Transition from AFM Spin Canting to Spin Glass–AFM Exchange as Particle Size Decreases in LaFeO3
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Compositional Analysis and Structural Characterization
3.2. Thermogravimetric
3.3. X-Ray Diffraction (XRD) Patterns
3.4. High-Resolution Transmission Electron Microscopy (HRTEM)
3.5. Magnetic Properties
4. Discussion
- (1)
- According to HRTEM, the LaFeO3 in bulk has a large number of twins and the magnetic behavior corresponds to the well-known AFM with spin canting.
- (2)
- For particle size d ~ 125 nm, the number of twins decreases and the spin canting vanishes completely.
- (3)
- For d < 60 nm, a new ferromagnetic interaction appears that becomes more important as particle size decreases.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Katine, J.; Albert, F.; Buhrman, R.; Myers, E.; Ralph, D. Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 2000, 84, 3149. [Google Scholar] [CrossRef]
- Tokunaga, Y.; Furukawa, N.; Sakai, H.; Taguchi, Y.; Arima, T.H.; Tokura, Y. Composite domain walls in a multiferroic perovskite ferrite. Nat. Mater. 2009, 8, 558–562. [Google Scholar] [CrossRef]
- Fennie, C.J. Ferroelectrically induced weak ferromagnetism by design. Phys. Rev. Lett. 2008, 100, 167203. [Google Scholar] [CrossRef]
- Sendil Kumar, A.M.R.M.; Bhatnagar, A.K. Surface Driven Effects on Magnetic Properties of Antiferromagnetic LaFeO3 Nanocrystalline Ferrite; AIP Publishing LLC: Melville, NY, USA, 2014; Volume 116, p. 113912. [Google Scholar]
- Park, T. Papaefthymiou GC Viescas AJ Moodenbaugh AR Wong SS Size-dependent magnetic properties of single-crystalline multiferroic BiFeO 3 nanoparticles. Nano Lett. 2007, 7, 766–772. [Google Scholar] [CrossRef]
- Geller, S. Crystal structure of gadolinium orthoferrite, GdFeO3. J. Chem. Phys. 1956, 24, 1236–1239. [Google Scholar] [CrossRef]
- Wollan, E.O.K.W.C. Neutron diffraction study of the magnetic properties of the series of perovskite-type compounds [(1-x)La,xCa]MnO3. Phys. Rev. 1955, 100, 545–563. [Google Scholar] [CrossRef]
- Eibschütz, M.; Shtrikman, S.; Treves, D. Mössbauer studies of Fe57 in orthoferrites. Phys. Rev. 1967, 156, 562–577. [Google Scholar] [CrossRef]
- Bozorth, R.M.; Kramer, V.; Remeika, J.P. Magnetization in Single Crystals of Some Rare-Earth Orthoferrites. Phys. Rev. 1958, 1, 3. [Google Scholar] [CrossRef]
- Ahmadvand, H.; Salamati, H.; Kameli, P.; Poddar, A.; Acet, M.; Zakeri, K. Exchange bias in LaFeO3 nanoparticles. J. Phys. D Appl. Phys. 2010, 43, 245002. [Google Scholar] [CrossRef]
- Jain, P.; Srivastava, S. Structural Investigation and Zero-Field-Cooled Exchange Bias in Nanocrystalline LaFeO3. J. Supercond. Nov. Magn. 2016, 29, 2089–2097. [Google Scholar] [CrossRef]
- Mahapatra, A.; Mitra, A.; Mallick, A.; Shaw, A.; Greneche, J.-M.; Chakrabarti, P. Modulation of magnetic and dielectric property of LaFeO3 by simultaneous doping with Ca2+ and Co2+-ions. J. Alloy. Compd. 2018, 743, 274–282. [Google Scholar] [CrossRef]
- Phokha, S.; Pinitsoontorn, S.; Maensiri, S.; Rujirawat, S. Structure, optical and magnetic properties of LaFeO3 nanoparticles prepared by polymerized complex method. J. Sol-Gel Sc. Techn. 2014, 71, 333–341. [Google Scholar] [CrossRef]
- Maiti, R.; Basu, S.; Chakravorty, D. Synthesis of nanocrystalline YFeO3 and its magnetic properties. J. Magn. Magn. Mater. 2009, 321, 3274–3277. [Google Scholar] [CrossRef]
- Pechini, M.P. Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor. US Patent US3330697A, 26 August 1967. [Google Scholar]
- Putz, H.; Brandenburg, K.; Match, K. Match!—Phase Analysis Using Powder Diffraction, Crystal Impact. 2016. Available online: https://www.crystalimpact.com/match/ (accessed on 26 April 2023).
- Rodríguez-Carvajal, J. FULLPROF: A Program for Rietveld Refinement and Pattern Matching Analysis, Powder Diffraction of the XV Congress of the IUCr. 1990. Available online: https://www.bibsonomy.org/bibtex/224c1c7d9353367cbb063adfb2071263d/jamasi (accessed on 26 April 2023).
