Fabrication of High-Performance Asymmetric Supercapacitors Using Rice Husk-Activated Carbon and MnFe2O4 Nanostructures
Abstract
:1. Introduction
2. Experimental Details
2.1. Materials
2.2. Preparation of Rice Husk-Activated Carbon (RHAC)
2.3. Synthesis of 2D MnFe2O4
2.4. Characterizations
2.5. Electrochemical Analysis
3. Results and Discussion
3.1. Morphological, Structural, and Compositional Analysis
3.2. Electrochemical Characterization
3.3. Asymmetric Supercapacitor Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, W.; Placke, T.; Chau, K.T. Overview of Batteries and Battery Management for Electric Vehicles. Energy Rep. 2022, 8, 4058–4084. [Google Scholar] [CrossRef]
- Pan, Z.; Yu, S.; Wang, L.; Li, C.; Meng, F.; Wang, N.; Zhou, S.; Xiong, Y.; Wang, Z.; Wu, Y.; et al. Recent Advances in Porous Carbon Materials as Electrodes for Supercapacitors. Nanomaterials 2023, 13, 1744. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.M.; Jang, Y.S.; Nguyen, H.V.T.; Kim, J.S.; Yoon, Y.; Park, B.J.; Seo, D.H.; Lee, K.-K.; Han, Z.; Ostrikov, K.; et al. Advances in High-Voltage Supercapacitors for Energy Storage Systems: Materials and Electrolyte Tailoring to Implementation. Nanoscale Adv. 2023, 5, 615–626. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.; Almutairi, G.; Hasan, P.M.Z.; Rehman, S.; Kumar, S.; Shaalan, N.M.; Aljaafari, A.; Alshoaibi, A.; AlOtaibi, B.; Khan, K. Fabrication of a Biomass-Derived Activated Carbon-Based Anode for High-Performance Li-Ion Batteries. Micromachines 2023, 14, 192. [Google Scholar] [CrossRef] [PubMed]
- Bharath, G.; Hai, A.; Rambabu, K.; Savariraj, D.; Ibrahim, Y.; Banat, F. The fabrication of activated carbon and metal-carbide 2D framework-based asymmetric electrodes for the capacitive deionization of Cr(vi) ions toward industrial wastewater remediation. Environ. Sci. Water Res. Technol. 2020, 6, 351–361. [Google Scholar] [CrossRef]
- Xu, H.; Gao, B.; Cao, H.; Chen, X.; Yu, L.; Wu, K.; Sun, L.; Peng, X.; Fu, J. Nanoporous Activated Carbon Derived from Rice Husk for High Performance Supercapacitor. J. Nanomater. 2014, 2014, 714010. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, L.; Thapa, M.; Shrestha, R.; Maji, S.; Pradhananga, R.; Ariga, K. Rice Husk-Derived High Surface Area Nanoporous Carbon Materials with Excellent Iodine and Methylene Blue Adsorption Properties. C J. Carbon Res. 2019, 5, 10. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Yang, C.; Wu, C.; Wei, Y.; Jiang, B.; Jin, Y.; Wu, W. Bio-Based Carbon Materials for High-Performance Supercapacitors. Nanomaterials 2022, 12, 2931. [Google Scholar] [CrossRef]
- Hai, A.; Alqassem, B.; Bharath, G.; Rambabu, K.; Othman, I.; Abu Haija, M.; Banat, F. Cobalt and Nickel Ferrites Based Capacitive Deionization Electrode Materials for Water Desalination Applications. Electrochim. Acta 2020, 363, 137083. [Google Scholar] [CrossRef]
- Aparna, M.L.; Grace, A.N.; Sathyanarayanan, P.; Sahu, N.K. A Comparative Study on the Supercapacitive Behaviour of Solvothermally Prepared Metal Ferrite (MFe2O4, M = Fe, Co, Ni, Mn, Cu, Zn) Nanoassemblies. J. Alloy. Compd. 2018, 745, 385–395. [Google Scholar] [CrossRef]
- Tong, J.; Li, W.; Bo, L.; Wang, H.; Hu, Y.; Zhang, Z.; Mahboob, A. Selective Oxidation of Styrene Catalyzed by Cerium-Doped Cobalt Ferrite Nanocrystals with Greatly Enhanced Catalytic Performance. J. Catal. 2016, 344, 474–481. [Google Scholar] [CrossRef]
