Size Effect of Nanoceria Blended with CIME Biodiesel on Engine Characteristics
Abstract
:1. Introduction
1.1. Literature Review
S.No. | Ceria NP Size (nm) | NP Concentration | Biodiesel–Diesel Blend * | Reference | Year |
---|---|---|---|---|---|
1 | - | 50, 100 ppm | Jatropha biodiesel | [57] | 2019 |
2 | 25 | 20,40,60 ppm | CIMEBD | [46] | 2016 |
3 | 90 ppm | WDE-RMEBD | [59] | 2018 | |
4 | 90 ppm | Water + D + Bd | [60] | 2018 | |
5 | 10–16 | 25 ppm | GMGBD | [61] | 2019 |
6 | 50 | 80 ppm | WCOBD + D-20:80 | [62] | 2019 |
7 | 32, 36 | 100 ppm | GSOBD | [63] | 2019 |
8 | 50 | LGO + DEE + D | [64] | 2016 | |
9 | 10–20 | 30 ppm mass | LGO + Water + D | [65] | 2019 |
10 | 5–10; 10–20 | 50 ppm | Karanja MEBD (Pongamia) | [66] | 2019 |
11 | 25 | 50,100,150 ppm | Mahua MEBD | [67] | 2019 |
12 | 16 | LGOBD | [68] | 2016 | |
13 | 10,30,80 | 80 ppm | WCOBD + D-20:80 | [69] | 2021 |
2. Materials and Methods
2.1. Cerium oxide NP Synthesis and Characterization
2.2. CIME Biodiesel Synthesis
2.3. Experimental Details and Procedure
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reitz, R.D.; Ogawa, H.; Payri, R.; Fansler, T.; Kokjohn, S.; Moriyoshi, Y.; Agarwal, A.K.; Arcoumanis, D.; Assanis, D.; Bae, C.; et al. IJER editorial: The future of the internal combustion engine. Int. J. Engine Res. 2019, 21, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Leach, F.; Kalghatgi, G.; Stone, R.; Miles, P. The scope for improving the efficiency and environmental impact of internal combustion engines. Transp. Eng. 2020, 1, 100005. [Google Scholar] [CrossRef]
- Morsy, M.H. Ignition control of methane fueled homogeneous charge compression ignition engines using additives. Fuel 2007, 86, 533–540. [Google Scholar] [CrossRef]
- Ciatti, S.A. Compression ignition engines—Revolutionary technology that has civilized frontiers all over the globe from the industrial revolution into the twenty-first century. Front. Mech. Eng. 2015, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Zheng, D.; Hou, Z. Energy quality factor and a new thermodynamic approach to evaluate cascade utilization of fossil fuels. Energy Fuels 2009, 23, 261–269. [Google Scholar] [CrossRef]
- BP Energy Outlook. 2017. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2017.pdf (accessed on 11 June 2022).
- ExxonMobile. Outlook for Energy: A Perspective to 2040. 2019. Available online: https://corporate.exxonmobil.com/-/media/Global/Files/outlook-for-energy/2019-Outlook-for-Energy_v4.pdf (accessed on 11 June 2022).
- Shafiee, S.; Topal, E. When will fossil fuel reserves be diminished? Energy Policy 2009, 37, 181–189. [Google Scholar] [CrossRef]
- Abas, N.; Kalair, A.; Khan, N. Review of fossil fuels and future energy technologies. Futures 2015, 69, 31–49. [Google Scholar] [CrossRef]
- International Energy Agency. 2021. Available online: https://www.iea.org/fuels-and-technologies/oil (accessed on 8 October 2022).