- Peterlin-Neumaier, T.; Steichele, E. Antiferromagnetic structure of LaFeO3 from high resolution tof neutron diffraction. J. Magn. Magn. Mater. 1986, 59, 351–356. [Google Scholar] [CrossRef]
- Bozorth, R.M.; Williams, H.J.; Walsh, D.E. Magnetic Properties of Some Orthoferrites and Cyanides at Low Temperatures. Phys. Rev. 1956, 103, 572. [Google Scholar] [CrossRef]
- Manchón-Gordón, A.F.; Sánchez-Jiménez, P.E.; Blázquez, J.S.; Perejón, A.; Pérez-Maqueda, L.A. Structural, Vibrational, and Magnetic Characterization of Orthoferrite LaFeO3 Ceramic Prepared by Reaction Flash Sintering. Materials 2023, 16, 1019. [Google Scholar] [CrossRef]
- Aliyu, H.D.; Alonso, J.M.; de la Presa, P.; Pottker, W.E.; Ita, B.; Garcia-Hernández, M.; Hernando, A. Surface Ferromagnetism in Pr0.5Ca0.5MnO3 Nanoparticles as a Consequence of Local Imbalance in Mn3+:Mn4+ Ratio. Chem. Mater. 2018, 30, 7138–7145. [Google Scholar] [CrossRef]
- Cobos, M.; de la Presa, P.; Llorente, I.; Alonso, J.; García-Escorial, A.; Marín, P.; Hernando, A.; Jiménez, J.A. Magnetic phase diagram of nanostructured zinc ferrite as a function of inversion degree δ. J. Phys. Chem. C 2019, 123, 17472–17482. [Google Scholar] [CrossRef]
- Lopez Maldonado, K.; de la Presa, P.; De La Rubia, M.; Crespo, P.; De Frutos, J.; Hernando, A.; Matutes Aquino, J.; Elizalde Galindo, J. Effects of grain boundary width and crystallite size on conductivity and magnetic properties of magnetite nanoparticles. J. Nanoparticle Res. 2014, 16, 2482. [Google Scholar] [CrossRef]
- Maniv, E.; Murphy, R.A.; Haley, S.C.; Doyle, S.; John, C.; Maniv, A.; Ramakrishna, S.K.; Tang, Y.L.; Ercius, P.; Ramesh, R.; et al. Exchange bias due to coupling between coexisting antiferromagnetic and spin-glass orders. Nat. Phys. 2021, 17, 525–530. [Google Scholar] [CrossRef]
- Kodama, R.H.M.; Salah, A.; Berkowitz, A.E. Finite Size Effects in Antiferromagnetic NiO Nanoparticles. Phys. Rev. Lett. 1997, 79, 1393. [Google Scholar] [CrossRef]
Samples | Cell Parameters | V (Å3) | d (nm) | ||
---|---|---|---|---|---|
a (Å) | b (Å) | c (Å) | |||
LF-600 | 5.56338 (0.00108) | 7.85760 (0.00250) | 5.55924 (0.00190) | 243.021 (0.123) | 27 |
LF-700 | 5.56443 (0.00058) | 7.85806 (0.00137) | 5.55911 (0.00096) | 243.076 (0.065) | 36 |
LF-800 | 5.56476 (0.00034) | 7.85676 (0.00059) | 5.56005 (0.00041) | 243.091 (0.030) | 58 |
LF-900 | 5.56532 (0.00020) | 7.85696 (0.00034) | 5.55926 (0.00024) | 243.087 (0.017) | 125 |
LF-Bulk | 5.56591 (0.00016) | 7.85406 (0.00026) | 5.55416 (0.00019) | 242.800 (0.013) | ____ |
LF-600 | LF-700 | |||
---|---|---|---|---|
HFC (kOe) | HC (Oe) | HEB (Oe) | HC (Oe) | HEB (Oe) |
0 | 830 | 0 | 894 | 0 |
5 | 894 | −255 | 985 | −229 |
10 | 910 | −296 | 1016 | −350 |
20 | 945 | −344 | 1074 | −502 |
50 | 1077 | −635 | 1483 | −2157 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshalawi, D.; Alonso, J.M.; Landa-Cánovas, A.R.; de la Presa, P. Transition from AFM Spin Canting to Spin Glass–AFM Exchange as Particle Size Decreases in LaFeO3. Nanomaterials 2023, 13, 1657. https://doi.org/10.3390/nano13101657
Alshalawi D, Alonso JM, Landa-Cánovas AR, de la Presa P. Transition from AFM Spin Canting to Spin Glass–AFM Exchange as Particle Size Decreases in LaFeO3. Nanomaterials. 2023; 13(10):1657. https://doi.org/10.3390/nano13101657
Chicago/Turabian StyleAlshalawi, Dhoha, Jose María Alonso, Angel R. Landa-Cánovas, and Patricia de la Presa. 2023. "Transition from AFM Spin Canting to Spin Glass–AFM Exchange as Particle Size Decreases in LaFeO3" Nanomaterials 13, no. 10: 1657. https://doi.org/10.3390/nano13101657
APA StyleAlshalawi, D., Alonso, J. M., Landa-Cánovas, A. R., & de la Presa, P. (2023). Transition from AFM Spin Canting to Spin Glass–AFM Exchange as Particle Size Decreases in LaFeO3. Nanomaterials, 13(10), 1657. https://doi.org/10.3390/nano13101657