- Sharifi, S.; Rahimi, K.; Yazdani, A. Highly Improved Supercapacitance Properties of MnFe2O4 Nanoparticles by MoS2 Nanosheets. Sci. Rep. 2021, 11, 8378. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, B.; Ali, G.; Ullah, M.O.; Rehman, S.; Abbas, F. Investigation of the Electrochemical Properties of Ni0.5Zn0.5Fe2O4 as Binder-Based and Binder-Free Electrodes of Supercapacitors. Energies 2021, 14, 3297. [Google Scholar] [CrossRef]
- Rajalakshmi, R.; Remya, K.P.; Viswanathan, C.; Ponpandian, N. Enhanced Electrochemical Activities of Morphologically Tuned MnFe2O4 Nanoneedles and Nanoparticles Integrated on Reduced Graphene Oxide for Highly Efficient Supercapacitor Electrodes. Nanoscale Adv. 2021, 3, 2887–2901. [Google Scholar] [CrossRef]
- Lukatskaya, M.R.; Dunn, B.; Gogotsi, Y. Multidimensional Materials and Device Architectures for Future Hybrid Energy Storage. Nat. Commun. 2016, 7, 12647. [Google Scholar] [CrossRef] [Green Version]
- Balasubramaniam, S.; Mohanty, A.; Balasingam, S.K.; Kim, S.J.; Ramadoss, A. Comprehensive Insight into the Mechanism, Material Selection and Performance Evaluation of Supercapatteries. Nano Micro Lett. 2020, 12, 85. [Google Scholar] [CrossRef] [Green Version]
- Tie, D.; Huang, S.; Wang, J.; Ma, J.; Zhang, J.; Zhao, Y. Hybrid Energy Storage Devices: Advanced Electrode Materials and Matching Principles. Energy Storage Mater. 2019, 21, 22–40. [Google Scholar] [CrossRef]
- Bera, A.; Maitra, A.; Das, A.K.; Halder, L.; Paria, S.; Si, S.K.; De, A.; Ojha, S.; Khatua, B.B. A Quasi-Solid-State Asymmetric Supercapacitor Device Based on Honeycomb-like Nickel–Copper–Carbonate–Hydroxide as a Positive and Iron Oxide as a Negative Electrode with Superior Electrochemical Performances. ACS Appl. Electron. Mater. 2020, 2, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Scarpioni, F.; Khalid, S.; Chukwu, R.; Pianta, N.; La Mantia, F.; Ruffo, R. Electrochemical Impedance Spectroscopy for Electrode Process Evaluation: Lithium Titanium Phosphate in Concentrated Aqueous Electrolyte. ChemElectroChem 2023, 10, e202201133. [Google Scholar] [CrossRef]
- Bakar, N.A.; Othman, N.; Yunus, Z.M.; Altowayti, W.A.H.; Tahir, M.; Fitriani, N.; Mohd-Salleh, S.N.A. An Insight Review of Lignocellulosic Materials as Activated Carbon Precursor for Textile Wastewater Treatment. Environ. Technol. Innov. 2021, 22, 101445. [Google Scholar] [CrossRef]
- Bharath, G.; Hai, A.; Rambabu, K.; Kallem, P.; Haija, M.A.; Banat, F.; Theerthagiri, J.; Choi, M.Y. Fabrication of Pd/MnFe2O4 Bifunctional 2-D Nanosheets to Enhance the Yield of HCOOH from CO2 Cathodic Reduction Paired with Anodic Oxidation to CH3OH. Fuel 2022, 311, 122619. [Google Scholar] [CrossRef]
- Naji, S.Z.; Tye, C.T. A Review of the Synthesis of Activated Carbon for Biodiesel Production: Precursor, Preparation, and Modification. Energy Convers. Manag. X 2022, 13, 100152. [Google Scholar] [CrossRef]
- Hai, A.; Bharath, G.; Babu, K.R.; Taher, H.; Naushad, M.; Banat, F. Date Seeds Biomass-Derived Activated Carbon for Efficient Removal of NaCl from Saline Solution. Process. Saf. Environ. Prot. 2019, 129, 103–111. [Google Scholar] [CrossRef]