- Paykani, A.; Chehrmonavari, H.; Tsolakis, A.; Alger, T.; Northrop, W.F.; Reitz, R.D. Synthesis gas as a fuel for internal combustion engines in transportation. Prog. Energy Combust. Sci. 2022, 90, 100995. [Google Scholar] [CrossRef]
- Maheshwari, P.; Haider, M.B.; Yusuf, M.; Klemes, J.J.; Bokhari, A.; Beg, M.; Al-Othman, A.; Kumar, R.; Jaiswal, A.K. A review on latest trends in cleaner biodiesel production: Role of feedstock, production methods, and catalysts. J. Clean. Prod. 2022, 355, 131588. [Google Scholar] [CrossRef]
- Pandey, V.; Badruddin, I.A.; Terfasa, T.T.; Tesfamariam, B.B.; Ahmed, G.M.S.; Saleel, C.A.; Alrobei, H. Experimental investigation of the impact of CeO2 nanoparticles in Jet-A and Jatropha-SPK blended fuel in an aircraft can-combustor at flight conditions. Fuel 2022, 317, 123393. [Google Scholar] [CrossRef]
- Stettler, M.E.J.; Midgley, W.J.B.; Swanson, J.J.; Cebon, D.; Boies, A.M. Greenhouse gas and noxious emissions from dual fuel diesel and natural gas heavy goods vehicles. Environ. Sci. Technol. 2016, 50, 2018–2026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, V.; Badruddin, I.A.; Khan, T.M.Y. Effect of H2 blends with compressed natural gas on emissions of SI engine having modified ignition timings. Fuel 2022, 321, 123930. [Google Scholar] [CrossRef]
- Wang, X.; Gao, J.; Chen, Z.; Chen, H.; Zhao, Y.; Huang, Y.; Chen, Z. Evaluation of hydrous ethanol as a fuel for internal combustion engines: A review. Renew. Energy 2022, 194, 504–525. [Google Scholar] [CrossRef]
- Zhen, X.; Wang, Y.; Liu, D. Bio-butanol as a new generation of clean alternative fuel for SI (spark ignition) and CI (compression ignition) engines. Renew. Energy 2019, 147, 2494–2521. [Google Scholar] [CrossRef]
- Kalita, P.; Basumatary, B.; Saikia, P.; Das, B.; Basumatary, S. Biodiesel as renewable biofuel produced via enzyme-based catalyzed transesterification. Energy Nexus 2022, 6, 100087. [Google Scholar] [CrossRef]
- Brahma, S.; Nath, B.; Basumatary, B.; Das, B.; Saikia, P.; Patir, K.; Basumatary, S. Biodiesel production from mixed oils: A sustainable approach towards industrial biofuel production. Chem. Eng. J. Adv. 2022, 10, 100284. [Google Scholar] [CrossRef]
- Esmaeili, H. A critical review on the economic aspects and life cycle assessment of biodiesel production using heterogeneous nanocatalysts. Fuel Process. Technol. 2022, 230, 107224. [Google Scholar] [CrossRef]
- Basumatary, S.F.; Patir, K.; Das, B.; Saikia, P.; Brahma, S.; Basumatary, B.; Nath, B.; Basumatary, B.; Basumatary, S. Production of renewable biodiesel using metal organic frameworks based materials as efficient heterogeneous catalysts. J. Clean. Prod. 2022, 358, 131955. [Google Scholar] [CrossRef]
- Maleki, B.; Talesh, A.A.S.; Mansouri, M. Comparison of catalysts types performance in the generation of sustainable biodiesel via transesterification of various oil sources: A review study. Mater. Today Sustain. 2022, 18, 100157. [Google Scholar] [CrossRef]
- Brar, P.K.; Ormeci, B.; Dhir, A. Algae: A cohesive tool for biodiesel production along with wastewater treatment. Sustain. Chem. Pharm. 2022, 28, 100730. [Google Scholar] [CrossRef]
- Arumugam, A.; Ponnusami, V. Biodiesel production from Calophyllum inophyllum oil a potential non-edible feedstock: An overview. Renew Energy 2019, 131, 459–471. [Google Scholar] [CrossRef]
