanocomposites: The effect of transition metals on the oxygen electrocatalytic activity. Nanomaterials 2023, 13, 1549. [Google Scholar] [CrossRef]
- Li, T.; Li, M.; Zhang, M.; Li, X.; Liu, K.; Zhang, M.; Liu, X.; Sun, D.; Xu, L.; Zhang, Y.; et al. Immobilization of Fe3N nanoparticles within N-doped carbon nanosheet frameworks as a high-efficiency electrocatalyst for oxygen reduction reaction in zn-air batteries. Carbon 2019, 153, 364–371. [Google Scholar] [CrossRef]
- Radwan, A.; Jin, H.; Liu, B.; Chen, Z.; Wu, Q.; Zhao, X.; He, D.; Mu, S. 3D-ZIF scaffold derived carbon encapsulated iron nitride as a synergistic catalyst for ORR and zinc-air battery cathodes. Carbon 2021, 171, 368–375. [Google Scholar] [CrossRef]
- Yu, X.; Ye, S. Recent advances in activity and durability enhancement of pt/c catalytic cathode in pemfc: Part ii: Degradation mechanism and durability enhancement of carbon supported platinum catalyst. J. Power Sources 2007, 172, 133–144. [Google Scholar] [CrossRef]
- Xue, N.; Liu, J.; Wang, P.; Wang, C.; Li, S.; Zhu, H.; Yin, J. Scalable synthesis of Fe3N nanoparticles within N-doped carbon frameworks as efficient electrocatalysts for oxygen reduction reaction. J. Colloid Interface Sci. 2020, 580, 460–469. [Google Scholar] [CrossRef]
- Dong, Q.; Li, G.; Liu, F.; Ren, J.; Wang, H.; Wang, R. Cu nanoclusters activating ultrafine Fe3N nanoparticles via the mott-schottky effect for rechargeable zinc-air batteries. Appl. Catal. B Environ. 2023, 326, 122415. [Google Scholar] [CrossRef]
- Noh, W.Y.; Mun, J.; Lee, Y.; Kim, E.M.; Kim, Y.K.; Kim, K.Y.; Jeong, H.Y.; Lee, J.H.; Song, H.-K.; Lee, G.; et al. Molecularly engineered carbon platform to anchor edge-hosted single-atomic M–N/C (M = Fe, Co, Ni, Cu) electrocatalysts of outstanding durability. ACS Catal. 2022, 12, 7994–8006. [Google Scholar] [CrossRef]
- Yang, G.; Zhu, J.; Yuan, P.; Hu, Y.; Qu, G.; Lu, B.-A.; Xue, X.; Yin, H.; Cheng, W.; Cheng, J.; et al. Regulating fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity. Nat. Commun. 2021, 12, 1734. [Google Scholar] [CrossRef]
- Mazzucato, M.; Daniel, G.; Mehmood, A.; Kosmala, T.; Granozzi, G.; Kucernak, A.; Durante, C. Effects of the induced micro- and meso-porosity on the single site density and turn over frequency of Fe-N-C carbon electrodes for the oxygen reduction reaction. Appl. Catal. B Environ. 2021, 291, 120068. [Google Scholar] [CrossRef]
- Yang, W.; Chen, L.; Liu, X.; Jia, J.; Guo, S. A new method for developing defect-rich graphene nanoribbons/onion-like carbon@co nanoparticles hybrid materials as an excellent catalyst for oxygen reactions. Nanoscale 2017, 9, 1738–1744. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Xu, Y.; Xia, Y.; Xi, J.; Wang, S. Ultra-small Fe2N nanocrystals embedded into mesoporous nitroge N-doped graphitic carbon spheres as a highly active, stable, and methanol-tolerant electrocatalyst for the oxygen reduction reaction. Nano Energy 2016, 24, 121–129. [Google Scholar] [CrossRef]
- Park, M.J.; Lee, J.H.; Hembram, K.P.S.S.; Lee, K.-R.; Han, S.S.; Yoon, C.W.; Nam, S.-W.; Kim, J.Y. Oxygen reduction electrocatalysts based on coupled iron nitride nanoparticles with nitrogen-doped carbon. Catalysts 2016, 6, 86. [Google Scholar] [CrossRef]
- Ma, Q.; Jin, H.; Zhu, J.; Li, Z.; Xu, H.; Liu, B.; Zhang, Z.; Ma, J.; Mu, S. Stabilizing Fe–N–C catalysts as model for oxygen reduction reaction. Adv. Sci. 2021, 8, 2102209. [Google Scholar] [CrossRef]
- Li, Z.; Fang, Y.; Zhang, J.; Lou, X.W. Necklace-like structures composed of Fe3N@c yolk–shell particles as an advanced anode for sodium-ion batteries. Adv. Mater. 2018, 30, 1800525. [Google Scholar] [CrossRef]