- Rambabu, K.; Bharath, G.; Hai, A.; Luo, S.; Liao, K.; Haijaa, M.A.; Banat, F.; Naushad, M. Development of Watermelon Rind Derived Activated Carbon/Manganese Ferrite Nanocomposite for Cleaner Desalination by Capacitive Deionization. J. Clean. Prod. 2020, 272, 122626. [Google Scholar] [CrossRef]
- Bashir, B.; Shaheen, W.; Asghar, M.; Warsi, M.F.; Khan, M.A.; Haider, S.; Shakir, I.; Shahid, M. Copper Doped Manganese Ferrites Nanoparticles Anchored on Graphene Nano-Sheets for High Performance Energy Storage Applications. J. Alloys Compd. 2017, 695, 881–887. [Google Scholar] [CrossRef]
- Kotutha, I.; Swatsitang, E.; Meewassana, W.; Maensiri, S. One-Pot Hydrothermal Synthesis, Characterization, and Electrochemical Properties of RGO/MnFe2O4 Nanocomposites. Jpn. J. Appl. Phys. 2015, 54, 06FH10. [Google Scholar] [CrossRef]
- Mondal, D.K.; Jonak, S.; Paul, N.; Borah, J.P. Dextran Mediated MnFe2O4/ZnS Magnetic Fluorescence Nanocomposites for Controlled Self-Heating Properties. RSC Adv. 2021, 11, 12507–12519. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhang, H.; He, Z.; Li, S.; Li, Z. Electrical Properties and Temperature Sensitivity of Mo-Modified MnFe2O4 Ceramics for Application of NTC Thermistors. J. Mater. Sci. Mater. Electron. 2018, 29, 2491–2499. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, N.; Wang, Z.; Cao, H.; Liu, J. Fe3O4 Nanoparticles Encapsulated in Multi-Walled Carbon Nanotubes Possess Superior Lithium Storage Capability. New. J. Chem. 2017, 41, 6241–6250. [Google Scholar] [CrossRef]
- Zhang, X.; Lang, W.; Yan, X.; Lou, Z.; Chen, X. Influences of the structure parameters of multi-walled carbon nanotubes(MWNTs) on PVDF/PFSA/O-MWNTs hollow fiber ultrafiltration membranes. J. Membr. Sci. 2016, 499, 179–190. [Google Scholar] [CrossRef]
- Mezgebe, M.M.; Yan, Z.; Wei, G.; Gong, S.; Zhang, F.; Guang, S.; Xu, H. 3D Graphene-Fe3O4-Polyaniline, a Novel Ternary Composite for Supercapacitor Electrodes with Improved Electrochemical Properties. Mater. Today Energy 2017, 5, 164–172. [Google Scholar] [CrossRef]
- Oh, I.; Kim, M.; Kim, J. Fe3O4/Carbon Coated Silicon Ternary Hybrid Composite as Supercapacitor Electrodes. Appl. Surf. Sci. 2015, 328, 222–228. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, F.; Kumar, S.; Shaalan, N.M.; Arshi, N.; Dalela, S.; Chae, K.H. Fabrication of High-Performance Asymmetric Supercapacitors Using Rice Husk-Activated Carbon and MnFe2O4 Nanostructures. Nanomaterials 2023, 13, 1870. https://doi.org/10.3390/nano13121870
Ahmed F, Kumar S, Shaalan NM, Arshi N, Dalela S, Chae KH. Fabrication of High-Performance Asymmetric Supercapacitors Using Rice Husk-Activated Carbon and MnFe2O4 Nanostructures. Nanomaterials. 2023; 13(12):1870. https://doi.org/10.3390/nano13121870
Chicago/Turabian StyleAhmed, Faheem, Shalendra Kumar, Nagih M. Shaalan, Nishat Arshi, Saurabh Dalela, and Keun Hwa Chae. 2023. "Fabrication of High-Performance Asymmetric Supercapacitors Using Rice Husk-Activated Carbon and MnFe2O4 Nanostructures" Nanomaterials 13, no. 12: 1870. https://doi.org/10.3390/nano13121870
APA StyleAhmed, F., Kumar, S., Shaalan, N. M., Arshi, N., Dalela, S., & Chae, K. H. (2023). Fabrication of High-Performance Asymmetric Supercapacitors Using Rice Husk-Activated Carbon and MnFe2O4 Nanostructures. Nanomaterials, 13(12), 1870. https://doi.org/10.3390/nano13121870