- Ong, H.C.; Mahlia, T.M.; Masjuki, H.H.; Norhasyima, R.S. Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: A review. Renew Sustain. Energy Rev. 2011, 15, 3501–3515. [Google Scholar] [CrossRef]
- Atabani, A.E.; Mahlia, T.M.; Badruddin, I.A.; Masjuki, H.H.; Chong, W.T.; Lee, K.T. Investigation of physical and chemical properties of potential edible and non-edible feedstocks for biodiesel production, a comparative analysis. Renew. Sustain. Energy Rev. 2013, 21, 749–755. [Google Scholar] [CrossRef]
- Nanthagopal, K.; Ashok, B.; Saravanan, B.; Pathy, M.R.; Sahil, G.; Ramesh, A.; Nabi, M.N.; Rasul, M.G. Study on decanol and Calophyllum inophyllum biodiesel as ternary blends in CI engine. Fuel 2019, 239, 862–873. [Google Scholar] [CrossRef]
- Shameer, P.M.; Ramesh, K. FTIR assessment and investigation of synthetic antioxidant on the fuel stability of Calophyllum inophyllum biodiesel. Fuel 2017, 209, 411–416. [Google Scholar] [CrossRef]
- Icingur, Y.; Altiparmak, D. Effect of fuel cetane number and injection pressure on a DI Diesel engine performance and emissions. Energy Convers. Manag. 2003, 44, 389–397. [Google Scholar] [CrossRef]
- How, H.G.; Masjuki, H.H.; Kalam, M.A.; Teoh, Y.H.; Chuah, H.G. Effect of Calophyllum inophyllum biodiesel-diesel blends on combustion, performance, exhaust particulate matter and gaseous emissions in a multi-cylinder diesel engine. Fuel 2018, 227, 154. [Google Scholar] [CrossRef]
- Belagur, V. Influence of Fuel Injection Rate on the Performance, Emission and Combustion Characteristics of DI Diesel Engine Running on Calophyllum inophyllum Linn Oil (Honne Oil)/Diesel Fuel Blend; SAE Technical Paper; SAE: Warrendale, PA, USA, 2010. [Google Scholar]
- Sanjid, A.; Masjuki, H.H.; Kalam, M.A.; Rahman, S.A.; Abedin, M.J.; Palash, S.M. Impact of palm, mustard, waste cooking oil and Calophyllum inophyllum biofuels on performance and emission of CI engine. Renew. Sustain. Energy Rev. 2013, 27, 664–682. [Google Scholar] [CrossRef]
- Yusof, S.N.A.; Sidik, N.A.C.; Asako, Y.; Japar, W.M.A.A.; Mohamed, S.B.; Muhammad, N.M. A comprehensive review of the influences of nanoparticles as a fuel additive in an internal combustion engine (ICE). Nanotechnol. Rev. 2020, 9, 1326–1349. [Google Scholar] [CrossRef]
- Khan, S.; Dewang, Y.; Raghuwanshi, J.; Shrivastava, A.; Sharma, V. Nanoparticles as fuel additive for improving performance and reducing exhaust emissions of internal combustion engines. Int. J. Environ. Anal. Chem. 2020, 102, 319–341. [Google Scholar] [CrossRef]
- Tomar, M.; Kumar, N. Influence of nanoadditives on the performance and emission characteristics of a CI engine fuelled with diesel, biodiesel, and blends—A review. Energy Sourc. Part A Recov. Utiliz. Environ. Eff. 2019, 42, 1–18. [Google Scholar] [CrossRef]
- Devener, B.V.; Anderson, S.L. Breakdown and combustion of JP-10 fuel catalyzed by nanoparticulate CeO2 and Fe2O3. Energy Fuels 2006, 20, 1886–1894. [Google Scholar] [CrossRef]
- Allen, C.; Mittal, G.; Sung, C.-J.; Toulson, E.; Lee, T. An aerosol rapid compression machine for studying energetic-nanoparticle-enhanced combustion of liquid fuels. Proc. Combust. Inst. 2011, 33, 3367–3374. [Google Scholar] [CrossRef]
- Kumar, S.; Dinesha, P.; Ajay, C.M.; Kabbur, P. Combined effect of oxygenated liquid and metal oxide nanoparticle fuel additives on the combustion characteristics of a biodiesel engine operated with higher blend percentages. Energy 2020, 197, 117194. [Google Scholar] [CrossRef]