- Zheng, Y.; He, F.; Wu, J.; Ma, D.; Fan, H.; Zhu, S.; Li, X.; Lu, Y.; Liu, Q.; Hu, X. Nitrogen-doped carbon nanotube–graphene frameworks with encapsulated Fe/Fe3N nanoparticles as catalysts for oxygen reduction. ACS Appl. Nano Mater. 2019, 2, 3538–3547. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Zhu, Y.; Sun, D.; Liu, X.; Xu, L.; Tang, Y. Atomic fe dispersed on N-doped carbon hollow nanospheres for high-efficiency electrocatalytic oxygen reduction. Adv. Mater. 2019, 31, 1806312. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Zhang, C.; Liu, F.; Hou, Y. Hybrid of iron nitride and nitrogen-doped graphene aerogel as synergistic catalyst for oxygen reduction reaction. Adv. Funct. Mater. 2014, 24, 2930–2937. [Google Scholar] [CrossRef]
- Koslowski, U.I.; Abs-Wurmbach, I.; Fiechter, S.; Bogdanoff, P. Nature of the catalytic centers of porphyrin-based electrocatalysts for the ORR: A correlation of kinetic current density with the site density of Fe−N4 centers. J. Phys. Chem. C 2008, 112, 15356–15366. [Google Scholar] [CrossRef]
- Zhou, L.; Li, Y.; Chen, X.; Yang, Z.; Yang, S.; Wang, Q.; Liu, X.-Y.; Lu, S. New insights into degradation of Fe–N–C catalyst layers: Ionomer decomposition. J. Mater. Chem. A 2022, 10, 20323–20330. [Google Scholar] [CrossRef]
- Hu, Y.; Huang, D.; Zhang, J.; Huang, Y.; Balogun, M.-S.J.T.; Tong, Y. Dual doping induced interfacial engineering of Fe2N/Fe3N hybrids with favorable d-band towards efficient overall water splitting. ChemCatChem 2019, 11, 6051–6060. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Li, Y.N.; Lei, L.L.; Bao, S.J.; Wang, M.Q.; Heng, L.; Zhao, Z.L.; Xu, M.W. Investigation of Fe2N@carbon encapsulated in N-doped graphene-like carbon as a catalyst in sustainable zinc–air batteries. Catal. Sci. Technol. 2017, 7, 5670–5676. [Google Scholar] [CrossRef]
- Zhang, N.; Xie, S.; Wang, W.; Xie, D.; Zhu, D.; Cheng, F. Ultra-small Fe2N/N-cnts as efficient bifunctional catalysts for rechargeable zn-air batteries. J. Electrochem. Soc. 2020, 167, 020505. [Google Scholar] [CrossRef]
- Compagnini, G.; Puglisi, O.; Foti, G. Raman spectra of virgin and damaged graphite edge planes. Carbon 1997, 35, 1793–1797. [Google Scholar] [CrossRef]
- Li, L.; Qing, M.; Liu, X.; Wang, H.; Liu, S.; Zhang, Y.; Wan, H.; Wen, X.; Yang, Y.; Li, Y. Efficient one-pot synthesis of higher alcohols from syngas catalyzed by iron nitrides. ChemCatChem 2020, 12, 1939–1943. [Google Scholar] [CrossRef]
- Zhu, C.; Fu, S.; Song, J.; Shi, Q.; Su, D.; Engelhard, M.H.; Li, X.; Xiao, D.; Li, D.; Estevez, L.; et al. Self-assembled Fe–N-doped carbon nanotube aerogels with single-atom catalyst feature as high-efficiency oxygen reduction electrocatalysts. Small 2017, 13, 1603407. [Google Scholar] [CrossRef]
- Du, P.; Bao, Y.; Guo, C.; Wu, L.; Pan, J.; Zhao, C.; Ma, F.-X.; Lu, J.; Li, Y.Y. Design of Fe,N Co-doped multi-walled carbon nanotubes for efficient oxygen reduction. Chem. Commun. 2020, 56, 14467–14470. [Google Scholar] [CrossRef]
- Zhu, G.; Ma, L.; Lv, H.; Hu, Y.; Chen, T.; Chen, R.; Liang, J.; Wang, X.; Wang, Y.; Yan, C.; et al. Pine needle-derived microporous nitrogen-doped carbon frameworks exhibit high performances in electrocatalytic hydrogen evolution reaction and supercapacitors. Nanoscale 2017, 9, 1237–1243. [Google Scholar] [CrossRef]
- Guo, C.; Li, L.; Zhang, T.; Xu, Y.; Huo, Y.; Li, S. Space-confined iron nanoparticles in a 3D nitrogen-doped rgo-cnt framework as efficient bifunctional electrocatalysts for rechargeable zinc–air batteries. Microporous Mesoporous Mater. 2020, 298, 110100. [Google Scholar] [CrossRef]
