Transition from AFM Spin Canting to Spin Glass–AFM Exchange as Particle Size Decreases in LaFeO3
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Compositional Analysis and Structural Characterization
3.2. Thermogravimetric
3.3. X-Ray Diffraction (XRD) Patterns
3.4. High-Resolution Transmission Electron Microscopy (HRTEM)
3.5. Magnetic Properties
4. Discussion
- (1)
- According to HRTEM, the LaFeO3 in bulk has a large number of twins and the magnetic behavior corresponds to the well-known AFM with spin canting.
- (2)
- For particle size d ~ 125 nm, the number of twins decreases and the spin canting vanishes completely.
- (3)
- For d < 60 nm, a new ferromagnetic interaction appears that becomes more important as particle size decreases.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Katine, J.; Albert, F.; Buhrman, R.; Myers, E.; Ralph, D. Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 2000, 84, 3149. [Google Scholar] [CrossRef]
- Tokunaga, Y.; Furukawa, N.; Sakai, H.; Taguchi, Y.; Arima, T.H.; Tokura, Y. Composite domain walls in a multiferroic perovskite ferrite. Nat. Mater. 2009, 8, 558–562. [Google Scholar] [CrossRef]
- Fennie, C.J. Ferroelectrically induced weak ferromagnetism by design. Phys. Rev. Lett. 2008, 100, 167203. [Google Scholar] [CrossRef]
- Sendil Kumar, A.M.R.M.; Bhatnagar, A.K. Surface Driven Effects on Magnetic Properties of Antiferromagnetic LaFeO3 Nanocrystalline Ferrite; AIP Publishing LLC: Melville, NY, USA, 2014; Volume 116, p. 113912. [Google Scholar]
- Park, T. Papaefthymiou GC Viescas AJ Moodenbaugh AR Wong SS Size-dependent magnetic properties of single-crystalline multiferroic BiFeO 3 nanoparticles. Nano Lett. 2007, 7, 766–772. [Google Scholar] [CrossRef]
- Geller, S. Crystal structure of gadolinium orthoferrite, GdFeO3. J. Chem. Phys. 1956, 24, 1236–1239. [Google Scholar] [CrossRef]
- Wollan, E.O.K.W.C. Neutron diffraction study of the magnetic properties of the series of perovskite-type compounds [(1-x)La,xCa]MnO3. Phys. Rev. 1955, 100, 545–563. [Google Scholar] [CrossRef]
- Eibschütz, M.; Shtrikman, S.; Treves, D. Mössbauer studies of Fe57 in orthoferrites. Phys. Rev. 1967, 156, 562–577. [Google Scholar] [CrossRef]
- Bozorth, R.M.; Kramer, V.; Remeika, J.P. Magnetization in Single Crystals of Some Rare-Earth Orthoferrites. Phys. Rev. 1958, 1, 3. [Google Scholar] [CrossRef]
- Ahmadvand, H.; Salamati, H.; Kameli, P.; Poddar, A.; Acet, M.; Zakeri, K. Exchange bias in LaFeO3 nanoparticles. J. Phys. D Appl. Phys. 2010, 43, 245002. [Google Scholar] [CrossRef]
- Jain, P.; Srivastava, S. Structural Investigation and Zero-Field-Cooled Exchange Bias in Nanocrystalline LaFeO3. J. Supercond. Nov. Magn. 2016, 29, 2089–2097. [Google Scholar] [CrossRef]
- Mahapatra, A.; Mitra, A.; Mallick, A.; Shaw, A.; Greneche, J.-M.; Chakrabarti, P. Modulation of magnetic and dielectric property of LaFeO3 by simultaneous doping with Ca2+ and Co2+-ions. J. Alloy. Compd. 2018, 743, 274–282. [Google Scholar] [CrossRef]
- Phokha, S.; Pinitsoontorn, S.; Maensiri, S.; Rujirawat, S. Structure, optical and magnetic properties of LaFeO3 nanoparticles prepared by polymerized complex method. J. Sol-Gel Sc. Techn. 2014, 71, 333–341. [Google Scholar] [CrossRef]
- Maiti, R.; Basu, S.; Chakravorty, D. Synthesis of nanocrystalline YFeO3 and its magnetic properties. J. Magn. Magn. Mater. 2009, 321, 3274–3277. [Google Scholar] [CrossRef]
- Pechini, M.P. Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor. US Patent US3330697A, 26 August 1967. [Google Scholar]
- Putz, H.; Brandenburg, K.; Match, K. Match!—Phase Analysis Using Powder Diffraction, Crystal Impact. 2016. Available online: https://www.crystalimpact.com/match/ (accessed on 26 April 2023).
- Rodríguez-Carvajal, J. FULLPROF: A Program for Rietveld Refinement and Pattern Matching Analysis, Powder Diffraction of the XV Congress of the IUCr. 1990. Available online: https://www.bibsonomy.org/bibtex/224c1c7d9353367cbb063adfb2071263d/jamasi (accessed on 26 April 2023).