- Chen, A.F.; Adzmi, M.A.; Adam, A.; Othman, M.F.; Kamaruzzaman, M.K.; Mrwan, A.G. Combustion characteristics, engine performances and emissions of a diesel engine using nanoparticle-diesel fuel blends with aluminium oxide, carbon nanotubes and silicon oxide. Energ. Convers. Manag. 2018, 171, 461–477. [Google Scholar] [CrossRef]
- Fifere, N.; Airinei, A.; Dobromir, M.; Sacarescu, L.; Dunca, S.I. Revealing the Effect of Synthesis Conditions on the Structural, Optical, and Antibacterial Properties of Cerium Oxide Nanoparticles. Nanomaterials 2021, 11, 2596. [Google Scholar] [CrossRef]
- Ranasinghe, K.S.; Singh, R.; Leshchev, D.; Vasquez, A.; Stavitski, E.; Foster, I. Synthesis of Nanoceria with Varied Ratios of Ce3+/Ce4+ Utilizing Soluble Borate Glass. Nanomaterials 2022, 12, 2363. [Google Scholar] [CrossRef]
- Pop, O.L.; Mesaros, A.; Vodnar, D.C.; Suharoschi, R.; Tăbăran, F.; Magerușan, L.; Tódor, I.S.; Diaconeasa, Z.; Balint, A.; Ciontea, L.; et al. Cerium Oxide Nanoparticles and Their Efficient Antibacterial Application In Vitro against Gram-Positive and Gram-Negative Pathogens. Nanomaterials 2020, 10, 1614. [Google Scholar] [CrossRef]
- Rozhin, P.; Melchionna, M.; Fornasiero, P.; Marchesan, S. Nanostructured Ceria: Biomolecular Templates and (Bio)applications. Nanomaterials 2021, 11, 2259. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, C.; Zhu, D.; Jia, X.; Zhang, Y.; Yu, J.; Li, X.; Yang, M. High Performance Low-Temperature Solid Oxide Fuel Cells Based on Nanostructured Ceria-Based Electrolyte. Nanomaterials 2021, 11, 2231. [Google Scholar] [CrossRef]
- Shehata, N.; Kandas, I.; Samir, E. In-Situ Gold–Ceria Nanoparticles: Superior Optical Fluorescence Quenching Sensor for Dissolved Oxygen. Nanomaterials 2020, 10, 314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vairamuthu, G.; Sundarapandian, S.; Kailasanathan, C.; Thangagiri, B. Experimental investigation on the effects of cerium oxide nanoparticle on Calophyllum inophyllum (Punnai) biodiesel blended with diesel fuel in DI diesel engine modified by nozzle geometry. J. Energy Inst. 2016, 89, 668–682. [Google Scholar] [CrossRef]
- Lv, J.; Wang, S.; Meng, B. The Effects of Nano-Additives Added to Diesel-Biodiesel Fuel Blends on Combustion and Emission Characteristics of Diesel Engine: A Review. Energies 2022, 15, 1032. [Google Scholar] [CrossRef]
- Haq, M.U.; Jafry, A.T.; Ahmad, S.; Cheema, T.A.; Ansari, M.Q.; Abbas, N. Recent Advances in Fuel Additives and Their Spray Characteristics for Diesel-Based Blends. Energies 2022, 15, 7281. [Google Scholar] [CrossRef]
- Ampah, J.D.; Yusuf, A.A.; Agyekum, E.B.; Afrane, S.; Jin, C.; Liu, H.; Fattah, I.M.R.; Show, P.L.; Shouran, M.; Habil, M.; et al. Progress and Recent Trends in the Application of Nanoparticles as Low Carbon Fuel Additives—A State of the Art Review. Nanomaterials 2022, 12, 1515. [Google Scholar] [CrossRef]
- Tamilvanan, A.; Balamurugan, K.; Vijayakumar, M. Effects of nano-copper additive on performance, combustion and emission characteristics of Calophyllum inophyllum biodiesel in CI engine. J. Therm. Anal. Calorim. 2019, 136, 317–330. [Google Scholar] [CrossRef]
- Nanthagopal, K.; Ashok, B.; Tamilarasu, A.; Johny, A.; Mohan, A. Influence on the effect of zinc oxide and titanium dioxide nanoparticles as an additive with Calophyllum inophyllum methyl ester in a CI engine. Energy Convers. Manag. 2017, 146, 8–19. [Google Scholar] [CrossRef]
