Long-Term Antifogging Coating Based on Black Phosphorus Hybrid Super-Hydrophilic Polymer Hetero-Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instruments
2.3. Methods
2.3.1. Preparation of Materials
2.3.2. Physicochemical Properties of Materials
2.3.3. Performance Testing of Materials
3. Results and Discussion
3.1. Material Synthesis and Characterization
3.2. Mechanical Properties of Coatings
3.3. Antifogging Performances of Coatings
3.4. Long-Term Antifogging Mechanism of Coatings
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Han, Z.; Feng, X.; Guo, Z.; Niu, S.; Ren, L. Flourishing bioinspired antifogging materials with superwettability: Progresses and challenges. Adv. Mater. 2018, 30, 1704652. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Ma, L.; Millians, W.; Wu, T.; Ming, W. Dual-functional antifogging/antimicrobial polymer coating. ACS Appl. Mater. Interfaces 2016, 8, 8737–8742. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Alcaraz, M.L.; Rubner, M.F.; Cohen, R.E. Zwitter-wettability and antifogging coatings with frost-resisting capabilities. ACS Nano 2013, 7, 2172–2185. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Ryu, M.; Kim, H.; Ahn, G.N.; Yim, S.J.; Kim, D.P.; Lee, H. Wet-style superhydrophobic antifogging coatings for optical Sensors. Adv. Mater. 2020, 32, 2002710. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Liao, T.; Liu, K.; Jiang, L.; Kim, J.H.; Dou, S.X. Fly-eye inspired superhydrophobic anti-fogging inorganic nanostructures. Small 2014, 10, 3001–3006. [Google Scholar] [CrossRef] [PubMed]
- Darband, G.B.; Aliofkhazraei, M.; Khorsand, S.; Sokhanvar, S.; Kaboli, A. Science and engineering of superhydrophobic surfaces: Review of corrosion resistance, chemical and mechanical stability. Arab. J. Chem. 2020, 13, 1763–1802. [Google Scholar] [CrossRef]
- Mouterde, T.; Lehoucq, G.; Xavier, S.; Checco, A.; Black, C.T.; Rahman, A.; Midavaine, T.; Clanet, C.; Quere, D. Antifogging abilities of model nanotextures. Nat. Mater. 2017, 16, 658–663. [Google Scholar] [CrossRef]
- Yan, D.; Yu, Z.; Zou, T.; Lin, Y.; Kong, W.; Yang, J. Long-time persisting superhydrophilicity on sapphire surface via femtosecond laser processing with the varnish of TiO2. Nanomaterials 2022, 12, 3403. [Google Scholar] [CrossRef]
- Tzianou, M.; Thomopoulos, G.; Vourdas, N.; Ellinas, K.; Gogolides, E. Tailoring wetting properties at extremes states to obtain antifogging functionality. Adv. Funct. Mater. 2020, 31, 2006687. [Google Scholar] [CrossRef]
- Zhong, Q.; Gao, B.; Weng, Y.; Zhang, S. Adopting intrinsic hydrophilic thermoplastic starch composites to fabricate antifogging sustainable films with high antibiosis and transparency. ACS Sustain. Chem. Eng. 2022, 10, 3661–3672. [Google Scholar] [CrossRef]
- Zhao, J.; Meyer, A.; Ma, L.; Ming, W. Acrylic coatings with surprising antifogging and frost-resisting properties. Chem. Commun. 2013, 49, 11764–11766. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Lu, P.; Wang, L.; Fan, Y.; Tian, W.; Xu, J.; Zhao, J.; Ren, L.; Ming, W. UV curable stimuli-responsive coatings with antifogging and oil-repellent performances. J. Mater. Chem. A 2021, 9, 26028–26035. [Google Scholar] [CrossRef]
- Chang, C.C.; Huang, F.H.; Chang, H.H.; Dong, T.M.; Chen, C.C.; Cheng, L.P. Preparation of water-resistant antifog hard coatings on plastic. Langmuir 2012, 28, 17193–17203. [Google Scholar] [CrossRef] [PubMed]
- Yao, B.; Zhao, H.; Wang, L.; Liu, Y.; Zheng, C.; Li, H.; Sun, C. Synthesis of acrylate-based UV/thermal dual-cure coatings for antifogging. J. Coat. Technol. Res. 2018, 15, 149–158. [Google Scholar] [CrossRef]
- Tripathi, B.P.; Shahi, V.K. Organic-inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Prog. Polym. Sci. 2011, 36, 945–979. [Google Scholar] [CrossRef]
- Sanchez, C.; Belleville, P.; Popalld, M.; Nicole, L. Applications of advanced hybrid organic-inorganic nanomaterials: From laboratory to market. Chem. Soc. Rev. 2011, 40, 696–753. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.; Xie, H.; Huang, H.; Li, Z.; Sun, Z.; Xu, Y.; Xiao, Q.; Yu, X.-F.; Zhao, Y.; Zhang, H. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 2016, 7, 12967. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, H.; Huang, H.; Xiao, Q.; Xu, Y.; Guo, Z.; Xie, H.; Shao, J.; Sun, Z.; Han, W.; et al. Surface coordination of black phosphorus for robust air and water stability. Angew. Chem. 2016, 128, 5087–5091. [Google Scholar] [CrossRef]
- Wang, W.; Xie, G.; Luo, J. Black phosphorus as a new lubricant. Friction 2018, 6, 116–142. [Google Scholar] [CrossRef] [Green Version]