- Peterlin-Neumaier, T.; Steichele, E. Antiferromagnetic structure of LaFeO3 from high resolution tof neutron diffraction. J. Magn. Magn. Mater. 1986, 59, 351–356. [Google Scholar] [CrossRef]
- Bozorth, R.M.; Williams, H.J.; Walsh, D.E. Magnetic Properties of Some Orthoferrites and Cyanides at Low Temperatures. Phys. Rev. 1956, 103, 572. [Google Scholar] [CrossRef]
- Manchón-Gordón, A.F.; Sánchez-Jiménez, P.E.; Blázquez, J.S.; Perejón, A.; Pérez-Maqueda, L.A. Structural, Vibrational, and Magnetic Characterization of Orthoferrite LaFeO3 Ceramic Prepared by Reaction Flash Sintering. Materials 2023, 16, 1019. [Google Scholar] [CrossRef]
- Aliyu, H.D.; Alonso, J.M.; de la Presa, P.; Pottker, W.E.; Ita, B.; Garcia-Hernández, M.; Hernando, A. Surface Ferromagnetism in Pr0.5Ca0.5MnO3 Nanoparticles as a Consequence of Local Imbalance in Mn3+:Mn4+ Ratio. Chem. Mater. 2018, 30, 7138–7145. [Google Scholar] [CrossRef]
- Cobos, M.; de la Presa, P.; Llorente, I.; Alonso, J.; García-Escorial, A.; Marín, P.; Hernando, A.; Jiménez, J.A. Magnetic phase diagram of nanostructured zinc ferrite as a function of inversion degree δ. J. Phys. Chem. C 2019, 123, 17472–17482. [Google Scholar] [CrossRef]
- Lopez Maldonado, K.; de la Presa, P.; De La Rubia, M.; Crespo, P.; De Frutos, J.; Hernando, A.; Matutes Aquino, J.; Elizalde Galindo, J. Effects of grain boundary width and crystallite size on conductivity and magnetic properties of magnetite nanoparticles. J. Nanoparticle Res. 2014, 16, 2482. [Google Scholar] [CrossRef]
- Maniv, E.; Murphy, R.A.; Haley, S.C.; Doyle, S.; John, C.; Maniv, A.; Ramakrishna, S.K.; Tang, Y.L.; Ercius, P.; Ramesh, R.; et al. Exchange bias due to coupling between coexisting antiferromagnetic and spin-glass orders. Nat. Phys. 2021, 17, 525–530. [Google Scholar] [CrossRef]
- Kodama, R.H.M.; Salah, A.; Berkowitz, A.E. Finite Size Effects in Antiferromagnetic NiO Nanoparticles. Phys. Rev. Lett. 1997, 79, 1393. [Google Scholar] [CrossRef]
Samples | Cell Parameters | V (Å3) | d (nm) | ||
---|---|---|---|---|---|
a (Å) | b (Å) | c (Å) | |||
LF-600 | 5.56338 (0.00108) | 7.85760 (0.00250) | 5.55924 (0.00190) | 243.021 (0.123) | 27 |
LF-700 | 5.56443 (0.00058) | 7.85806 (0.00137) | 5.55911 (0.00096) | 243.076 (0.065) | 36 |
LF-800 | 5.56476 (0.00034) | 7.85676 (0.00059) | 5.56005 (0.00041) | 243.091 (0.030) | 58 |
LF-900 | 5.56532 (0.00020) | 7.85696 (0.00034) | 5.55926 (0.00024) | 243.087 (0.017) | 125 |
LF-Bulk | 5.56591 (0.00016) | 7.85406 (0.00026) | 5.55416 (0.00019) | 242.800 (0.013) | ____ |
LF-600 | LF-700 | |||
---|---|---|---|---|
HFC (kOe) | HC (Oe) | HEB (Oe) | HC (Oe) | HEB (Oe) |
0 | 830 | 0 | 894 | 0 |
5 | 894 | −255 | 985 | −229 |
10 | 910 | −296 | 1016 | −350 |
20 | 945 | −344 | 1074 | −502 |
50 | 1077 | −635 | 1483 | −2157 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshalawi, D.; Alonso, J.M.; Landa-Cánovas, A.R.; de la Presa, P. Transition from AFM Spin Canting to Spin Glass–AFM Exchange as Particle Size Decreases in LaFeO3. Nanomaterials 2023, 13, 1657. https://doi.org/10.3390/nano13101657
Alshalawi D, Alonso JM, Landa-Cánovas AR, de la Presa P. Transition from AFM Spin Canting to Spin Glass–AFM Exchange as Particle Size Decreases in LaFeO3. Nanomaterials. 2023; 13(10):1657. https://doi.org/10.3390/nano13101657
Chicago/Turabian StyleAlshalawi, Dhoha, Jose María Alonso, Angel R. Landa-Cánovas, and Patricia de la Presa. 2023. "Transition from AFM Spin Canting to Spin Glass–AFM Exchange as Particle Size Decreases in LaFeO3" Nanomaterials 13, no. 10: 1657. https://doi.org/10.3390/nano13101657
APA StyleAlshalawi, D., Alonso, J. M., Landa-Cánovas, A. R., & de la Presa, P. (2023). Transition from AFM Spin Canting to Spin Glass–AFM Exchange as Particle Size Decreases in LaFeO3. Nanomaterials, 13(10), 1657. https://doi.org/10.3390/nano13101657