- Ashok, B.; Nanthagopal, K.; Vignesh, D.S. Calophyllum inophyllum methyl ester biodiesel blend as an alternate fuel for diesel engine applications. Alex. Eng. J. 2017, 57, 1239–1247. [Google Scholar] [CrossRef]
- Küçükosman, R.; Yontar, A.A.; Ocakoglu, K. Nanoparticle additive fuels: Atomization, combustion and fuel characteristics. J. Anal. Appl. Pyrolysis 2022, 165, 105575. [Google Scholar] [CrossRef]
- Örs, I.; Sarıkoç, S.; Atabani, A.E.; Ünalan, S.S.; Akansu, S.O. The effects on performance, combustion and emission characteristics of DICI engine fuelled with TiO2 nanoparticles addition in diesel/biodiesel/n-butanol blends. Fuel 2018, 234, 177–188. [Google Scholar] [CrossRef]
- Ooi, J.B.; Ismail, H.M.; Tan, B.T.; Wang, X. Effects of graphite oxide and single-walled carbon nanotubes as diesel additives on the performance, combustion, and emission characteristics of a light-duty diesel engine. Energy 2018, 161, 70–80. [Google Scholar] [CrossRef]
- Hawi, M.; Elwardany, A.; Ismail, M.; Ahmed, M. Experimental Investigation on Performance of a Compression Ignition Engine Fueled with Waste Cooking Oil Biodiesel–Diesel Blend Enhanced with Iron-Doped Cerium Oxide Nanoparticles. Energies 2019, 12, 798. [Google Scholar] [CrossRef] [Green Version]
- Hossain, A.K.; Hussain, A. Impact of Nanoadditives on the Performance and Combustion Characteristics of Neat Jatropha Biodiesel. Energies 2019, 12, 921. [Google Scholar] [CrossRef] [Green Version]
- Hussain, F.; Soudagar, M.E.M.; Afzal, A.; Mujtaba, M.A.; Fattah, I.M.R.; Naik, B.; Mulla, M.H.; Badruddin, I.A.; Khan, T.M.Y.; Raju, V.D.; et al. Enhancement in Combustion, Performance, and Emission Characteristics of a Diesel Engine Fueled with Ce-ZnO Nanoparticle Additive Added to Soybean Biodiesel Blends. Energies 2020, 13, 4578. [Google Scholar] [CrossRef]
- Jiaqiang, E.; Zhang, Z.; Chen, J.; Pham, M.; Zhao, X.; Peng, Q.; Zhang, B.; Yin, Z. Performance and emission evaluation of a marine diesel engine fueled by water biodiesel-diesel emulsion blends with a fuel additive of a cerium oxide nanoparticle. Energy Convers. Manag. 2018, 169, 194–205. [Google Scholar] [CrossRef]
- Gharehghani, A.; Asiaei, S.; Khalife, E.; Najafi, B.; Tabatabaei, M. Simultaneous reduction of CO and NOx emissions as well as fuel consumption by using water and nano particles in Diesel–Biodiesel blend. J. Clean. Prod. 2019, 210, 1164–1170. [Google Scholar] [CrossRef]
- Janakiraman, S.; Lakshmanan, T.; Chandran, V.; Subramani, L. Comparative behavior of various nano additives in a DIESEL engine powered by novel Garcinia gummi-gutta biodiesel. J. Clean. Prod. 2019, 245, 118940. [Google Scholar] [CrossRef]
- Kumar, S.; Dinesha, P.; Rosen, M.A. Effect of injection pressure on the combustion, performance and emission characteristics of a biodiesel engine with cerium oxide nanoparticle additive. Energy 2019, 185, 1163–1173. [Google Scholar] [CrossRef]
- Vedagiri, P.; Martin, L.J.; Varuvel, E.G.; Subramanian, T. Experimental study on NOx reduction in a grapeseed oil biodiesel-fueled CI engine using nanoemulsions and SCR retrofitment. Environ. Sci. Pollut. Res. 2020, 27, 29703–29716. [Google Scholar] [CrossRef]
- Sathiyamoorthi, R.; Sankaranarayanan, G.; Pitchandi, K. Combined effect of nanoemulsion and EGR on combustion and emission characteristics of neat lemongrass oil (LGO)-DEE-diesel blend fuelled diesel engine. Appl. Therm. Eng. 2017, 112, 1421–1432. [Google Scholar] [CrossRef]