- Tang, G.; Su, F.; Xu, X.; Chu, P.K. 2D black phosphorus dotted with silver nanoparticles: An excellent lubricant additive for tribological applications. Chem. Eng. J. 2020, 392, 123631. [Google Scholar] [CrossRef]
- Wang, Q.; Hou, T.; Wang, W.; Zhang, G.; Gao, Y.; Wang, K. Tribological behavior of black phosphorus nanosheets as water-based lubrication additives. Friction 2022, 10, 374–387. [Google Scholar] [CrossRef]
- Zhang, Y.; Mu, C.; Xie, J.; Ågren, H.; Zhang, H. Black phosphorus/polymers: Status and challenges. Adv. Mater. 2021, 33, 2100113. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Zhou, Y.; Zhou, X.; Zhang, T.; Wang, C.; Yuen, R.K.; Hu, W.; Hu, Y. Air-Stable Polyphosphazene-Functionalized Few-Layer Black Phosphorene for Flame Retardancy of Epoxy Resins. Small 2019, 15, 1805175. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Shao, J.; Ma, Y.; Wang, J.; Huang, H.; Yang, N.; Wang, H.; Ruan, C.; Luo, Y.; Wang, Q.Q.; et al. Biodegradable near-infrared-photoresponsive shape memory implants based on black phosphorus nanofillers. Biomaterials 2018, 164, 11–21. [Google Scholar] [CrossRef]
- Mu, H.; Lin, S.; Wang, Z.; Xiao, S.; Li, P.; Chen, Y.; Zhang, H.; Bao, H.; Lau, S.P.; Pan, C.; et al. Black phosphorus-polymer composites for pulsed lasers. Adv. Opt. Mater. 2015, 3, 1447–1453. [Google Scholar] [CrossRef] [Green Version]
- Coial, S.; Passaglia, E.; Pinna, S.; Legnaioli, S.; Borsacchi, S.; Dinelli, F.; Ferretti, A.M.; Caporali, M.; Serrano-Ruiz, M.; Peruzzini, M.; et al. Dispersion of few-layer black phosphorus in binary polymer blend and block copolymer matrices. Nanomaterials 2021, 11, 1996. [Google Scholar] [CrossRef]
- Qu, Z.; Wu, K.; Jiao, E.; Chen, W.; Hu, Z.; Xu, C.; Shi, J.; Wang, S.; Tan, Z. Surface functionalization of few-layer black phosphorene and its flame retardancy in Epoxy Resin. Chem. Eng. J. 2020, 382, 122991. [Google Scholar] [CrossRef]
- Shi, J.; Xu, L.; Qiu, D. Effective antifogging coating from hydrophilic/hydrophobic polymer heteronetwork. Adv. Sci. 2022, 9, 2200072. [Google Scholar] [CrossRef]
- Rahman, M.M.; Alam, M.A.; Ihara, H.; Takafuji, M. Hetero-network hydrogels crosslinked with silica nanoparticles for strategic control of thermal responsive property. Soft Matter 2021, 17, 4615–4622. [Google Scholar] [CrossRef]
- Fu, J.; Wang, L.; Yu, H.; Haroon, M.; Haq, F.; Shi, W.; Wu, B.; Wang, L. Research progress of UV-curable polyurethane acrylate-based hardening coatings. Prog. Org. Coat. 2019, 131, 82–99. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, H.; Lu, S.; Wang, Z.; Tang, S.; Shao, J.; Sun, Z.; Xie, H.; Wang, H.; Yu, X.-F.; et al. From black phosphorus to phosphorene: Basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 2015, 25, 6996–7002. [Google Scholar] [CrossRef]
- Martines, E.; Seunarine, K.; Morgan, H.; Gadegaard, N.; Wilkinson, C.D.W.; Riehle, M.O. Superhydrophobicity and superhydrophilicity of regular nanopatterns. Nano Lett. 2005, 5, 2097–2103. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Gao, M.; Kang, Y.; Li, J.; Wang, J.; Wu, L.; Chu, P.K.; Huang, Y.; Ibarra, M.R.; Yu, X.-F. Rapid and scalable production of high-quality phosphorene by plasma-liquid technology. Chem. Commun. 2020, 56, 221–224. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, Y.; Cai, C.; Zhang, Y.; Guo, S.; Fu, Y.; Tan, S.C. Dual-network liquid metal hydrogel with integrated solar-driven evaporation, multi-sensory applications, and electricity generation via enhanced light absorption and bénard-marangoni effect. Adv. Funct. Mater. 2022, 32, 2206287. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.; Kang, Y.; Deng, Y.; Yang, F.; He, R.; Yu, X.-F. Long-Term Antifogging Coating Based on Black Phosphorus Hybrid Super-Hydrophilic Polymer Hetero-Network. Nanomaterials 2023, 13, 86. https://doi.org/10.3390/nano13010086
Wu L, Kang Y, Deng Y, Yang F, He R, Yu X-F. Long-Term Antifogging Coating Based on Black Phosphorus Hybrid Super-Hydrophilic Polymer Hetero-Network. Nanomaterials. 2023; 13(1):86. https://doi.org/10.3390/nano13010086
Chicago/Turabian StyleWu, Lie, Yihong Kang, Yuhao Deng, Fan Yang, Rui He, and Xue-Feng Yu. 2023. "Long-Term Antifogging Coating Based on Black Phosphorus Hybrid Super-Hydrophilic Polymer Hetero-Network" Nanomaterials 13, no. 1: 86. https://doi.org/10.3390/nano13010086
APA StyleWu, L., Kang, Y., Deng, Y., Yang, F., He, R., & Yu, X.-F. (2023). Long-Term Antifogging Coating Based on Black Phosphorus Hybrid Super-Hydrophilic Polymer Hetero-Network. Nanomaterials, 13(1), 86. https://doi.org/10.3390/nano13010086