- Liu, S.; Zheng, W.; Xie, W.; Cui, H.; Li, Y.; Zhang, C.; Ji, Z.; Liu, F.; Chen, R.; Sun, H.; et al. Synthesis of three-dimensional honeycomb-like Fe3N@nc composites with enhanced lithium storage properties. Carbon 2022, 192, 162–169. [Google Scholar] [CrossRef]
- Qi, Y.; Li, Q.-J.; Wu, Y.; Bao, S.-J.; Li, C.; Chen, Y.; Wang, G.; Xu, M. A Fe3N/carbon composite electrocatalyst for effective polysulfides regulation in room-temperature na-s batteries. Nat. Commun. 2021, 12, 6347. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Li, J.; Wang, R.; Yang, Y.; Yin, P.; Mao, J.; Ling, T.; Qiao, S. Hierarchical porous s-doped Fe–N–C electrocatalyst for high-power-density zinc–air battery. Mater. Today Energy 2021, 19, 100624. [Google Scholar] [CrossRef]
- Zhou, X.; Gao, J.; Hu, Y.; Jin, Z.; Hu, K.; Reddy, K.M.; Yuan, Q.; Lin, X.; Qiu, H.-J. Theoretically revealed and experimentally demonstrated synergistic electronic interaction of cofe dual-metal sites on N-doped carbon for boosting both oxygen reduction and evolution reactions. Nano Lett. 2022, 22, 3392–3399. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Tang, J.; Zhang, X.; Hong, M.; Yang, H.; Guo, X.; Xue, S.; Du, C.; Liu, Z.; Chen, J. Nitrogen doped porous carbon polyhedral supported Fe and Ni dual-metal single-atomic catalysts: Template-free and metal ligand-free sysnthesis with microwave-assistance and d-band center modulating for boosted orr catalysis in zinc-air batteries. Chem. Eng. J. 2022, 437, 135295. [Google Scholar] [CrossRef]
- Ye, H.; Li, L.; Liu, D.; Fu, Q.; Zhang, F.; Dai, P.; Gu, X.; Zhao, X. Sustained-release method for the directed synthesis of zif-derived ultrafine Co-N-C ORR catalysts with embedded co quantum dots. ACS Appl. Mater. Interfaces 2020, 12, 57847–57858. [Google Scholar] [CrossRef]
- Hu, C.; Dai, L. Carbon-based metal-free catalysts for electrocatalysis beyond the Orr. Angew. Chem. Int. Ed. 2016, 55, 11736–11758. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, M.; Wan, T.; Shi, H.; Lv, A.; Xiao, W.; Jiao, S. Novel (Pt-O(X))-(Co-O(Y)) nonbonding active structures on defective carbon from oxygen-rich coal tar pitch for efficient HER and ORR. Adv. Mater. 2022, 34, e2206960. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Liu, D.; Tian, Y.; Zhai, Y.; Tian, C.; Li, S.; Xing, T.; Li, Z.; Dai, P. Fe3N Nanoparticle-Encapsulated N-Doped Carbon Nanotubes on Biomass-Derived Carbon Cloth as Self-Standing Electrocatalyst for Oxygen Reduction Reaction. Nanomaterials 2023, 13, 2439. https://doi.org/10.3390/nano13172439
Zhao Y, Liu D, Tian Y, Zhai Y, Tian C, Li S, Xing T, Li Z, Dai P. Fe3N Nanoparticle-Encapsulated N-Doped Carbon Nanotubes on Biomass-Derived Carbon Cloth as Self-Standing Electrocatalyst for Oxygen Reduction Reaction. Nanomaterials. 2023; 13(17):2439. https://doi.org/10.3390/nano13172439
Chicago/Turabian StyleZhao, Yongxin, Dandan Liu, Yubin Tian, Yuzhu Zhai, Chaofan Tian, Sen Li, Tao Xing, Zhi Li, and Pengcheng Dai. 2023. "Fe3N Nanoparticle-Encapsulated N-Doped Carbon Nanotubes on Biomass-Derived Carbon Cloth as Self-Standing Electrocatalyst for Oxygen Reduction Reaction" Nanomaterials 13, no. 17: 2439. https://doi.org/10.3390/nano13172439
APA StyleZhao, Y., Liu, D., Tian, Y., Zhai, Y., Tian, C., Li, S., Xing, T., Li, Z., & Dai, P. (2023). Fe3N Nanoparticle-Encapsulated N-Doped Carbon Nanotubes on Biomass-Derived Carbon Cloth as Self-Standing Electrocatalyst for Oxygen Reduction Reaction. Nanomaterials, 13(17), 2439. https://doi.org/10.3390/nano13172439