- Perumal Venkatesan, E.; Kandhasamy, A.; Sivalingam, A.; Kumar, A.S.; Ramalingam, K.M.; Joshua, P.J.T.; Balasubramanian, D. Performance and emission reduction characteristics of cerium oxide nanoparticle-water emulsion biofuel in diesel engine with modified coated piston. Environ. Sci. Pollut. Res. 2019, 26, 27362–27371. [Google Scholar] [CrossRef] [PubMed]
- Dhanasekar, K.; Sridaran, M.; Arivanandhan, M.; Jayavel, R. A facile preparation, performance and emission analysis of pongamia oil based novel biodiesel in diesel engine with CeO2:Gd nanoparticles. Fuel 2019, 255, 115756. [Google Scholar] [CrossRef]
- Kumar, M.V.; Babu, A.V.; Kumar, P.R. Influence of metal-based cerium oxide nanoparticle additive on performance, combustion, and emissions with biodiesel in diesel engine. Environ. Sci. Pollut. Res. 2019, 26, 7651–7664. [Google Scholar] [CrossRef] [PubMed]
- Annamalai, M.; Dhinesh, B.; Nanthagopal, K.; SivaramaKrishnan, P.; Lalvani, J.I.; Parthasarathy, M.; Annamalai, K. An assessment on performance, combustion and emission behavior of a diesel engine powered by ceria nanoparticle blended emulsified biofuel. Energy Convers. Manag. 2016, 123, 372–380. [Google Scholar] [CrossRef]
- Dinesha, P.; Kumar, S.; Rosen, M.A. Effects of particle size of cerium oxide nanoparticles on the combustion behavior and exhaust emissions of a diesel engine powered by biodiesel/diesel blend. Biofuel Res. J. 2021, 30, 1374–1383. [Google Scholar] [CrossRef]
- Scherrer, P. Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen (Determination of the size and internal structure of colloidal particles using X-rays). Nachrichten Gesellschaft Wissenschaften Göttingen Math. Phys. Kl. 1918, 1918, 98–100. Available online: http://eudml.org/doc/59018 (accessed on 8 October 2022).
- Ayyasamy, T.; Balamurugan, K.; Duraisamy, S. Production, performance and emission analysis of Tamanu oil-diesel blends along with biogas in a diesel engine in dual cycle mode. Int. J. Energy Technol. Policy 2018, 14, 4–19. [Google Scholar] [CrossRef]
- Dinesh, K.; Tamilvanan, A.; Vaishnavi, S.; Gopinath, M.; Mohan, K.R. Biodiesel production using Calophyllum inophyllum (Tamanu) seed oil and its compatibility test in a CI engine. Biofuels 2016, 10, 347–353. [Google Scholar] [CrossRef]
- Vigneshwar, V.; Krishnan, S.Y.; Kishna, R.S.; Srinath, R.; Ashok, B.; Nanthagopal, K. Comprehensive review of Calophyllum inophyllum as a feasible alternate energy for CI engine applications. Renew. Sustain. Energy Rev. 2019, 115, 109397. [Google Scholar] [CrossRef]
- Rahman, S.A.; Masjuki, H.H.; Kalam, M.A.; Abedin, M.J.; Sanjid, A.; Sajjad, H. Production of palm and Calophyllum inophyllum based biodiesel and investigation of blend performance and exhaust emission in an unmodified diesel engine at high idling conditions. Energy Convers. Manag. 2013, 76, 362–367. [Google Scholar] [CrossRef]
- Silitonga, A.S.; Masjuki, H.H.; Mahlia, T.M.; Ong, H.C.; Chong, W.T.; Boosroh, M.H. Overview properties of biodiesel diesel blends from edible and non-edible feedstock. Renew. Sustain. Energy Rev. 2013, 22, 346–360. [Google Scholar] [CrossRef]
- Atabani, A.E.; Mahlia, T.M.; Masjuki, H.H.; Badruddin, I.A.; Yussof, H.W.; Chong, W.T.; Lee, K.T. A comparative evaluation of physical and chemical properties of biodiesel synthesized from edible and non-edible oils and study on the effect of biodiesel blending. Energy 2013, 58, 296–304. [Google Scholar] [CrossRef]
- Hoekman, S.K.; Broch, A.; Robbins, C.; Ceniceros, E.; Natarajan, M. Review of biodiesel composition, properties, and specifications. Renew. Sustain. Energy Rev. 2012, 16, 143–169. [Google Scholar] [CrossRef]
- Dinesha, P.; Mohan, S.; Kumar, S. Impact of alumina and cerium oxide nanoparticles on tailpipe emissions of waste cooking oil biodiesel fuelled CI engine. Cogent Eng. 2021, 8, 1902067. [Google Scholar] [CrossRef]
- Soudagar, M.E.M.; Banapurmath, N.R.; Afzal, A.; Hossain, N.; Abbas, M.M.; Haniffa, M.A.C.M.; Naik, B.; Ahmed, W.; Nizamuddin, S.; Mubarak, N.M. Study of diesel engine characteristics by adding nanosized zinc oxide and diethyl ether additives in Mahua biodiesel–diesel fuel blend. Sci. Rep. 2020, 10, 15326. [Google Scholar] [CrossRef]
- Gan, Y.; Qiao, L. Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles. Combust. Flame 2011, 158, 354–368. [Google Scholar] [CrossRef]
- Saravanan, S.; Nagarajan, G.; Anand, S.; Sampath, S. Correlation for thermal NOx formation in compression ignition (CI) engine fuelled with diesel and biodiesel. Energy 2012, 42, 401–410. [Google Scholar] [CrossRef]
- Voigt, C.; Kleine, J.; Sauer, D.; Moore, R.H.; Brauer, T.; Le Clercq, P.; Kaufmann, S.; Scheibe, M.; Jurkat-Witschas, T.; Aigner, M.; et al. Cleaner burning aviation fuels can reduce contrail cloudiness. Commun. Earth Environ. 2021, 2, 114. [Google Scholar] [CrossRef]
Property | Diesel | CIMEBD |
---|---|---|
Kinematic Visosity@100 °C | 2.69 | 4.72–5.68 |
Flash Point | 68.5 | 140–165.5 |
Density@40 °C | 839.6 | 868–877 |
Lower Calorific Value (kJ/kg) | 45,304 | 38,330–39,513 |
Oxidation Stability (hrs. at 100 °C) | - | 3.58–14.27 |
Cetane Number | 51.7 | 55–63 |
Engine Specifications | |
---|---|
Number of Cylinders | 1 |
Stroke | 114.3 mm |
Bore | 82.5 mm |
Swept Volume | 612 cc |
Fuel System | Direct Injection |
Compression Ratio | (16:1) |
Cooling System | Water cooled |
Fuel Blend Nomenclature | D | BD | BD20 | BD40 | BD60 | BD80 |
---|---|---|---|---|---|---|
Fuel Blend Specification | Diesel | 25% CIMEBD, 75% Diesel | BD + NP (20 nm) | BD + NP (40 nm) | BD + NP (60 nm) | BD + NP (80 nm) |
Instrument Range/Accuracy/Uncertainty | |
---|---|
Load cell dynamometer | 0–1200 Nm; ±0.25% of full scale |
Coriolis flow meter | 0–240 kg/h; ±0.1% of measured value |
K-type thermocouple | ±0.75%; −200–1250 deg. C |
Horiba exhaust analyzer | CO: 0.02% (v/v); −0.2% to +0.2% uncertainty |
HC: 1 ppm vol. (0−2000 ppm vol.); −1.3% to +1.3% uncertainty | |
O2:10 ppm vol. (2000–10,000 ppm vol.) | |
CO2: 0.02% (v/v); −0.2% to +0.2% uncertainty | |
NO: 1 ppm vol.; −1.3% to +1.3% uncertainty |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandey, V.; Badruddin, I.A.; Kamangar, S.; Alemayehu, A.B. Size Effect of Nanoceria Blended with CIME Biodiesel on Engine Characteristics. Nanomaterials 2023, 13, 6. https://doi.org/10.3390/nano13010006
Pandey V, Badruddin IA, Kamangar S, Alemayehu AB. Size Effect of Nanoceria Blended with CIME Biodiesel on Engine Characteristics. Nanomaterials. 2023; 13(1):6. https://doi.org/10.3390/nano13010006
Chicago/Turabian StylePandey, Vivek, Irfan Anjum Badruddin, Sarfaraz Kamangar, and Addisu Bekele Alemayehu. 2023. "Size Effect of Nanoceria Blended with CIME Biodiesel on Engine Characteristics" Nanomaterials 13, no. 1: 6. https://doi.org/10.3390/nano13010006
APA StylePandey, V., Badruddin, I. A., Kamangar, S., & Alemayehu, A. B. (2023). Size Effect of Nanoceria Blended with CIME Biodiesel on Engine Characteristics. Nanomaterials, 13(1), 6. https://doi.org/10.3390/nano13010006